
A. Optimal transportation : discrete case

A.1. Optimal transport

When considering a limited number of samples for the two distribution, the computation of the Wasserstein
distance can be solved through linear programming algorithms. In the balanced case, we have X = {x1, . . . , x2n}
where {x1, . . . , xn} are sampled from P+ and {xn+1, . . . , x2n} are sampled from P−. We note U = {u1, . . . , u2n} the
labels with u1, . . . , un = 1 and un+1, . . . , u2n = −1 and C the n× n matrix cost function with Ci,j = ||xi − xn+j ||.
The primal problem of the optimal transport is to find a transportation plan Π (a n× n matrix) such as:

min
Π

∑
i,j∈n×n

Πi,j ∗ Ci,j (13)

subject to Πi,j ≥ 0, (14)∑
i

Πi,j =
1

n
,
∑
j

Πi,j =
1

n
. (15)

The constraints enforce Π to be a discrete joint probability distribution with the appropriate marginals as in the
continuous case. The dual formulation for the discrete optimal transport problem is:

max
F

F.UT (16)

subject to ∀i, j ∈ n× n, Fi − Fn+j ≤ Ci,j (17)

where F is a 2n vector that is a discrete version of the function f of Equation 1b. The constraint on F is the
discrete counterpart of the 1-Lipschitz constraint.

A.2. Hinge regularized Optimal transport

Similarly to the classical case, the discrete counterpart of the regularized Wasserstein distance is also a trans-
portation problem which has the following formulation:

min
Π

∑
i,j∈n×n

[Πi,j ∗ Ci,j ]− 2

1−
∑

i,j∈n×n
[Πi,j ]


subject to Πi,j ≥ 0,

1

n
≤
∑
i

Πi,j ≤
1 + λ

n
,

1

n
≤
∑
j

Πi,j ≤
1 + λ

n
.

Roughly speaking, it allows to give more weight to the transportation of the closest pairs by admitting to deviate
from the marginals with a tolerance that depends on λ. Since the closest pairs in the two distributions are the
most difficult to classify, it illustrates why this formulation is more adequate for classification problems. The dual
formulation of this transportation problem is a discrete counterpart of Equation 5 :

max
F

2n∑
k=0

[Fi ∗ ui − λ(0, 1− Fi ∗ ui)+]

subject to ∀i, j ∈ n× n, Fi − Fn+j ≤ Ci,j .

We observe that the constraint in the dual problem are not affected by the new formulation and still corresponds
to a the 1-Lipschitz constraint in the continuous case.



B. Theorem proofs

B.1. Proof Theorem 1

We denote as

f∗ := f∗λ ∈ arg minf∈Lip1(Ω)LhKRλ (f) and f̂n := f̂n,λ ∈ arg minf∈Lip1(Ω)L̂hKRλ,n (f). (18)

If we assume that (6) is not true, then there exists x ∈ Ω such that f∗(x) > 1 + diam(Ω) + R(ψ)
inf(p,1−p) or f∗(x) <

−1− diam(Ω)− L1(ψ)
inf(p,1−p) . We suppose without loss of generality that the first inequality holds. If z ∈ Ω then the

1-Lipschitz condition in f∗ implies that f∗(z) > 1 + L1(ψ)
1−p . Hence (1− f∗)+ = 0 and

L(f∗) ≤ sup
g∈Lip1(Ω)

L2(g)− λL1(f∗)

= sup
g∈Lip1(Ω)

EX|Y=1(g(X))− EX|Y=−1(g(X))− E {λ(1− Y f∗(X))+}

= L2(ψ)− λ{pEX|Y=1(1− f∗(X))+ + (1− p)EX|Y=−1(1 + f∗(X))+}
≤ L2(ψ)− λ{(1− p)EX|Y=−1(1 + f∗(X))}

≤ L2(ψ)− λ{(1− p)EX|Y=−1(2 +
L1(ψ)

1− p
)}

= L2(ψ)− 2λ(1− p)− λ{EX|Y=−1(L1(ψ))} = L2(ψ)− 2λ(1− p)− λL1(ψ)

Then f∗ can not be an optimal solution of the problem (18). Then there exists some constant M large enough,
such that f∗ belongs to LipM1 (Ω) := {f ∈ Lip1(Ω) : ||f ||∞ ≤ M} and not to Lip1(Ω). Since the functional LhKRλ

is convex and LipM1 (Ω) is compact in C(Ω), we are able to make use of Ascoli-Arzela Theorem and conclude that
there exists at least one function minimizing the expected loss. Furthermore the set of those functions is compact
and convex.

B.2. Proof Theorem 2

Definition B.1. Let µ, ν two positive measures in Rd. The Kullback-Leibler divergence from µ to ν is defined as

KL(µ|ν) =

{∫
log(dµdν )dµ−

∫
dµ+

∫
dν if µ << ν

∞ otherwise
(19)

Theorem 3. Let φ1, φ2 : Ω→ R̄ be lower semicontinuous convex functions and µ, ν ∈ P(Ω) be probability measures.
Then for all ε > 0 the following equality holds

inf
π∈Π+(µ,ν)

∫
φ1(−dπx

dµ
(x))dµ(x) +

∫
φ2(−dπz

dν
(z))dν(z) + εKL(π|e−

c(x,z)
ε (dµ× dν))

= sup
f,g∈L1(Ω)

−
∫

Ω

φ∗1(f(x))dµ(x)−
∫

Ω

φ∗1(g(z))dν(z)− ε
∫ (

e
f(x)+g(z)−c(x,z)

ε − e−
c(x,z)
ε

)
dµdν.

(20)

Furthermore if ε = 0 then

inf
π∈Π+(µ,ν)

∫
Ω×Ω

c(x, z)dπ(x, z) +

∫
φ1(−dπx

dµ
(x))dµ(x) +

∫
φ2(−dπz

dν
(z))dν(z)

= sup
(f,g)∈Φ(µ,ν)

−
∫

Ω

φ∗1(f(x))dµ(x)−
∫

Ω

φ∗1(g(z))dν(z).
(21)

Where Π+(µ, ν) is the set of positive measures π ∈ M+(Ω × Ω) which are absolutely continuous with respect
to the joint measure dµ × dν, and Φ(µ, ν) consists of the pairs of functions (f, g) ∈ L1(Ω) × L1(Ω) such that
c(x, z)− f(x)− g(z) ≥ 0 dµ× dν − a.s..

First we recall the Fenchel–Rockafellar Duality result, we use a weaker version given in Theorem 1.12 in [6]



Proposition 3. Let E be a Banach space and Υ,Ψ : E → R ∪ {∞} be two convex functions, assume that there
exist z0 ∈ dom(Ψ) ∩ dom(Υ) such that Ψ is continous in z0. Then strong duality holds

inf
a∈E
{Υ(a) + Ψ(a)} = sup

b∈E∗
{−Υ∗(−b)−Ψ∗(b)} (22)

We identify the different elements of our problem with such of previous Proposition.

• E is the space of continuous functions in Ω × Ω. Note that the set is bounded, hence E∗, by Riesz theorem,
is the set of regular measures in Ω× Ω.

• If ε = 0 :

Ψ0(u) =

{
0 if u(x, z) ≥ −c(x, z)

∞ otherwise
(23)

Υ0(u) =

{∫
φ∗1(−f(x))dµ(x) +

∫
φ∗2(−g(z))dν(z) if u(x, z) = f(x) + g(z)

∞ otherwise
(24)

If ε > 0:

Ψε(u) = ε

∫ (
e
u(x,z)−c(x,z)

ε − e−
c(x,z)
ε

)
dµ(x)dν(z) (25)

Υε(u) = Υ0(u) (26)

Note that Υε(u) = Υ0(u) could be non well defined, to avoid this situation we fix x0 ∈ Ω and consider u(x, z) =
(u(x, z0)− u(z0, z0)/2) + u(z0, z)− u(z0, z0)/2). Now we compute the dual operators

Ψ∗ε (−π) = sup
u∈E

{
−ε
∫ (

e
u(x,z)−c(x,z)

ε − e−
c(x,z)
ε

)
dµ(x)dν(z)−

∫
u(x, z)dπ(x, z)

}
= sup
u∈E

{
−ε
∫ (

e
u(x,z)−c(x,z)

ε − e−
c(x,z)
ε

)
dµ(x)dν(z) +

∫
u(x, z)dπ(x, z)

}
Now if π were not absolutely continuous respect the joint measure e−

c(x,z)
ε dµ×dν then we would have a continuous

function u(x, z) = 0 dµ × dν almost surely and such that
∫
u(x, z)dπ(x, z) 6= 0. If we take the function λu(z, z)

and λ tends to ±∞ we deduce that the supremum is ∞. Then suppose that dπ = m(x, z)e−
c(x,z)
ε (dµ× dν).

Ψ∗ε (−π) =

{
supu∈E

{
ε
∫ (
−e

u(x,z)
ε + 1 + u(x,z)

ε m(x, z)
)
e−

c(x,z)
ε dµ(x)dν(z)

}
if dπ = me−

c(x,z)
ε (dµ× dν).

∞ otherwise.

= εKL(π|e−
c(x,z)
ε (dµ× dν))

With some similar calculation, we compute for ε = 0:

Ψ∗0(−π) =

{∫
c(x, z)dπ(x, z) if π is a positive measure.

∞ otherwise.

Finally for Υ∗ε = Υ∗0

Υ∗ε (π) = sup
u∈E, u(x,z)=f(x)+g(z)

{∫
f(x) + g(z)dπ(x, z)−

∫
φ∗1(−f(x))dµ(x)−

∫
φ∗2(−g(z))dν(z)

}
= sup
u∈E, u(x,z)=f(x)+g(z)

{∫
f(x)dπx(x)−

∫
φ∗1(−f(x))dµ(x) +

∫
g(z)dπz(z)−

∫
φ∗2(−g(z))dν(z)

}
= sup
f∈C(Ω)

{∫
f(x)dπx(x)−

∫
φ∗1(−f(x))dµ(x)

}
+ sup
g∈C(Ω)

{∫
g(z)dπz(z)−

∫
φ∗2(−g(z))dν(z)

}
= (I1) + (I2).



We first consider (I1). The same reasoning will hold for (I2). If πx were not absolutely continuous respect µ then
reasoning as before we obtain ∞. Then dπx = dπx

dµ dµ and

(I1) = sup
f∈C(Ω)

{∫ (
−f(x)

dπx
dµ
− φ∗1(f(x)))

)
dµ(x)

}
=

∫ (
sup
m

{
−dπx
dµ

m− φ∗1(m))

})
dµ(x) =

∫
φ1(−dπx

dµ
)dµ(x)

(I2) =

∫
φ2(−dπx

dν
)dµ(z)

Note that the inversion of the supremum and the integral is guaranteed here since (x,m) 7→ −mdπx

dµ (x) + φ∗1(m)

is lower semi-continuous and convex in m and measurable in (x,m). Then it is a normal integrand, and we can
apply Theorem 14.60 in [30].
Then computing both in Equation (22) we end with the following result

inf
u(x,z)=f(x)+g(z)≥−c(x,z)

{∫
φ∗1(−f(x))dµ(x) +

∫
φ∗2(−g(z))dν(z)

}
= inf
f(x)+g(z)≤c(x,z)

{∫
φ∗1(f(x))dµ(x) +

∫
φ∗2(g(z))dν(z)

}

= − sup
f(x)+g(z)≤c(x,z)

{
−
∫
φ∗1(f(x))dµ(x)−

∫
φ∗2(g(z))dν(z)

}

sup
π∈M+(Ω×Ω)

{
−
∫
c(x, z)dπ(x, z)−

∫
φ2(−dπx

dν
)dµ(z)−

∫
φ1(−dπx

dµ
)dµ(x)

}
=− inf

π∈M+(Ω×Ω)

{
ε

∫
c(x, z)dπ(x, z) +

∫
φ2(−dπx

dν
)dµ(z) +

∫
φ1(−dπx

dµ
)dµ(x)

}
.

inf
u(x,z)=f(x)+g(z)

{
ε

∫ (
e

−f(x)−g(z)−c(x,z)
ε − e−

c(x,z)
ε

)
dµ(x)dν(z) +

∫
φ∗1(−f(x))dµ(x) +

∫
φ∗2(−g(z))dν(z)

}
= inf

f,g

{
ε

∫ (
e
f(x)+g(z)−c(x,z)

ε − e−
c(x,z)
ε

)
dµ(x)dν(z) +

∫
φ∗1(f(x))dµ(x) +

∫
φ∗2(g(z))dν(z)

}
= − sup

f,g

{
−ε
∫ (

e
f(x)+g(z)−c(x,z)

ε − e−
c(x,z)
ε

)
dµ(x)dν(z)−

∫
φ∗1(f(x))dµ(x)−

∫
φ∗2(g(z))dν(z)

}

sup
π∈M+(Ω×Ω)

{
−εKL(π|e−

c(x,z)
ε (dµ× dν))−

∫
φ2(−dπx

dν
)dµ(z)−

∫
φ1(−dπx

dµ
)dµ(x)

}
=− inf

π∈M+(Ω×Ω)

{
εKL(π|e−

c(x,z)
ε (dµ× dν)) +

∫
φ2(−dπx

dν
)dµ(z) +

∫
φ1(−dπx

dµ
)dµ(x)

}



Proof of Theorem 2 With the same notation of Theorem 3, it is enough to consider, µ = P+ ν = P− and

ψ1(s) =


p− s if s ∈ [p, p+ λp]

∞ else.

(27)

ψ2(s) =


1− p− s if s ∈ [1− p, 1− p+ λ(1− p)]

∞ else.

(28)

Then for each f ∈ L1(dµ), g ∈ L1(dν)

−ψ∗1(f(x)) = − sup
s
{−ψ1(s) + f(x)s} = inf

s
{ψ1(−s)− f(x)s} = inf

s
{ψ1(s) + f(x)s}

=


f(x) if 1 ≤ f(x)

f(x)− pλ(1− f(x)) else.

= f(x)− pλ(1− f(x))+

−ψ∗2(g(z)) = f(z)− (1− p)λ(1− f(z))+.

Note that when λ ≥ 0 the functions r 7→ h1(r) := r−pλ(1−r)+ and h2(r) := r−(1−p)λ(1−r)+ are nondecreasing.
Now if we denote as J the right hand side of (20) then

J = sup
(f,g)∈Φ(µ,ν)

∫
Ω

h1(f(x))dµ(x) +

∫
Ω

h2(g(z))dµ(z).

We denote as fd the d−conjugate of f defined as the function

fd(r) := inf
s∈Ω
{|r − s| − f(s)},

see for instance in [12] for a suitable definition. It is clear that fdd ≥ f , and the equality holds if f is a d−concave
function since it is said that f is d−concave if it is the d-conjugate of another function. Hence using the nonde-
creasing condition of h we get to

J = sup
fdd,fd

∫
Ω

h1(fdd(x))dµ(x) +

∫
Ω

h2(fd(z))dν(z).

On the other side fd(r) = infs∈Ω {|r − s| − f(s)} is a limit of a sequence of 1−Lipschitz functions in Ω, hence it
belongs to Lip1(Ω). Using the 1-Lipschitz property and taking r = s in the infimum leads to

−fd(r) ≤ inf
s∈Ω
{|r − s| − fd(s)} ≤ −fd(r).

This means that fdd = −fd(r), hence we have that

J = sup
(−fd,fd)

∫
Ω

h1(fdd(x))dµ(x) +

∫
Ω

h2(fd(z))dµ(z).

≤ sup
f∈Lip1(Ω)

∫
Ω

h1(fdd(x))dµ(x) +

∫
Ω

h2(−f(z))dν(z) ≤ J

where the last inequality comes from the fact that if f ∈ Lip1(Ω) then (f,−f) ∈ Φ(µ, ν).



B.3. Proof Proposition 1

Even though the proof of Proposition 1 can be done following the frame of the proof of Proposition 1 in [16],
we have provided here an easier proof in order to make this document self-content. The proof of this Proposition
requires some properties on the transport plan.

Definition B.2. A set Γ ⊂ Rd × Rd is said to be d-cyclically monotone if for all n ∈ N and {(xk, yk)}nk=1 ⊂ Γ it
is satisfied

n∑
k=1

c(xk, yk) ≤
n∑
k=1

c(xk+1, yk), assuming that n+ 1 = 1. (29)

It is said that a measure is d−cyclically monotone if its support is d−cyclically monotone.

In particular the optimal transference plan in Kantorovich problem for the cost d is d−cyclically monotone, see
Theorem 2.3 [12]. The same characterization holds for the optimal measures of (20), this claim is proved in the
following Lemma.

Lemma 4. The optimal measure π of (20) is d−cyclically monotone for d(x, z) = ||x− z||.

If π were not d−cyclically monotone, in [37] it is built another measure π̃, with the same marginals as π, such
that the value of

∫
|x− z|dπ(x, z) >

∫
|x− z|π̃(x, z). Computing this we deduce

inf
π∈Πpλ(µ,ν)

∫
Ω×Ω

|x− z|dπ + πx(Ω) + πz(Ω)− 1 > inf
π̃∈π̃pλ(µ,ν)

∫
Ω×Ω

|x− z|dπ̃ + π̃x(Ω) + π̃z(Ω)− 1.

Hence π cannot be optimal.
We replicate this construction on order to build this proof as self content as possible.
If P+ and P− are discrete probabilities. Then P+ =

∑n
k=1 ukδxk and P− =

∑n
j=1 vjδzj then the optimal measure

has the form:

1

n

n∑
k,j=1

πk,jδxk,zj (30)

If it is not d-cyclically monotone then there exist N ∈ N and {(xki , zki)}Ni=1 ⊂ supp(π) such that:

N∑
i=1

||xki − zki+1
|| <

N∑
i=1

||xki − zki ||, assuming that kN+1 = k1.

Let a := infi=1,...,N{πki,ki} > 0. And let’s define π̃ as

π̃ := π +
1

n

n∑
i=1

(
δxki ,zki+1

− δxki ,zki
)
.

Then

π̃(A× Ω) = π(A× Ω) +
1

n

n∑
i=1

(
δxki (A)− δxki (A)

)
= π(A× Ω).

And the same holds with (Ω×B) and the other marginal, and also it satisfied that

1

n

n∑
k,j=1

|xk − zj |π̃k,j <
1

n

n∑
k,j=1

||xk − zj ||πk,j .

Hence π̃ is the searched measure in the discrete case.
Πp
λ(S, T ) is sequentially compact respect the weak convergence denoted * of measures if both S, T are also.

Because of the compactness of Ω×Ω, we only have to check that the set is bounded in total variation. But this is



straightforward because for each π ∈ Πp
λ(P+, P−) it is satisfied |π|(Ω× Ω) ≤ (p+ pλ)(p+ pλ).

If P+ and P− are general probabilities. Let X+
1 , . . . , X

+
n and Z+

1 , . . . , Z
+
n be sequences of independent random

variables with law P+ and P−. And let P+
n , P

n
− be the associated empirical measures. Buy using the strong law

of large numbers we deduce that P+
n → P+ and Pn− → P− with probability one.

Now let πn be the corresponding optimal measure for P+
n , P

n
−, then there exist a measure π such that πn ⇀

∗ π.
It means that for each continuous and bounded function f in Ω× Ω we get∫

fdπn −→
∫
fdπ.

Since the norm (x, z) 7→ ||x− z|| is continuous and bounded, once again because Ω is compact, we derive that∫
||x− z||dπn + πxn(Ω) + πzn(Ω)− 1 −→

∫
||x− z||dπ + πx(Ω) + πz(Ω)− 1

Finally it is known that if a sequence of measures is d-cyclically monotone and converges weak* to another measure,
then it is also d-cyclically monotone. This concludes the proof.

The proof of Proposition 1 is achieved as follows. The assumption of d-cyclically monotone involves that in
particular g(x)− g(z) = ||x− z|| π-a.s. for some function g. Then for the balanced case∫

(g − 1)dπx −
∫

(g + 1)dπz + 2

= sup
f∈Lip1(Ω)

∫
Ω

f(dP+ − dP−)− λ
(∫

Ω

(1− f)+dP+ +

∫
Ω

(1 + f)+dP−

)
.

Then we split (g − 1) = (g − 1)1g−1≥0 + (g − 1)1g−1<0 and∫
(g − 1)dπx + 1

= (1 + λ)

∫
(g − 1)1g−1≥0dP+ +

∫
(g − 1)1g−1<0dP+ =

∫
(g − 1)− λ(1− g)+dP+.

Doing the same with P−, we deduce that this g is optimal and g(x)−g(z) = ||x−z|| π-a.s. for the optimal measure
π. As a consequence of such observations, following exactly the same arguments of the proof of Proposition 1 in
[16], note that the key is g(x)− g(z) = ||x− z|| π-a.s. which comes from what follows.

Let f∗ be the optimal of Lemma 4, x be a differentiable point of f∗. By assumption, the density property
implies that π(x = z) = 0, and then with probability one, there exist z such that f∗(x) − f∗(z) = ||x − z|| and
both points are different x 6= z. For each t ∈ [0, 1] let xt = (1 − t)x + tz and the path σ : [0, 1] → R defined as
σ(t) := f∗(xt)− f∗(x). The proof is split in two steps;
Step 1 (σ(t) = ||xt − z|| = t||x− z||)
First of all we realize that for each s, t ∈ [0, 1]

|σ(t)− σ(s)| = |f∗(x)− f∗(xs)| ≤ ||xt − xs|| ≤ |t− s|||x− z||.

Actually if we consider t ∈ [0, 1] then

σ(1)− σ(0) ≤ σ(1)− σ(t) + σ(t)− σ(0)

≤ (1− t)||x− z||+ σ(t)− σ(0)

≤ (1− t)||x− z||+ t||x− z|| = ||x− z|| = σ(1)− σ(0)

And the inequalities become equalities and because σ(0) = 0 we conclude σ(t) = t||x− z||.
Step 2 (There exists some unitary vector v such that |(∂f∗/∂v)(x)| = 1)
The candidate is v = z−x

||x−z|| , and lets compute the partial derivative

∂f∗

∂v
(x) = lim

h→0

f(x + hv)− f(x)

h

= lim
h→0

σ( h
||x−z|| )

h
= 1.



Then for each differentiable point x of f∗ there exists an unitary vector v such that |∂f∗/∂v(x)| = 1. Then by
creating an orthonormal base such that v belongs to it we can deduce that ||∇f∗(x)|| = 1. And this event occurs
with almost surely because of Rademacher Theorem.

B.4. Proof Proposition 2

As a direct consequence of Theorem 2 we derive the next equality

inf
π∈Πλ(P+,P−)

∫
Ω×Ω

(
1

ε
|x− z| − 2

)
dπ + 2

= sup
f∈Lip1/ε(Ω)

∫
Ω

f(dP+ − dP−)− λ

2

(∫
Ω

(1− f)+dP+ +

∫
Ω

(1 + f)+dP−

)
.

(31)

We denote as I the left hand side of (31) and Π(P+, P−) the set of measures with marginals P+, P−. Now using
the hypothesis (10) we derive the next inequality

I = inf
π∈Π(P+,P−)

∫
Ω×Ω

(
1

ε
|x− z| − 2

)
dπ + 2 =

1

ε
W(P+, P−).

Since Lip1/εW(P+, P−) = supf∈Lip1/ε(Ω)

∫
Ω
f(dP+ − dP−), we denote as ψε ∈ Lip1/ε(Ω) the function where the

supremum is achieved. Hence we derive the following inequality

1

ε
W(P+, P−) =

∫
Ω

fλ(dP+ − dP−)− λ
(∫

Ω

(1− fλ)+dP+ +

∫
Ω

(1 + fλ)+dP−

)
≤
∫

Ω

ψε(dP+ − dP−)− λ
(∫

Ω

(1− fλ)+dP+ +

∫
Ω

(1 + fλ)+dP−

)
=

1

ε
W(P+, P−)− λ

(∫
Ω

(1− fλ)+dP+ +

∫
Ω

(1 + fλ)+dP−

)
.

Then
∫

Ω
(1− fλ)+dP+ +

∫
Ω

(1 + fλ)+dP− = 0 and the first assert of the proof is completed. The second assertion
is a straightforward consequence of the previous one.

C. Lipshitz constant for convolutional networks

C.1. Enforcing 1-Lipschitz dense layer

A neural network is a composition of linear and non-linear function. Let’s study first a multilayer perceptron is
defined as follows :

f(x) = φk(Wk.(φk−1(Wk−1 . . . φ1(W1.x))).

We name L(f) the Lipschitz constant of a function f . As a composition of functions, the Lipschitz constant of a
multilayer perceptron is upper bounded by the product of the individual Lipschitz constants:

L(f) ≤ L(φk) ∗ L(Wk) ∗ L(φk−1) ∗ L(Wk−1) ∗ . . . ∗ L(φ1) ∗ L(W1.x).

The most common activation functions such as ReLU or sigmoid are 1-Lipschitz. Thus, we can ensure that
a perceptron is at most 1-Lipschitz by ensuring each dense layer Wk is 1-Lipschitz. Given a linear function
represented by an n×m matrix W , it is commonly admitted that:

L(W ) = ||W || ≤ ||W ||F ≤ max
ij

(|Wij |) ∗
√
nm (32)

where ||W || is the spectral norm, and ||W ||F is the Frobenius norm. The initial version of WGAN [2] clips the
weights of the networks. However, this is a very crude way to upper-bound the 1-Lipschitz (see equation 32).
Normalizing by the Frobenius norm have also been proposed in [31]. In this paper, we use spectral normalization
as proposed in [25]. At the inference step, we normalize the weights of each layer by dividing the weight by the
spectral norm of the matrix:

Ws =
W

||W ||
.



Even if this method is more computationally expensive than Frobenius normalization, it gives a finer upper bound
of the 1-Lipschitz constraint of the layer. The spectral norm is computed by iteratively evaluating the largest
singular value with the power iteration algorithm [13]. This is done during the forward step and taken into account
for the gradient computation.

C.2. Enforcing 1-Lipschitz convolutional layer

In this section we will show that enforcing convolution kernels to 1-lispchitz is not enough for ensuring the
1-lipschitz property of convolutional layers, and will propose two normalization factors. Notations: We consider
a Convolutional layer with an input feature map X of size (c, w, h), and L output channels obtained with kernels
W = {Wl}l∈[0,L[ of odd size (c, k, k), i.e. k = 2 ∗ k̄+ 1. Considering the classical same configuration which output
size is (L,w, h), we use the following matrix notations of the convolution Y = W ∗X:

• X̃ the zero padded matrix of X of size (c, w + k − 1, h+ k − 1)

• W̄ the vectorized matrix of weights of size (L, c.k2)

• X̄ a matrix of size (c.k2, w.h), a duplication of the input X̃, where each column j correspond to the c.k2 inputs

in X̃ used for computing a given output j

• Ȳ = W̄ .X̄ the vectorized output of size (L,w.h)

Given two outputs X1 and X2, we can compute an upper bound of convolutional layer lipschitz constant (Eq. 33).

||Y1 − Y2||2 = ||Ȳ1 − Ȳ2||2 ≤ ||W̄ ||2.||X̄1 − X̄2||2

≤ Λ2.||W ||2.||X1 −X2||2
(33)

The coefficient Λ2 can be estimated, as in [8], by the maximum number of duplication of the input matrix X̃ in X̄:
each input can be used at most in k2 positions. But since within X̄, part of the values come from the zero padded
zones in X̃, and have no influence on ||Y1 − Y2||2, we propose a tighter estimation of Λ, computing the average
duplication factor of non zero padded value in X̄.

For a 1D convolution (see Fig. 6), the number of zero values in the k̄ first columns of X̄ (symmetrically on the

k̄ last columns) is (k̄, k̄ − 1, ..., 1). So the number of zero padded values is k.w − 2 ∗
∑k̄
t=1 t = k.w − k̄(k̄ + 1).

Figure 6: Zero padded elements in a 1D convolution with k = 7(k̄ = 3)

We propose to use Eq. 34 as a tighter normalization factor2.

Λ =

√
(k.w − k̄.(k̄ + 1)).(k.h− k̄.(k̄ + 1))

h.w
(34)

C.3. Convolution layers with zero padding and stride

Convolution layers are sometimes used with stride (as in Resnet layers [17]) to reduce the computation cost of
these layers3. Given a stride (s, s), the output layer size of the layer will be (wo, ho) such as w = s.wo + rw and

2this factor Eq. 34 does not lead to a strict upper bound of the lipschitz constant, since particular matrix with high value on the
center and low values on borders won’t satisfy the inequality (33)

3main drawback with stride is that each point in the input feature map has not the same number of occurrences



Layer type Parameters
Upper lip
constant Thighter Lip estimation

Dense ||W ||

Convolution wo stride

kernel size (k, k)

k = 2k̄ + 1 k.||W ||
√

(k.w−k̄.(k̄+1)).(k.h−k̄.(k̄+1))
h.w .||W ||

Convolution with stride

kernel size (k, k)

stride (s, s) dks e.||W ||
√

(k.wo−zl−zrw).(k.ho−zl−zrh)
h.w .||W ||

MaxPoolig 1

AveragePooling
averaging size po

stride s dpos e.
1
po

Table 2: Main

h = s.ho + rh. We also introduce α = dks e the maximum number of overlapping stride positions. As in previous

section, we can build a matrix X̄ of size (c.k2, wo.ho), as a duplication of X̃. The maximum duplication factor of

an element of X̃ in X̄ is Λ2 = α2.
As in section C.2, we can compute a tighter factor using the average duplication factor of input in X, by

computing the number of non-zero-padded values used in X̄. We introduce ᾱ, β̄ such as k̄ = ᾱ.s+ β̄.
For a 1D convolution (see Fig. 7), the number of zero values in the first columns of X̄ is (k̄, k̄− s, ..., β̄). So the

number of zero padded values on the left side is zl =
∑ᾱ
t=0(k̄ − t.s) = (ᾱ+ 1)k̄ − s. ᾱ(ᾱ+1)

2 = (ᾱ+1)(ᾱs+2β̄)
2 .

On the right side (last columns), we introduce γw = argmax{γ = w − 1 − i.s, such as i >= 0 and γ ≤ k̄} i.e.

γw = w−1−s.dw−1−k̄
s e. γw represents the first half-kernel to include the last element of the line. We also introduce

αw, βw such as γw = αw.s+βw. The number of zero values in the last columns is (k̄−γw, k̄−γw+s, ..., k̄−γw+αw.s),
i.e. zrw =

∑αw
t=0(k̄ − γw + t.s) = (αw + 1)(k̄ − γw + s.αw

2 ).

Figure 7: Zero padded elements in a 1D convolution with stride: k = 7 (k̄ = 3), and s = 2

For the matrix Ȳ the average duplication factor for a value of the input X is (k.wo−zl−zrw).(k.ho−zl−zrh)
h.w

We propose to use Eq. 35 as a tighter normalization factor45.

Λ =

√
(k.wo− zl − zrw).(k.ho− zl − zrh)

h.w
(35)

C.3.1 Pooling layers

By definition, the max pooling layer is 1-lipschitz, since ||max(X1)−max(X2)|| ≤ ||X1 −X2||.
Considering average pooling layer with a averaging size of po, and a stride of s. Since a mean is equivalent to a

convolution with the matrix 1
po21po×po. The average pooling layer is equivalent to a convolution with stride (sec

C.3). Introducing α = dpos e, which is 1 in the common case where s = po. So an upper bound of lipschitz constant
for the average pooling layer is Λ.||W || = α

po

4As in previous section, this factor is not an upper bound of the lipschitz constant
5in case of stride s = 1, we have ᾱ = k̄, β̄ = 0, γw = αw = k̄ and βw = 0. So we can retrieve zl+zrw =

k̄.(k̄+1)
2

+
k̄.(k̄+1)

2
= k̄.(k̄+1)



C.4. Gradient norm preserving and general architecture

As proven Sections 3.2 and , the optimal function f∗ with respect to Equation 5, verifies ||∇f∗|| = 1 almost
surely. In [16], the authors propose to add a regularization terms with respect to the average gradient norm with
respect to inputs in the loss function. However, the estimation of this value is difficult and a regularization term
doesn’t guarantee the property. In this paper, we apply the approach described in [1], based on the use of specific
activation functions and a normalization process of the weights. Three norm preserving activation functions are
proposed:

• MaxMin : order the vector by pairs.

• GroupSort : order the vector by group of a fixed size.

• FullSort : order the vector.

These function are vector-wise rather than element-wise. We also propose the activation ConstPReLU, a PReLU
[18] activation function complemented by a constraint such that |α| ≤ 1 (α the learnt slope). This last function
is norm preserving only when |α| = 1 (linear, or absolute value function), but being computed element wise, it is
then more efficient for convolutional layers outputs.

Given a vector v of size k the P-norm pooling is defined in [4] as follows :

PoolP−norm(v) =

(
1

k

k∑
i=1

vpi P

) 1
P

Concerning gradient norm preserving linear layers, a weight matrix W is norm preserving if and only if all the
singular values of W are equals to 1. In [1], the authors propose to use the Björk Orthonormalization algorithm
[3]. The Björk algorithm compute the closest orthonormal matrix by repeating the following operation :

Wk+1 = Wk(I +

p∑
i=1

(−1)p

(
− 1

2

p

)
Qpk) (36)

where Qk = 1−WT
k Wk and W0 = W . This algorithm is fully differential, and as for spectral normalization, it is

applied during the forward inference, and taken into account for back-propagation.

C.5. Robustness bounds

Given a 1-lipschitz neural network g and N functions compose one 1-lipschitz dense layer with a single output
gi. We consider the multi-outputs neural network f = [gi ◦ g]i∈[0,N [, and denote fi = gi ◦ g.

For a given input x of label t, we denote

Mf (x) = max(0, ft(x)−maxi 6=t(fi(x))

Theorem 4 (Adversarial Perturbation Robustness Condition under Lp Norm). If Mf (x) > 2.ε where f = [gi ◦ g]i
is a concatenation of 1-lipschitz neural network under the Lp norm. Then x is robust to any input perturbation ∆x
with ||∆x||p < ε

Proof: Suppose x well classified of class t, such that Mf (x) > 2ε. We have

∀i 6= t, ft(x)− fi(x) ≥Mf (x) > 2ε

Given ∆x such that ||∆x||p < ε, and x′ = x+ ∆x.
Since gi and g are 1-lipschitz, for all i, we have:

|∆yi|p = |gi ◦ g(x′)− gi ◦ g(x)|p ≤ ||g(x′)− g(x)||pp ≤ ||∆x||pp < εp

So,
|∆yt|p + |∆yn|p < 2.εp



Layer Number of neurons Kernel Output Size

Input N/A N/A 784x1

dense 256 N/A 256

dense 256 N/A 256

output 10 N/A 10

Table 3: MNIST dense general architecture

Layer Number of neurons Kernel Output Size

Input N/A N/A 28x28x1

Conv 16 3x3 28x28x16

pooling N/A 2x2 14x14x16

Conv 32 3x3 14x14x32

pooling N/A 2x2 7x7x32

dense 100 N/A 100

output 10 N/A 10

Table 4: MNIST CNN general architecture

g(
|∆yn|+ |∆yt|

2
) ≤ g(|∆yt|) ⇐⇒

(|∆yn|+ ∆yt|)p

2p−1
≤ |∆yt|p + |∆yn|p < 2.εp

So, ∀n 6= t
y′t − y′n = yt − yn + ∆yt −∆yn ≥Mf (x)− (|∆yn|+ |∆yt|) > Mf (x)− 2ε > 0

So for all ∆x such that ||∆x||p < ε, and x′ = x+ ∆x, x′ is classified as t.
In [22], authors report a provable robustness of

√
2. However, in their case the global classifier with the N

outputs is 1-lipschitz meaning that the fi have a lipschitz constant lesser than 1. Then, in their case the maximal
value of Mf (x) is lesser than the one of our network, making the comparison of the robustness provable constants
not possible directly.

D. Experiments : additional results

D.1. Networks architecture

In order to have a fair comparison of the competitors, we use the same architectures for the neural network given
a dataset. The architectures are described in Tables 3, 4, 5 and 6. The activation functions, pooling functions,
and normalization functions are described in Tables 7, the optimizations parameters in Table 8 and the attacks
parameters in Table 9.



Layer Number of neurons Kernel Output Size

Input N/A N/A 32x32x3

Conv 128 3x3 32x32x128

Conv 128 3x3 32x32x128

pooling N/A 2x2 16x16x128

Conv 256 3x3 16x16x256

Conv 256 3x3 16x16x256

pooling N/A 2x2 8x8x256

Conv 512 3x3 8x8x512

Conv 512 3x3 8x8x512

pooling N/A 2x2 4x4x512

dense 512 N/A 512

dense 512 N/A 512

output 10 N/A 10

Table 5: CIFAR CNN general architecture



Layer Number of neurons Kernel Output Size

Input N/A N/A 128x128x3

Conv 16 3x3 128x128x16

Conv 16 3x3 128x128x16

Conv 16 3x3 128x128x16

pooling N/A 2x2 64x64x16

Conv 32 3x3 64x64x32

Conv 32 3x3 64x64x32

Conv 32 3x3 64x64x32

pooling N/A 2x2 16x16x32

Conv 64 3x3 16x16x64

Conv 64 3x3 16x16x64

Conv 64 3x3 16x16x64

pooling N/A 2x2 8x8x64

Conv 128 3x3 8x8x128

Conv 128 3x3 8x8x128

Conv 128 3x3 8x8x128

pooling N/A 2x2 4x4x128

Conv 256 3x3 4x4x256

Conv 256 3x3 4x4x256

Conv 256 3x3 4x4x256

pooling N/A 2x2 2x2x256

dense 512 N/A 512

dense 512 N/A 512

output 10 N/A 10

Table 6: CelebA CNN general architecture

Network Conv activation Dense activation Output activation Pooling Orthonormalization

Adv ReLU ReLU softmax Maxpooling None

1LIP ReLU ReLU softmax Maxpooling Björck

GNPlog GroupSort2 Fullsort softmax 2-norm Björck

GNPhin GroupSort2 Fullsort linear 2-norm Björck

hKR GroupSort2 Fullsort linear 2-norm Björck

Table 7: Algorithms specific features



Dataset Optimizer Steps per epoch Nb epochs Learning rate Batch size Augmentation

MNIST dense Adam 60000 100 0.01 256 no

MNISTY conv Adam 60000 100 0.01 256 no

CIFAR 10 Adam 45000 100 .00001 256 no

CELEB A Adam 10000 200 0.0005 64 yes

Table 8: Optimization parameters

Dataset l2 deepfool l2 FGM l2 PGD l2 CW

MNIST dense ε ∈ R+

2000 attacks
ε from 0.1 to 7.9 st. 0.1
500 attacks

ε from 0.1 to 7.9 st. 0.1
500 attacks

ε ∈ [0, 1, 2, 4, 6, 8]
500 attacks

MNIST conv ε ∈ R+

2000 attacks
ε from 0.1 to 7.9 st. 0.1
500 attacks

ε from 0.1 to 7.9 st. 0.1
500 attacks

ε ∈ [0, 1, 2, 4, 6, 8]
500 attacks

CIFAR 10 ε ∈ R+

2000 attacks
ε from 0.1 to 8 st. 0.2
500 attacks

ε from 0.1 to 8 st. 0.2
500 attacks

ε ∈ [0, 1, 2, 4, 6, 8]
500 attacks

CELEB A ε ∈ R+

2000 attacks
ε ∈ [2, 5, 7]
500 attacks

ε ∈ [2, 5, 7]
500 attacks

ε ∈ [2, 5, 7]
500 attacks

Table 9: ε values for the different dataset and attacks


