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1. Backbone

This document is intended to describe the backbone struc-
ture and training, left out of the main document due to lack
of space. It also includes a formal definition of the main
performance metrics used in the paper, as well as the Mean
Squared Error reported for the Action Unit intensity esti-
mation task. We first describe the architecture of the back-
bone (Sec. 1.1), and then the training details for each of the
databases used in the paper (Sec. 1.2). Sec. 2 and Sec. 3
are devoted to describing the performance metrics used in
the paper and to reporting the MSE results on DISFA and
BP4D, respectively.

1.1. Architecture

The structure of the backbone for both Valence and Arousal
and Action Unit recognition is depicted in Fig. 1. Note that
both are depicted in the same figure for the sake of clarity,
although the corresponding subnetworks consisting of the
Emotion Head or the Action Units Head are trained inde-
pendently using the task specific datasets. Both networks
share a common module, referred to as Face Alignment
Module, which is pre-trained for the task of facial land-
mark localisation, and kept frozen for the subsequent train-
ing steps. For both Valence and Arousal and Action Unit
estimation, the backbone is decomposed into three main
components, namely a) Face Alignment Module, b) Task-
specific Feature Module, and c) Task-specific Head.

The Face Alignment Module is a lightweight version of
the Face Alignment Network of [2]. It starts with a 2d
convolutional layer (referred to as Conv2d) and a set of 4
convolutional blocks (ConvBlock, depicted in Fig. 2) that
bring down the resolution of the input image from 256 to
64 and the number of channels from 3 to 128. This set of
ConvBlocks is followed by an Hourglass, a four layer set
of 128-channel ConvBlocks with skip connections, that ag-

gregate the features at different spatial scales. The Hour-
glass is followed by another ConvBlock and two Conv2d
layers that produce a set of 68 Heatmaps, corresponding to
the position of the facial landmarks. In this paper, rather
than using the facial landmarks to register the face, we di-
rectly concatenate the produced features at both an early and
late stage of the network with the Heatmaps. The output is
then a 128 + 128 + 68 tensor of 64 x 64, resulting from
concatenating the features computed after the fourth Con-
vBlock, the features computed after the last ConvBlock, and
the produced Heatmaps. This way, the Heatmaps help the
subsequent network locally attend to the extracted coarse
and fine features [9, 12, 15]. The benefits of this approach
are twofold: a) it dispenses with the need of registering the
faces according to detected landmarks, and b) because of a)
we can directly use the features from the Face Alignment
Network and have shallower networks in the front-end for
the subsequent tasks.

The Task specific Feature Module consists of a mere set
of 4 ConvBlocks, each followed by a max pooling layer,
that produce a tensor of 128 x 4 x 4. To form the features
% that will be used as input to our AP network, we further
downsample that tensor through an average pooling opera-
tion with a 2 x 2 kernel. The 128 x 2 x 2 output is flattened
to form the 512-d feature vector x;.

The Task specific head for Valence and Arousal is com-
posed of four independent Conv2d layers, each with 4 x 4
filters (i.e. equal to the spatial resolution of the input ten-
sor). The first Conv2d layer is the corresponding Valence
and Arousal classifier W mentioned in the main document.
The output of this layer is a 2-d vector ¥;, corresponding
to the values of Valence and Arousal, respectively. In order
to boost the performance of the network for the task of pre-
dicting the continuous values of Valence and Arousal (y),
we approach the backbone training in a Multi-task manner
(see below), where the goal is to also classify the basic (dis-
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Figure 1. Architecture of the Backbone used in our AP pipeline described in the main document. For the sake of clarity, both the Emotion
Head and Action Units Head are depicted together, despite these being different networks, trained separately. The grey modules represent
2-d convolutions (Conv2d), whereas the blue blocks represent Convolutional Blocks (ConvBlocks), described in Fig. 1. The *64 inscribed
in the first ConvBlock corresponds to a slightly different configuration that uses a skip connection to upsample the number of channels
from 64 to 128. The backbone includes a Face Alignment Network, an Hourglass-like architecture that takes the input image I, and
produces a set 68 Heatmaps corresponding to the position of the facial landmarks. The Hourglass comprises four layers of ConvBlocks
with downsampling, and skip connections (for the sake of clarity we illustrate three layers, where each smaller block corresponds to
halving the spatial resolution). As shown in Fig. 2, our ConvBlocks are of 128 channels, rather than the original 256 used in [2]. The
Face Alignment Network is pre-trained and kept frozen, and returns a set of features resulting from concatenating the output of the last
ConvBlock before the Hourglass, the output of the last ConvBlock of the network, and the produced Heatmaps. Then, the Emotion and
Action Unit heads follow for each corresponding task. Both have a similar Feature Extraction Module, composed of x4 ConvBlocks
followed by Average Pooling. The output of this module is a 128 x 4 x 4 tensor, which is used as input to the corresponding classifiers, as
well as to compute the final feature representation x; that will be used along with ¥ as input to our proposed AP.

crete) emotion, as well as the bin where both Valence and
Arousal would lie in a discretised space. For the basic emo-
tion (happiness, sadness, fear, anger, surprise, disgust and
neutral), we include a second Conv2d which outputs the
logits corresponding to each of the 7 target classes. For the
discretised Valence (V) and Arousal (&), we use two Conv2d
layers with 20 outputs each, i.e. we discretise the continu-
ous space in 20 bins, and we treat the task of predicting the
corresponding bin as a classification task (see below). Note
that these extra heads, as well as the emotion head, are used
to reinforce the learning of the regression head tasked with
predicting y. Once the network is trained, the heads corre-
sponding to the discrete emotion and the discretised Valence
and Arousal are removed from the backbone.

The Task specific head for Action Unit intensity esti-

mation is also composed of 4 ConvBlocks as for the Va-
lence and Arousal head. The output features, a tensor of
128 x 4 x 4 are also spatially downsampled with average
pooling and flattened to form the input features to the AP
x;. The Action Units classifier W is a Conv2d with a 4 x 4
filter that maps the 128 x 4 x 4 into either the 5 or 12 target
AUs, for BP4D and DISFA, respectively.

1.2. Training

Data processing The faces are first cropped according to
a face bounding box, provided by the off-the-shelf face de-
tector RetinaFace [4]. Given that the first block of the back-
bone is a Face Alignment Network that is used to provide
the features to the subsequent networks, no face registration
step is applied. During training, for image augmentation
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Figure 2. The Convolutional Block (ConvBlock), used in [2].
Instead of using 256 channels, we opt for a lighter version and
choose 128 channels instead.

we applied random cropping (224 x224), random horizon-
tal flipping, random rotation(—20° to +20°), color jittering,
and random gray scaling operations.

Face Alignment Network The Face Alignment Module
was trained on the 300W-LP dataset [2] using standard
Heatmap Regression, and was kept frozen afterwards.

Valence and Arousal As mentioned above, for Valence
and Arousal, the network is trained in a Multi-task way. Let
¥ = (v, Ja) be the Valence and Arousal prediction, & € R”
be the output of the discrete emotion layer, and v € R? and
a € R?° the output of the Valence and Arousal classes, re-
spectively. We denote by y and e the corresponding Valence
and Arousal and Emotion ground-truth values. The loss is
defined as:

L :)\msecmse + Accc‘cccc
+ )\a:entfemoﬁmentfemo (1)

+ )\mentfvaﬁmentfva

where L,,sc = ||y — y|| is the standard MSE loss for Va-
CCC(Jv,Yv)+CCC(JarYa)
2

lence and Arousal, L... = 1 — is
the CCC score between the predicted Valence and Arousal
values and corresponding ground-truth, £ ent—emo 1S the
standard cross entropy loss between the predicted emo-
tion € and the corresponding ground-truth e. We define
Ezentfva = ‘C:centfv + ‘Ca:entfas with Ewentfv the cross
entropy loss between the 20-d output of the Valence head
and the corresponding ground-truth bin, and equivalently
L ent—q for Arousal. The ground-truth bin results from uni-
formly discretising the Valence and Arousal spaces, which
lie within the [—1, 1] space, into 20 bins each.

The values of the loss weights are all set to 1 except for
the MSE loss that is set to \,,,se = 0.5. For both SEWA and
AffWild2, the training is performed for 20 epochs, using
Adam with learning rate 0.0001, (51, 32) = (0.9,0.999)
and weight decay 0.000001. The learning rate is reduced
by a factor of 10 after every 5 epochs.

For AffWild2 we used the sequences that were annotated
with both discrete emotion and Valence and Arousal. Con-
sidering that SEWA has not been annotated with the ba-
sic emotions, we train our SEWA backbone by extending
it with the sequences of AffWild2 containing such annota-
tions. We backpropagate w.r.t. the emotion head using im-
ages from AffWild2, and w.r.t. the remaining heads using
only images from SEWA. We apply the same 8:1:1 partition
described in the paper, and choose the backbone according
to the best validation CCC score.

Action Units For Action Unit intensity estimation, Mean
Squared Error is used as the loss function to train the corre-
sponding models in this work (for BP4D and DISFA). The
AU intensities are normalised from -1 to 1 to align with
the L,, used in the AP framework described in the main
document. Adam optimizer with a learning rate of 0.0003,
(81, f2) = (0.9,0.999), and an L2 weight decay of 0.00001
is used to train the Action Unit head. To tune the initial
learning rate, cyclic learning rate scheduler with a cycle
length of 2 is used. After training for 80 epochs, the best
model is selected based on the highest ICC score on the
validation set.

For BP4D, the model is trained using the official
train/validation/test partitions. For DISFA, the model is
trained using the three-fold cross validation method de-
scribed in the main document, using exactly the same gen-
erated partitions.

2. Performance Metrics

For Valence and Arousal, we report the Concordance Cor-
relation Coefficient [6], which is used to rank participants
in the AVEC Challenge series [10]. It is a global measure
of both correlation and proximity, and is defined as:

20504 pyy

CCCy,y) = ,
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where u, o, and p refer to the mean value, (co-)variance,
and Pearson Correlation Coefficient, respectively.

For Action Unit intensity, we follow the standard rank-
ing criteria used in FERA challenges[13], and we report
the Intra Class Correlation (ICC [11]). For an AU j with
ground-truth labels {y?}~ ,, and predictions {g7}% ,, the

ICC score is defined as ICCI = %jrgj, with W7 =
(W =P+ @ - R) S = Tl - A

and ¢/ = 555 3 (y] + 7))



AU 1 2 4 5 6 9 12 15 17 20 25 26 Avg.
VGP-AE [5] 051 032 113 0.08 056 031 047 020 028 016 049 044 041
2DC [7] 032 039 053 026 043 030 025 027 0.61 0.18 037 055 0.37
HR [9] 041 037 070 0.08 044 030 029 0.14 026 0.16 024 039 0.32
Ours backbone 093 090 0.51 0.04 044 0.19 030 0.13 021 0.17 023 029 0.36
BiGRU [3]7 0.85 079 048 0.06 047 0.19 034 0.18 023 021 030 040 037
Self-Attn [14]f 076 0.71 052 0.04 042 0.17 035 0.14 021 019 028 036 0.34
Ours AP 0.68 059 040 0.03 049 015 026 013 022 020 035 017 0.30

Table 1. Results on the DISFA database (in MSE values) T denotes in-house evaluation

3. Mean Squared Error Results

The additional Mean Squared Error results for DISFA and
BP4D are reported in Table 1 and Table 2.

(7]

AU 6 10 12 14 17 Avg. [3
CDL [1] - - - - - -
ISIR [8] 0.83 080 062 1.14 0.84 0.85
HR [9] 0.68 080 0.79 098 0.64 0.78
Ours backbone 0.80 0.87 0.74 123 0.89 0.90
BiGRU [2]f 079 085 076 1.19 0.78 0.87 [9]
Self-Attn [14]7 0.82 0.88 0.70 1.22 0.80 0.88
Ours AP 072 084 0.60 1.13 0.57 0.77

Table 2. Results on the test partition of BP4D dataset (in MSE
values) T denotes in-house evaluation
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