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APPENDIX A
CODE

The algorithmic description of DAT without clean set is shown in Algorithm 1. To illustrate how DAT works, we also
provide the code on the MNIST and CIFAR-10 datasets. The provided code is in the DAT-master folder, and the github url
will be released after the review procedure.

Algorithm 1 DAT-Algorithm without clean set
Input: noisy training set D,, o and 3, learning rate 7, epoch T', iteration N.
1: fort =1,2,3,...,7 do
2 Shuffle training set D,

3 Sample a subset D, from D,

4 forn=1,2,3,...,N do

5: Fetch mini-batch p from D,
6

7

8

9

Fetch mini-batch S from D,
Calculate Lz on p, Lg;s on S
Update Oh,;hg = Ohﬁ,g — Vgh'h,gﬁge
: Update G;L = eh + OéVeh Lis
10: Update 0, = 0, — BVa, Lyis

Output: Hhﬁ’g




APPENDIX B
THEORETICAL DERIVATION

In this section, we show the proof of Theorem 1 and the reason that hAH-divergence has a tighter upper bound. For ease
of reference, we restate the definition of hAH-divergence and Theorem 1.

Definition 1: Given two feature distribution Df and DZ extracted by a fixed g, and a hypothesis class H which is a set of
binary classifiers. Through a given classifier h, hAH-divergence between DPZ and DZ is

dnan(DZ,DZ) = 2 sup { Pr [h (2) # iz(z)] ~ Pr [h (2) # iz(z)] } (1)
hen | =~P7 Z~DF
The following Theorem 1 can be stated through the h/AH-divergence.
Theorem 1: Let g be a fixed representation function from X to Z, H be the hypothesis class of Vapink-Chervonenkis
dimension d. If random noisy samples of size m is generated by applying g from D,-i.i.d., then with probability at least 1 — 9,
the generalized bound of the clean risk €. (h):

e (h) < er(h) + 2th (DZ,DZ) + A, 2)
where
A:ec<h*>+ep<h*>+ﬁwloﬁj”ﬂog;‘), )
h* = argming o4, €. (h), “4)
1 = ;
= a;'fp (2) = h(2)]- (5)

Proof 1: For a classifier h, let Z;, C Z be the charagteristic subset for whose characteristic function is h. The paral-
lel notation Zj- and Z; are used for classifier h* and h. Through the characteristic subset, we make Pr. [ZhAZp+] =
Pr, pz [l (2) # h* (2)], and the parallel notation Pr), is used.

e (h) < ec (h™) + Pre [Z,A 2] (6)
<e €c (h*) + PI'p [ZhAZh*] + {PI’C [ZhAZh*] — Prp [ZhAZh*]} (7)
<e(h")+ €, (h") + €5 (h) + {Prc [ZhAZp+] — Pr, [ZRAZ-]} (8)
<eo(h*) 4 ¢, (h*) + ¢, (h) + sup {PIC [ZhAZh] - Pr, [ZhAZh]} 9)

heH
<eo(h*) 4+ €, (h*) + ¢, (h) + %dhm (DZ,D?) (10)

InEq. (6) and InEq. (8) relies on the triangle inequality for classification error [1]. According to the standard Vapnik-
Chervonenkis theory [2], we can then bound the true €, (h) by its empirical estimate €)' (h):

4 2em 4
€y (h) < \/m(dlogd —|—10g5)—4—ez1 (h) (11)

in summary:

h) < er(h)+ A+ =d DZ DZ 12
cc(h) < & (h) + +2hA(p7T) (12)
Before explaining why h/AH-divergence has a tighter upper bound, we give a definition of HAH-divergence [3] (the same
analysis type is suitable for H-divergence):
Definition 2: Given two feature distribution DZ and DZ extracted by a fixed g, and a hypothes1s class H which is a set of
binary classifiers. Through a given classifier A, hAH -divergence between DZ and DZ is

duan(Dy,DZ) =2 sup (13)

h,heH

Pr [ (2)7&}L(2)}

z~D

[()#h()}

z~D

Assuming that the hAH-divergence is replaced by the HAH-divergence in Theorem 1, the proof becomes of the following
form.
Proof 2:



€e(h) < €. (B*) + Pro [Z2,AZ)-] (14)
< e (h*) + Pr, [ZhAZ3] + [Pre [20A24] — Pr, (20 A 2] (15)
S €c (h*) + €p ( ) -+ Gp( ) -+ |PI‘C [ZhAZh*] — PI‘p [ZhAZh*] (16)
<eo (W) +ep(h*) + €, (h) + sup |Pr. [2,AZ,] - Pr, [Z,AZ,]] (17)
h,heH
* * 1
<e.(h*)+e,(h*) +e,(h)+ §dHM (DZ,DZ) (18)

Compared to InEq. (7), InEq. (15) add an additional absolute value, which is an absolute value inequality that allows the
upper bound of the clean error rate €. (h) to be amplified. In addition, InEq. (17) searches both h and h in H to maximize
the probability difference, which also amplifies the upper bound of €. (h) even more compared to InEq. (9). As a result,
hAH-divergence has a tighter generalized upper bound.
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