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APPENDIX A
CODE

The algorithmic description of DAT without clean set is shown in Algorithm 1. To illustrate how DAT works, we also
provide the code on the MNIST and CIFAR-10 datasets. The provided code is in the DAT-master folder, and the github url
will be released after the review procedure.

Algorithm 1 DAT-Algorithm without clean set
Input: noisy training set Dρ, α and β, learning rate η, epoch T , iteration N .

1: for t = 1, 2, 3, . . . , T do
2: Shuffle training set Dρ

3: Sample a subset Ds from Dρ

4: for n = 1, 2, 3, . . . , N do
5: Fetch mini-batch ρ̄ from Dρ

6: Fetch mini-batch S̄ from Ds

7: Calculate Lc̃ce on ρ̄, Ldis on S̄
8: Update θh,h̀,g = θh,h̀,g −∇θh,h̀,gLc̃ce
9: Update θh̀ = θh̀ + α∇θh̀Ldis

10: Update θg = θg − β∇θgLdis
Output: θh,h̀,g
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APPENDIX B
THEORETICAL DERIVATION

In this section, we show the proof of Theorem 1 and the reason that h4H-divergence has a tighter upper bound. For ease
of reference, we restate the definition of h4H-divergence and Theorem 1.

Definition 1: Given two feature distribution DZρ and DZc extracted by a fixed g, and a hypothesis class H which is a set of
binary classifiers. Through a given classifier h, h4H-divergence between DZρ and DZc is:

dh4H(DZρ , D
Z
c ) = 2 sup

h̀∈H

{
Pr
z∼DZc

[
h (z) 6= h̀ (z)

]
− Pr
z∼DZρ

[
h (z) 6= h̀ (z)

]}
. (1)

The following Theorem 1 can be stated through the h4H-divergence.
Theorem 1: Let g be a fixed representation function from X to Z , H be the hypothesis class of Vapink-Chervonenkis

dimension d. If random noisy samples of size m is generated by applying g from Dρ-i.i.d., then with probability at least 1− δ,
the generalized bound of the clean risk εc (h):

εc (h) ≤ εmρ (h) +
1

2
d
h4H

(
DZρ , D

Z
c

)
+ λ, (2)

where

λ = εc (h∗) + ερ (h∗) +

√
4

m
(d log

2em

d
+ log

4

δ
), (3)

h∗ = argminh∈H εc (h) , (4)

εmρ (h) =
1

m

m∑
i=1

|f̂ρ (z)− h(z)|. (5)

Proof 1: For a classifier h, let Zh ⊆ Z be the characteristic subset for whose characteristic function is h. The paral-
lel notation Zh∗ and Zh̀ are used for classifier h∗ and h̀. Through the characteristic subset, we make Prc [Zh4Zh∗ ] =
Prz∼DZc [h (z) 6= h∗ (z)], and the parallel notation Prρ is used.

εc (h) ≤ εc (h∗) + Prc [Zh4Zh∗ ] (6)
≤ εc (h∗) + Prρ [Zh4Zh∗ ] + {Prc [Zh4Zh∗ ]− Prρ [Zh4Zh∗ ]} (7)
≤ εc (h∗) + ερ (h∗) + ερ (h) + {Prc [Zh4Zh∗ ]− Prρ [Zh4Zh∗ ]} (8)

≤ εc (h∗) + ερ (h∗) + ερ (h) + sup
h̀∈H

{
Prc

[
Zh4Zh̀

]
− Prρ

[
Zh4Zh̀

]}
(9)

≤ εc (h∗) + ερ (h∗) + ερ (h) +
1

2
d
h4H

(
DZρ , D

Z
c

)
(10)

InEq. (6) and InEq. (8) relies on the triangle inequality for classification error [1]. According to the standard Vapnik-
Chervonenkis theory [2], we can then bound the true ερ (h) by its empirical estimate εmρ (h):

ερ (h) ≤
√

4

m
(d log

2em

d
+ log

4

δ
) + εmρ (h) (11)

in summary:

εc (h) ≤ εmρ (h) + λ+
1

2
d
h4H

(
DZρ , D

Z
T

)
(12)

Before explaining why h4H-divergence has a tighter upper bound, we give a definition of H4H-divergence [3] (the same
analysis type is suitable for H-divergence):

Definition 2: Given two feature distribution DZρ and DZc extracted by a fixed g, and a hypothesis class H which is a set of
binary classifiers. Through a given classifier h, h4H-divergence between DZρ and DZc is:

dH4H(DZρ , D
Z
c ) = 2 sup

h,h̀∈H

∣∣∣∣∣ Pr
z∼DZc

[
h (z) 6= h̀ (z)

]
− Pr
z∼DZρ

[
h (z) 6= h̀ (z)

]∣∣∣∣∣ . (13)

Assuming that the h4H-divergence is replaced by the H4H-divergence in Theorem 1, the proof becomes of the following
form.

Proof 2:
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εc (h) ≤ εc (h∗) + Prc [Zh4Zh∗ ] (14)
≤ εc (h∗) + Prρ [Zh4Zh∗ ] + |Prc [Zh4Zh∗ ]− Prρ [Zh4Zh∗ ]| (15)
≤ εc (h∗) + ερ (h∗) + ερ (h) + |Prc [Zh4Zh∗ ]− Prρ [Zh4Zh∗ ]| (16)

≤ εc (h∗) + ερ (h∗) + ερ (h) + sup
h,h̀∈H

∣∣Prc
[
Zh4Zh̀

]
− Prρ

[
Zh4Zh̀

]∣∣ (17)

≤ εc (h∗) + ερ (h∗) + ερ (h) +
1

2
d
H4H

(
DZρ , D

Z
c

)
(18)

Compared to InEq. (7), InEq. (15) add an additional absolute value, which is an absolute value inequality that allows the
upper bound of the clean error rate εc (h) to be amplified. In addition, InEq. (17) searches both h and h̀ in H to maximize
the probability difference, which also amplifies the upper bound of εc (h) even more compared to InEq. (9). As a result,
h4H-divergence has a tighter generalized upper bound.
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