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A. Dataset
1. Sensors and Modalities

We build multi-modal sensor kits for data collection as
shown in Figure 5. This kit assists the creation of the multi-
modal dataset by dramatically simplifying the data collec-
tion process through simple recording and timing synchro-
nization. The data from all viewpoints are collected by these
sensor-kits. Figure 6 shows the photo of the multi-modal
sensor mounted on the head of a subject participant.

The audio and video data from the sensor is saved to
a video file, and the sensor data is saved in the same file
as additional tracks. By using lossless codecs like the Free
Lossless Audio Codec (FLAC) or WavPack, we can save the
sensor data with high fidelity. Both codecs support multi-
channel audio in 8-32 bit integer format at frequencies as
low as 1Hz. Sensor data is acquired over I2C with constant
timing adjustments to maintain synchronization with audio
and video.

HOMAGE contains 12 modalities with multiple view-
points. Specifically, the infrared data is obtained by the
Grid-EYE 8x8 pixel infrared array sensor. The RGB light
data is obtained by a photodiode array sensor that provides
an RGB spectral response with IR blocking filter. The sen-
sor kit also includes an ambient light sensor that combines
a broadband photodiode and an infrared-responding photo-
diode on a single CMOS-integrated circuit to provide am-
bient light data. The human presence sensor is a 4-channel
nondispersive infrared (NDIR) sensor. The magnetic field
data is acquired from a magnetometer in the sensor kit.

Figure 5: The multi-modal sensor kit used in data collec-
tion.

2. Data Synchronization

With the multimodal sensor kits, we collect human ac-
tion data from different viewpoints. Specifically, we syn-

Figure 6: The multi-modal sensor, mounted on the head of
the participant.

chronize the data from different modalities by using the
scheme below.

(1) The participants were instructed to start the activity
displayed on the screen after they heard the start tone.

(2) The content of the participants was specified by ac-
tivity unit (e.g. make bed). We do not specify a detailed
sequence of atomic actions.

(3) We sounded the end tone when the participant’s activ-
ity is finished. We synchronized the data of multiple sensor-
kits using the signal of start/end tone.

Figure 7: The flow chart of data collection.

3. Data Statistics

In this section, we include further details about the
HOMAGE dataset. For the spatio-temporal scene graph,
Figure 8 shows the most frequent object classes and Figure
9 shows the most frequent object relationships. Figure 10
shows the joint distribution of object classes and relation-
ships. Figure 11 shows the distribution of the durations of



atomic actions.

Figure 8: Distribution of object classes (top 25 objects)

B. Additional Experiments
1. Self-Supervised Pre-Training

Approach Our base backbone remains similar to the one
we discuss in the main paper and the overall approach is in-
spired by [54]. To summarize, an aggregation function, g(·)
takes a sequence {z1, z2, . . . , zj} as input and generates a
context representation cj = g(z1, z2, . . . , zj). In our setup,
zj ∈ RH�×W �×D and cj ∈ RD. D represents the embed-
ding size and H �, W � represent down-sampled resolutions

Figure 9: Distribution of relationship classes

as different regions in zj represent features for different spa-
tial locations. We define z�j = Pool(zj) where z�j ∈ RD

and c = F (V ) where F (·) = g(f(·)). In our experiments,
H � = 4,W � = 4, D = 256.

To learn effective representations, we create a prediction
task involving predicting z of future blocks similar to [54].
In the ideal scenario, the task should force our model to
capture all the necessary contextual semantics in ct and all
frame-level semantics in zt. We define φ(·) which takes as
input ct and predicts the latent state of the future frames.
The formulation is given in Eq. (3).

�zt+1 = φ(ct),

�zt+1 = φ(g(z1, z2, . . . , zt)),

�zt+2 = φ(g(z1, z2, . . . , zt, �zt+1)),

(3)

where φ(·) takes ct as input and predicts the latent state
of the future frames. We then utilize the predicted �zt+1 to
compute �ct+1. We can repeat this for as many steps as we
want, in our experiments we restrict ourselves to predict till
3 steps in to the future.

Note that we use the predicted �zt+1 while predicting
�zt+2 to force the model to capture long-range semantics.
We can repeat this for a varying number of steps, although
the difficulty increases tremendously as the number of steps
increases as seen in [54]. In our experiments, we predict the
next three blocks using the first five blocks.

Results To study the value of multiple viewpoints of the
video data, we perform pre-training with the above learn-
ing framework weights to get a self-supervised initializa-
tion for our experiment. We first train our model in the self-
supervised setting for 500 epochs. We use the pre-trained
weights to initialize the ego-view and third-person view en-
coders and train with supervision loss to the same number



Figure 10: The co-occurrence statistics for objects and rela-
tionships in Home Action Genome.

of epochs as the randomly initialized baseline. Note that in
the supervision phase, each modality is trained separately
and no cross-modality loss is used. Table 8 shows that co-
operative learning with different modalities results in dis-
tinctively improved performance compared to random ini-
tialization as we are able to utilize structural information
naturally present in the examples. We also observe that
the model with self-supervised pre-training converges faster
than the baseline. This demonstrates the additional possi-
bility of utilizing Home Action Genome to evaluate multi-
modal self-supervision approaches.

2. Baseline with Oracle Scene Graphs

We provide a baseline for human action classification us-
ing oracle scene graphs. This experiment gives a rough ref-

Figure 11: Duration of atomic action

Figure 12: A diagram of the learning framework utilized.
We look at features in a sequential manner while simultane-
ously trying to predict representations for future states.

Method Ego-View 3rd Person

SV 31.8 21.8
SS + SV 33.1 24.8

Table 8: Effect of self-supervised pre-training on atomic
action classification. We see considerable performance im-
provements when initializing our model with pre-training
using multi-modal self supervision.

erence of the upper bound of action inference using spatio-
temporal information.

We represent the ground-truth scene graph input as a ma-
trix M of size nobj×nrel, with nobj and nrel be the number
of object and relationship categories, respectively, initial-
ized to be filled with 0. We encode a relationship with object
category s, and relationship category r by setting M [s, r] to
be 1. The input representation is then flattened and fed into



an MLP-based encoder.
Table 9 shows the performance of activity classifica-

tion using ground-truth scene graphs, with the encoding
scheme described above. We observe that the modality
of the ground-truth scene graph is very informative com-
pared with the other modalities, highlighting the potential
for scene graph prediction on human action understanding.

Acc1 Acc3

76.0 91.7

Table 9: Classification of activities using ground-truth scene
graphs. Results are averaged over the two test splits.

3. Multi-Task Loss

As discussed in Section 4.3, we utilize two variants for
our multi-task losses. The first is an equally weighed variant
where both La and Lv have the same weights, while the
other is similar to the one proposed in [53] utilizing task-
dependent uncertainty to automatically weigh losses. The
loss is defined as:

Lc = Lv / σ
2
v + La / σ

2
a + log(σv.σa) (4)

Where σi refers to the task dependent uncertainty
(aleatoric homoscedastic). Although the latter has shown
improved results in numerous settings, we noticed that it led
to slower convergence and the performance improvements
were not consistent across modalities. For this reason, all
results reported utilize the simple equally weighted multi-
task loss.

4. Learning Attention

As mentioned in the main text, we also explore the usage
of an attention module that allows auto-learning of associa-
tions between different modalities similar to [52] which do
it for audio and visual modalities. We setup attention in
a slightly different manner by predicting weights over the
grid. Recall that our features are arranged in a grid of shape
H � × W �. We predict H � × W � values αi,j representing
the weight of each feature corresponding to spatial location
(i, j). Given an original context c of shape D×H �×W �, we
extract cagg from it as given in Eq. (2). Note that we gener-
ate attention weights for each pair of modalities to capture
the associations between them.

In our experiments, we did not notice any differences
between choosing various values of temperature as it seems
the network modulated the learned α’s accordingly. p’s are
utilized to infer regions of interest, as cells with higher p
correspond to relevant portions of the modalities. Another
thing worth noting is that this attention module is only used
in conjunction with image modalities, as we found attention

Figure 13: Visual results for multi-modal attention between ego-
centric and third person view. We show four instances where the
left image refers to the third person view, while the right shows the
predicted attention weights (White represents higher importance
for attention). As we can see, CCAU is loosely able to predict
areas of interest using our proposed self-supervised losses.

over an audio spectrogram was not directly interpretable in
the traditional sense.

5. Knowledge Distillation

We discuss Knowledge Distillation briefly in the main
text as one of the important baselines in Section 5.3.1. The
framework we used is similar to the famously used one pro-
posed in [48]. Without going into details, the overall loss is
given in Eq. (5).

Lkd = α · H(y,σ(zs)) + β · H(σ(zt, τ),σ(zs, τ)) (5)

Eq. (5) is an instance of matching logit distributions lead-
ing to the distillation of knowledge from the teacher to the
student. Where H represents the cross-entropy loss, τ rep-
resents the temperature. zs and zt are outputs for the stu-
dent and teacher, respectively.

For multiple modalities, the loss is just repeated multiple
times for each modality. For our experiments we use α =
1 and β = 0.1. We choose τ = 2.5 as the models are
similar in capacity. We also experiment with two variants
i.e. Static and Cooperative Knowledge Distillation. The
difference being Static KD involves static teachers while the
cooperative variants allow all modalities to serve as both
students and teachers.


