Supplementary Material: Fair Attribute Classification through Latent Space
De-biasing

Vikram V. Ramaswamy, Sunnie S. Y. Kim, Olga Russakovsky
Princeton University

{vr23, suhk, olgarus}@cs .princeton.edu

In this supplementary document, we provide additional
details on certain sections of the main paper.
Section 1: We derive a closed form solution for z’ which
allows us to easily manipulate latent vectors in the latent
space (Section 3).

Section 2 We provide attribute-level results and further anal-
ysis of our main experiments (Section 4.1).

Section 3: We discuss some factors that influence (or not)
our method’s effectiveness.

Section 4: We provide more details on the ablation studies
(Section 4.2).

Section 5: We investigate how many images with protected
attribute labels our method requires to achieve the desired
performance.

1. Derivation

In Section 3 of the main paper, we describe a method to
compute perturbations within the latent vector space, such
that the protected attribute score changes, while the target
attribute score remains the same. More formally, if h; is a
function that approximates the target attribute score, and hy
is a function that approximates the protected attribute score,
for every latent vector z, we want to compute z’ such that

hi(2') = hi(2), hg(2') = —hy(2). (1)
We assume that the latent space Z is approximately linearly
separable in the semantic attributes. /; and h, thus can be
represented as linear models w¢ and wg, normalized as
l|we|| =1, ||[wg|| = 1, for the target and protected attribute
respectively, with intercepts b; and b,.
Equation 1 thus reduces to

wilz+b =wi 2 +b, W'z +b,=—wg z— b,
(2
Simplifying, we get

wi' (2 —2)=0, wg' (z +2)+2b,=0. (3)

These equations have infinitely many solutions, we choose
the solution that minimizes the distance between z and z’.
This is true if z’ — z is in the span of {wg, w¢ }. Hence, we
can represent z' — z = awy + Swg, and we get:

wil(z —2)=0 (4

wi (aw + fwg) =0 (5)

= o= —BWtTWg (6)

wg! (2 —2z)+22) +2b, =0 (7)

wg' (awg + Bwg +22) +2b, =0  (8)

—B(wTwg)? + B+ 2wz +2b, =0 (9)

= (1— (wi'wg)?)B = —2(wg 2+ by) (10
(WgTZ + by)

(1= (weTwg)?)

(We"'z + by) (Wi wg)
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= =2 (11)

=a=

(12)

This gives us a closed form solution for z’:
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(13)
As a quick verification, we confirm that this value of z’

maintains changes the protected attribute score, and main-
tains the target attribute score:

hg (Zl)
= WgTz’ + by

Welz +b

Welz+b
= WgTz -2 (1_g(WgTWf)2> (1 - (WgTWt)WgTWt) + by

=Wy z—2(Wg z+by)+by = —wg'z— by =—hy(z)
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2. Attribute-level results

We provide attribute-level results and further analysis of
our main experiments (Section 4.1 of the main paper).

2.1. Linear separability of latent space

Our paired augmentation method assumes that the latent
space is approximately linearly separable in the semantic
attributes. Here we investigate to what extent this assump-
tion holds for different attributes. As described in the main
paper, the attribute hyperplanes were estimated with 10,000
samples using linear SVM.

In Table 1, we report hyperplane accuracy and AP, mea-
sured on 160,000 synthetic samples, as well as the percentage

of positive samples and the skew of the CelebA training set.

max(N =71,a=1;Ng=1,a=1)
Ng=—1,a=1+tNg=1,a=1

Ngy—_1,4=1is the number of samples with protected attribute

label g= —1 (perceived as not male) and target label 1 (posi-
tive) and Ny—1 o—1 defined likewise. The protected attribute
class with more positive samples is noted in the skew column.
We observe that most attributes are well separated with the
estimated hyperplanes, except for those with high skew that
have too few examples from underrepresented subgroups.
For completeness, we also report our model’s improve-
ment over the baseline model on the four evaluation metrics.
We did not find immediate correlations between the hyper-
plane quality with the downstream model performance.

The skew is calculated as where

2.2. Changes in baseline score

We next evaluate how well we are able to maintain the
target attribute score when perturbing the latent vector. We
use the change in the baseline classifier as a proxy to mea-
sure the target attribute score. We note that this measurement
is flawed because the baseline classifier is known to perform
worse on minority examples, however, we believe that this
measurement still leads to some valuable insights. For each
attribute, we measure the the absolute change in baseline
score | f:(G(z) — f:(G(2z"))| over 5000 images, and compute
averages based on what we expect the target and protected at-
tribute values of G(z') to be. We plot this versus the fraction
of images in the real world dataset that have these target and
protected values (Figure 1). We find that there is a strong neg-
ative correlation. This could be because the target attribute
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Figure 1: We plot average absolute change in the baseline classifier score
versus the fraction of images in the dataset that have the corresponding
ground truth labels. We separate them based on what the new ground truth
values should be, for each attribute. We find that the score change is larger
when creating an image with minority labels. This could be because we are
unable to maintain the target attribute in this case or because the baseline
classifier performs worse on minority images.

is harder to maintain in this case, or because the baseline
classifier has a tendency to misclassify minority samples.

Another question that we were interested in was inter-
actions between different attributes as we create balanced
synthetic datasets for different attributes. We measured the
change in baseline classifier score for different targets ¢’
when trying to maintain target attribute ¢ and found that
some attributes changed drastically when creating a balanced
dataset for any attribute (Table 2). For example, the attribute
Attractive changed by a large amount irrespective of
which target attribute we were trying to preserve. This sug-
gests that some of these attributes are more sensitive to latent
space manipulations.

3. Factors of influence

In this section, we discuss in more detail how some factors
influence (or not) our method’s effectiveness (Section 4.1 of
the main paper).

3.1. Skew of attributes

For some attributes, the majority of the positive sam-
ples come from one gender expression. For example,
ArchedBrows has a skew of 0.92 towards g=—1, that
is, 92% of positive ArchedBrows samples have gender ex-
pression label g=—1. To understand the effect of data skew
on our method’s performance, we ran experiments with dif-
ferently skewed data. From the 162,770 CelebA training set
images, we created slightly smaller training sets where the
attribute of interest (e.g. HighCheeks) has different values
of skew. Specifically, we created three versions of training
data each with skew 0.5, 0.7, 0.9, while keeping the total
number of images fixed. We trained a GAN on each training
set, created a synthetic de-biased dataset with our method,
and trained an attribute classifier with the training set and
160,000 pairs of synthetic images. For comparison, we also



Attribute type Attribute statistics Hyperplane acc. | Hyperplane AP Improvement over baseline
Inconsistently labeled | Positive Skew g=—1 g=—1| g=—1 g¢g=1 AP DEO BA KL
BiglLips 241% | 0.73 g=-1| 803 92.0 49.7 289 | -035 -0.79 123 -0.03
BigNose 23.6% | 0.75 g=1 91.7 74.5 51.1 824 | -0.66 11.03 252 1.04
OvalFace 28.3% | 0.68 g=-— 75.4 74.2 85.3 63.1 | -1.82 7.53 333 0.77
PaleSkin 4.3% 076 g=—-1| 944 96.9 48.4 309 | -1.90 426 031 0.26
StraightHair 209% | 0.52 g=-1| 87.7 69.8 25.0 58.8 | -1.76 094 0.53 -0.08
WavyHair 319% | 0.81 g=-1| 73.0 92.1 79.4 235 | -0.65 7,59 133 0.26
Gender-dependent Positive Skew g=—1 g=1 g=—1 g=1 AP DEO BA KL
ArchedBrows 26.6% | 092 g=-— 72.3 92.1 82.6 255 | -0.69 -3.31 -0.09 0.02
Attractive 514% | 0.77 g=-1| 884 81.0 97.9 819 | -0.33 325 098 041
BushyBrows 144% | 0.71 g¢g=1 94.5 79.6 37.6 62.0 | -1.20 849 1.14 0.25
PointyNose 27.6% | 075 g=-1| 73.6 82.9 84.4 599 | -132 325 099 -040
RecedingHair 8.0% 0.62 g=1 94.5 88.3 41.8 577 | -144 232 040 0.17
Young 77.9% | 0.66 g=—1| 96.2 84.1 99.7 953 | -024 0.78 049 031
Gender-independent | Positive Skew g=—1 g=1 | g=—1 g¢g=1 AP  DEO BA KL
Bangs 152% | 0.77 g=-— 90.3 94.9 81.5 589 | -0.50 0.62 038 0.09
BlackHair 239% | 052 g=1 89.3 83.2 78.9 79.2 | -1.00 225 044 0.00
BlondHair 149% | 094 g=-— 88.9 97.1 82.7 19.8 | -0.77 1.04 023 -0.12
BrownHair 203% | 0.69 g=-1| 664 80.4 45.5 38.8 | -0.51 -0.57 -0.01 0.01
Chubby 5.8% 0.88 g=1 99.1 89.9 7.6 338 | -1.95 4.08 0.01 0.13
EyeBags 204% | 0.71  g=1 90.7 74.4 64.1 744 | -1.74 830 191 0.58
Glasses 6.5% 0.80 g=1 97.8 92.5 60.3 77.8 | -0.24 -0.07 0.05 -0.27
GrayHair 4.2% 0.86 g=1 98.4 92.6 10.4 329 | -260 7.02 032 0.54
HighCheeks 452% | 0.72 g=-1| 86.3 86.3 95.2 835 | -0.33 -1.06 024 0.04
MouthOpen 482% | 0.63 g=—1| 88.6 87.0 96.4 93.1 | -0.08 0.69 034 -0.03
NarrowEyes 11.6% | 0.56 g=—-1| 9338 92.1 29.6 264 | -097 3.10 -0.53 0.12
Smiling 48.0% | 0.65 g¢g=—1| 915 90.7 98.0 96.5 | -0.09 1.01 0.67 0.03
Earrings 187% | 097 g=—-1| 718 96.3 56.9 3.0 -0.63 8.18 0.64 140
WearingHat 4.9% 0.70 g=1 97.4 94.0 45.0 60.6 | -095 267 0.14 -0.06
Average 24.1% | 0.73 87.4 86.9 62.9 55.7 | -095 318 0.69 0.21

Table 1: Attribute-level information. The columns are (from left to right) target attribute name, percentage of positive samples, skew, hyperplane accuracy,
hyperplane AP, and our model’s improvement over the baseline model on the four evaluation metrics.

Attribute Change Attribute Change for skew 0.5 and 0.7, worse DNAP, and better or on par BA.
ArchedBrows | 0.314 Glasses 0.109 Overall, classifiers trained on more imbalanced data with
Attractive | 0.336 GrayHair 0.056 higher skew perform worse on all metrics.
Bangs 0.120 HighCheeks 0.233
BlackHair 0.153 MouthOpen 0.187 AP 1 DEO |
BlondHair 0.180 NarrowEyes 0.066 Skew Base Ours Base Ours
BrownHair 0.158 PointyNose 0.152 0.5 951 +£03 93.6+04 | 7.0+1.7 6.6 +1.8
BushyBrows 0.136 | RecedingHair | 0.069 0.7 |948+03 941+03|196+19 194+19
Chubby 0.067 Smiling 0.176 09 |941+17 9314+04 |31.3+2.0 329+19
Earrings 0.176 WearingHat 0.065 Skew BA | KL |
Eyebags 0.212 Young 0.268 Base Ours Base Ours
Table 2: We report the average classifier score change in an attribute when 0.5 -19+£05 -3.0+£05 04 +0.1 0.3 +0.1
trying to create balanced datasets for other attributes. Classifier scores are 0.7 34+£05 34405 | 09+01 09+0.1
between 0 and 1, and changes above 0.2 are bolded. We find that some 0.9 71+05 7.0 + 0.5 1.7 + 0.1 1.9+0.1

attributes (e.g. Attractive, Young) change by a lot, whereas others
(e.g. GrayHair, WearingHat) do not change much.

trained baseline models on just the differently skewed train-
ing sets. The classifiers were evaluated on the CelebA vali-
dation set. Table 3 summarizes the results. Compared to the
baseline, our model has lower AP as expected, better DEO

Table 3: Comparison of HighCheeks attribute classifiers trained on dif-
ferently skewed data.

3.2. Discriminability of attributes

Nam et al. [2] recently observed that correlations among
attributes affect a classifier only if the protected attribute is
‘easier’ to learn than the target attribute. Inspired by their
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Table 4: Discriminability of attributes. We compare attributes on the row
to those in the columns. y indicates that the attribute in the row is easier
to learn than that in the column and n indicates the opposite. We find that
gender expression is one of the easiest attributes to learn, while Young is
relatively hard.

observation, we design an experiment where we put a pair
of CelebA attributes in competition to assess their relative
discriminability. We create a fully skewed dataset in which
half of the images have both attributes and the other half
have neither. With this dataset, we train a classifier to predict
if an image has both attributes or neither. At test time, we
evaluate the classifier on a perfectly balanced subset of the
CelebA validation set (where each of the four possible hat-
glasses combinations occupies a quarter of the dataset), and
compute AP for each attribute. If one attribute has a higher
AP than the other, it suggests that this attribute is ‘easier’ to
learn than the other. We repeat this experiment with a second
dataset skewed in a different way (i.e. half of the images
have one attribute but not the other).

The results for gender-dependent and gender-independent
attributes are in Table 4. We report that an attribute is ‘easier’
to learn than the other if it has a higher AP for both created
datasets. We find that gender expression is one of the easiest
attributes to learn, which may be why gender bias is prevalent
in many models. On the other hand, Young is relatively hard
for a model to learn, so its correlation with other attributes
may not be as influential. We find that gender expression is
one of the easiest attributes to learn (with gender expression
having a higher AP than every attribute we tested except
WearingHat and Glasses), which may be why gender
bias is prevalent in many models. On the other hand, Young
is relatively hard for a model to learn (Young is harder to
learn than all but 4 other attributes), so its correlation with
other attributes may not be as influential.

4. Ablation studies

In this section, we describe in more detail the ablation
studies we have conducted to investigate how improved hy-
perplanes and use of different labels for synthetic images
impact (or not) our method’s performance (Section 4.2 of
the main paper).

We first investigate if hyperplanes estimated with better
balanced samples improve the performance of downstream
attribute classifiers. We test this hypothesis by training mod-
els using hyperplanes that are estimated with different frac-
tions of positive or negative samples.

For the attribute Hi ghCheeks, we estimate hyperplanes
with different fractions of positive and negative samples,

while keeping the total number of samples constant at 12,000
and the number of positive samples same for each gender ex-
pression. We then train attribute classifiers with the CelebA
training set and synthetic pair images augmented with these
different hyperplanes. In Table 5, we report results evaluated
on the CelebA validation set. We find that although the fair-
ness metrics deteriorate as the target attribute hyperplanes
were estimated with less balanced samples, this rate is rel-
atively slow, and the downstream classifier still performs
reasonably well.

Fraction AP 1 DEO | BA | KL |
50.0% | 95.14+£03 | 1324+1.7|05£0.5 | 0.7+0.1
125% | 951+03 | 140+1.7 | 0.8 £0.5 | 0.6 £ 0.1
6.3% 951+03 | 151 +1.8 | 1.3+£05 | 08+0.2
3.1% 951+03 | 1424+1.7 | 1.0£05 | 0.7+0.1
1.6% 9514+03 | 129+18 | 0.3+0.5 | 0.7 +0.1

Table 5: The amount of underrepresentation in samples used for hyperplane
estimation doesn’t appear to affect the performancee of the downstream
classsification model much.

Next, we tried training models with synthetic images with
the same hallucinated target labels, i.e. using only G(z) and
G(z') such that f;(G(z))=f:(G(2')), and labeling synthetic
images with h;(z) in place of f;(G(z)). Table 6 contains all
results. We report average results over all gender-dependent
and gender-independent attributes. We find that both these
ablations are comparable to ours, with in a slight loss in AP
(79.8 and 82.1 versus 82.6), and worse fairness metrics in
general (average DEO is 18.1 and 17.4 vs 16.1, BA is 0.9
and 0.7 vs 0.5).

5. Number of required labeled images

Choi et al. [1] use a method that is unsupervised. Assum-
ing access to a small unbiased dataset, as well as a large
(possibly biased) dataset, they estimate the bias in the larger
dataset, and learn a generative model that generates unbi-
ased data at test time. Using these generated images, as well
as real images, they train a downstream classifier for the
attribute Attractive, and achieve an accuracy of 75%.
Since most of the protected attributes that we care about
are sensitive (for example gender or race), not requiring
protected attribute labels prevents perpetuation of harmful
stereotypes. In order to understand how much our model
depends on the protected attribute labels, we investigate
where our model depends on the protected attributes labels.
We use protected attribute labels only to compute the lin-
ear separator in the latent space (wg and b, from section 1
in this document). We now train classifiers for gender ex-
pression, using different numbers of labeled images, and
use these classifiers to train target attribute classifiers for 4
different attributes (EyeBags, BrownHair, GrayHair
and HighCheeks). Most of the fairness metrics improve
slightly when using more labeled examples (DEO improves
from 11.1 when using just 10 samples to 9.6 when using all



AP 1 DEO | BA | KL |
ft(G(Z))lf 798+1.6 | 174£45 | 09+04 | 1.0+0.3
fi(G(Z)
Labels
computed | 82.1+1.5 | 181+£42 | 0.7+04 | 1.4+0.8
using hy
Ours 826+15|161+42 | 0504 | 1.3+0.7
Table 6: Mean performances over all gender-dependent and gender-
independent attributes on the validation set when using different methods
to pick and label synthetic images. We find that most performances are
comparable, with our method having a slightly higher AP, and slightly better
DEO and KL.

Num. of samples used to compute f,

10 100 1000 10000 162,770

AP1T | 788 £15 | 788+ 15| 788+ 1.5 | 789 +£1.6 | 787+ 1.6
DEO| | 11.1£34 | 11.3+3.0 | 105£3.7 | 10.8£3.7 | 9.6 £3.1
BA | 0.6 £ 0.5 1.0£05 05£05 0.7£05 04 £05
KL | 0.6 £0.2 0.8£0.3 0.7£03 0.7£03 0.5 £ 0.6
Table 7: Average over 4 attributes when using different numbers of labeled
examples to compute gender expression. Results are reported on the valida-
tion set. We find that while the fairness metrics improve slightly by using
more labelled examples, this is gradual, and within the error bars, in all
cases.

Metric

162k samples in the CelebA training set, BA improves from
0.6 to 0.4, and KL improves from 0.6 to 0.5), however, these
are all gradual, and within the error bars. Full results are in
Table 7.

References

[1] Kristy Choi, Aditya Grover, Rui Shu, and Stefano Ermon. Fair
generative modeling via weak supervision. In Proceedings of
the International Conference on Machine Learning (ICML),
2020. 4

[2] Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jacho Lee, and
Jinwoo Shin. Learning from failure: Training debiased classi-
fier from biased classifier. In Advances in Neural Information
Processing Systems, 2020. 3



