Supplementary Materials to "DAT:Training Deep Networks Robust to Label-Noise by Matching the Feature Distributions"

Anonymous CVPR 2021 submission

APPENDIX A CODE

The algorithmic description of DAT without clean set is shown in Algorithm 1. To illustrate how DAT works, we also provide the code on the MNIST and CIFAR-10 datasets. The provided code is in the DAT-master folder, and the github url will be released after the review procedure.

Algorithm 1 DAT-Algorithm without clean set

Input: noisy training set D_{ρ} , α and β , learning rate η , epoch T, iteration N. 1: for $t = 1, 2, 3, \ldots, T$ do Shuffle training set D_{ρ} 2: Sample a subset D_s from D_ρ 3: for $n = 1, 2, 3, \ldots, N$ do 4: 5: Fetch mini-batch $\bar{\rho}$ from D_{ρ} Fetch mini-batch \bar{S} from D_s 6: Calculate $\mathcal{L}_{\widetilde{cce}}$ on $\overline{\rho}$, \mathcal{L}_{dis} on \overline{S} 7: Update $\theta_{h,\hat{h},g} = \theta_{h,\hat{h},g} - \nabla_{\theta_{h,\hat{h},g}} \mathcal{L}_{\widetilde{cce}}$ Update $\theta_{\hat{h}} = \theta_{\hat{h}} + \alpha \nabla_{\theta_{\hat{h}}} \mathcal{L}_{dis}$ Update $\theta_{g} = \theta_{g} - \beta \nabla_{\theta_{g}} \mathcal{L}_{dis}$ 8: 9: 10: **Output:** $\theta_{h,\dot{h},g}$

APPENDIX B THEORETICAL DERIVATION

In this section, we show the proof of Theorem 1 and the reason that $h \triangle \mathcal{H}$ -divergence has a tighter upper bound. For ease of reference, we restate the definition of $h \triangle \mathcal{H}$ -divergence and Theorem 1.

Definition 1: Given two feature distribution $D_{\rho}^{\mathcal{Z}}$ and $D_{c}^{\mathcal{Z}}$ extracted by a fixed g, and a hypothesis class \mathcal{H} which is a set of binary classifiers. Through a given classifier h, $h \triangle \mathcal{H}$ -divergence between $D_{\rho}^{\mathcal{Z}}$ and $D_{c}^{\mathcal{Z}}$ is:

$$d_{h \triangle \mathcal{H}}(D_{\rho}^{\mathcal{Z}}, D_{c}^{\mathcal{Z}}) = 2 \sup_{\hat{h} \in \mathcal{H}} \left\{ \Pr_{z \sim \mathsf{D}_{c}^{\mathcal{Z}}} \left[h\left(z\right) \neq \hat{h}\left(z\right) \right] - \Pr_{z \sim \mathsf{D}_{\rho}^{\mathcal{Z}}} \left[h\left(z\right) \neq \hat{h}\left(z\right) \right] \right\}.$$
(1)

The following Theorem 1 can be stated through the $h \triangle \mathcal{H}$ -divergence.

Theorem 1: Let g be a fixed representation function from \mathcal{X} to \mathcal{Z} , \mathcal{H} be the hypothesis class of Vapink-Chervonenkis dimension d. If random noisy samples of size m is generated by applying g from D_{ρ} -i.i.d., then with probability at least $1 - \delta$, the generalized bound of the clean risk $\epsilon_c(h)$:

$$\epsilon_c(h) \le \epsilon_{\rho}^m(h) + \frac{1}{2} d_{h \triangle \mathcal{H}} \left(D_{\rho}^{\mathcal{Z}}, D_c^{\mathcal{Z}} \right) + \lambda, \tag{2}$$

where

$$\lambda = \epsilon_c \left(h^*\right) + \epsilon_\rho \left(h^*\right) + \sqrt{\frac{4}{m} \left(d\log\frac{2em}{d} + \log\frac{4}{\delta}\right)},\tag{3}$$

$$h^* = \operatorname{argmin}_{h \in \mathcal{H}} \epsilon_c(h), \qquad (4)$$

$$\epsilon_{\rho}^{m}(h) = \frac{1}{m} \sum_{i=1}^{m} |\hat{f}_{\rho}(z) - h(z)|.$$
(5)

Proof 1: For a classifier h, let $\mathcal{Z}_h \subseteq \mathcal{Z}$ be the characteristic subset for whose characteristic function is h. The parallel notation \mathcal{Z}_{h^*} and $\mathcal{Z}_{\hat{h}}$ are used for classifier h^* and \hat{h} . Through the characteristic subset, we make $\Pr_c \left[\mathcal{Z}_h \triangle \mathcal{Z}_{h^*} \right] = \Pr_{z \sim D_c^{\mathcal{Z}}} \left[h(z) \neq h^*(z) \right]$, and the parallel notation \Pr_{ρ} is used.

$$\epsilon_c(h) \le \epsilon_c(h^*) + \Pr_c\left[\mathcal{Z}_h \triangle \mathcal{Z}_{h^*}\right] \tag{6}$$

$$\leq \epsilon_{c} \left(h^{*}\right) + \Pr_{\rho}\left[\mathcal{Z}_{h} \triangle \mathcal{Z}_{h^{*}}\right] + \left\{\Pr_{c}\left[\mathcal{Z}_{h} \triangle \mathcal{Z}_{h^{*}}\right] - \Pr_{\rho}\left[\mathcal{Z}_{h} \triangle \mathcal{Z}_{h^{*}}\right]\right\}$$
(7)

$$\leq \epsilon_{c} (h^{*}) + \epsilon_{\rho} (h^{*}) + \epsilon_{\rho} (h) + \left\{ \Pr_{c} \left[\mathcal{Z}_{h} \triangle \mathcal{Z}_{h^{*}} \right] - \Pr_{\rho} \left[\mathcal{Z}_{h} \triangle \mathcal{Z}_{h^{*}} \right] \right\}$$

$$\tag{8}$$

$$\leq \epsilon_{c} (h^{*}) + \epsilon_{\rho} (h^{*}) + \epsilon_{\rho} (h) + \sup_{\hat{h} \in \mathcal{H}} \left\{ \Pr_{c} \left[\mathcal{Z}_{h} \triangle \mathcal{Z}_{\hat{h}} \right] - \Pr_{\rho} \left[\mathcal{Z}_{h} \triangle \mathcal{Z}_{\hat{h}} \right] \right\}$$
(9)

$$\leq \epsilon_{c} \left(h^{*}\right) + \epsilon_{\rho} \left(h^{*}\right) + \epsilon_{\rho} \left(h\right) + \frac{1}{2} d_{h \bigtriangleup \mathcal{H}} \left(D_{\rho}^{\mathcal{Z}}, D_{c}^{\mathcal{Z}}\right)$$

$$\tag{10}$$

InEq. (6) and InEq. (8) relies on the triangle inequality for classification error [1]. According to the standard Vapnik-Chervonenkis theory [2], we can then bound the true $\epsilon_{\rho}(h)$ by its empirical estimate $\epsilon_{\rho}^{m}(h)$:

$$\epsilon_{\rho}(h) \le \sqrt{\frac{4}{m} (d\log\frac{2em}{d} + \log\frac{4}{\delta})} + \epsilon_{\rho}^{m}(h)$$
(11)

in summary:

$$\epsilon_c(h) \le \epsilon_{\rho}^m(h) + \lambda + \frac{1}{2} d_{h \triangle \mathcal{H}} \left(D_{\rho}^{\mathcal{Z}}, D_T^{\mathcal{Z}} \right)$$
(12)

Before explaining why $h \triangle \mathcal{H}$ -divergence has a tighter upper bound, we give a definition of $\mathcal{H} \triangle \mathcal{H}$ -divergence [3] (the same analysis type is suitable for \mathcal{H} -divergence):

Definition 2: Given two feature distribution $D_{\rho}^{\mathcal{Z}}$ and $D_{c}^{\mathcal{Z}}$ extracted by a fixed g, and a hypothesis class \mathcal{H} which is a set of binary classifiers. Through a given classifier h, $h \triangle \mathcal{H}$ -divergence between $D_{\rho}^{\mathcal{Z}}$ and $D_{c}^{\mathcal{Z}}$ is:

$$d_{\mathcal{H} \triangle \mathcal{H}}(D_{\rho}^{\mathcal{Z}}, D_{c}^{\mathcal{Z}}) = 2 \sup_{h, \tilde{h} \in \mathcal{H}} \left| \Pr_{z \sim D_{c}^{\mathcal{Z}}} \left[h\left(z\right) \neq \tilde{h}\left(z\right) \right] - \Pr_{z \sim D_{\rho}^{\mathcal{Z}}} \left[h\left(z\right) \neq \tilde{h}\left(z\right) \right] \right|.$$

$$(13)$$

Assuming that the $h \triangle \mathcal{H}$ -divergence is replaced by the $\mathcal{H} \triangle \mathcal{H}$ -divergence in Theorem 1, the proof becomes of the following form.

Proof 2:

$$\epsilon_c(h) \le \epsilon_c(h^*) + \Pr_c\left[\mathcal{Z}_h \triangle \mathcal{Z}_{h^*}\right] \tag{14}$$

$$\leq \epsilon_{c} \left(h^{*}\right) + \Pr_{\rho} \left[\mathcal{Z}_{h} \triangle \mathcal{Z}_{h^{*}}\right] + \left|\Pr_{c} \left[\mathcal{Z}_{h} \triangle \mathcal{Z}_{h^{*}}\right] - \Pr_{\rho} \left[\mathcal{Z}_{h} \triangle \mathcal{Z}_{h^{*}}\right]\right|$$
(15)

$$\leq \epsilon_{c} \left(h^{*}\right) + \epsilon_{\rho} \left(h^{*}\right) + \epsilon_{\rho} \left(h\right) + \left|\Pr_{c} \left[\mathcal{Z}_{h} \triangle \mathcal{Z}_{h^{*}}\right] - \Pr_{\rho} \left[\mathcal{Z}_{h} \triangle \mathcal{Z}_{h^{*}}\right]\right|$$
(16)

$$\leq \epsilon_{c} (h^{*}) + \epsilon_{\rho} (h^{*}) + \epsilon_{\rho} (h) + \sup_{h, h \in \mathcal{H}} \left| \Pr_{c} \left[\mathcal{Z}_{h} \triangle \mathcal{Z}_{h} \right] - \Pr_{\rho} \left[\mathcal{Z}_{h} \triangle \mathcal{Z}_{h} \right] \right|$$
(17)

$$\leq \epsilon_{c} \left(h^{*}\right) + \epsilon_{\rho} \left(h^{*}\right) + \epsilon_{\rho} \left(h\right) + \frac{1}{2} d_{\mathcal{H} \triangle \mathcal{H}} \left(D_{\rho}^{\mathcal{Z}}, D_{c}^{\mathcal{Z}}\right)$$
(18)

Compared to InEq. (7), InEq. (15) add an additional absolute value, which is an absolute value inequality that allows the upper bound of the clean error rate $\epsilon_c(h)$ to be amplified. In addition, InEq. (17) searches both h and h in \mathcal{H} to maximize the probability difference, which also amplifies the upper bound of $\epsilon_c(h)$ even more compared to InEq. (9). As a result, $h \triangle \mathcal{H}$ -divergence has a tighter generalized upper bound.

REFERENCES

- [1] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, "Analysis of representations for domain adaptation," Advances in neural information processing systems, vol. 19, pp. 137–144, 2006.
- [2] V. N. Vapnik, "An overview of statistical learning theory," IEEE transactions on neural networks, vol. 10, no. 5, pp. 988–999, 1999.
- [3] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, "A theory of learning from different domains," *Machine learning*, vol. 79, no. 1-2, pp. 151–175, 2010.