A. Optimal transportation : discrete case
A.1. Optimal transport

When considering a limited number of samples for the two distribution, the computation of the Wasserstein

distance can be solved through linear programming algorithms. In the balanced case, we have X = {z1,...,22,}
where {x1,..., 2z, } are sampled from P} and {z,41,...,%2,} are sampled from P_. We note U = {uq, ..., usy} the
labels with uq,...,u, =1 and up41, ..., u2, = —1 and C the n X n matrix cost function with C; ; = ||z; — zp+;|-

The primal problem of the optimal transport is to find a transportation plan II (a n X n matrix) such as:

min ' Z I+ Cij (13)
,JENXN
subject to II; ; >0, (14)

1 1
;Hm- = E,;Hm = (15)

The constraints enforce II to be a discrete joint probability distribution with the appropriate marginals as in the
continuous case. The dual formulation for the discrete optimal transport problem is:

max FUT (16)
F

subject to Vi,jenxn,F,—F,1; <C;; (17)

where F' is a 2n vector that is a discrete version of the function f of Equation 1b. The constraint on F' is the
discrete counterpart of the 1-Lipschitz constraint.

A.2. Hinge regularized Optimal transport

Similarly to the classical case, the discrete counterpart of the regularized Wasserstein distance is also a trans-
portation problem which has the following formulation:

mr}n Z I «Cij]—2 11— Z [IL; 4]

7,JENXN ,JENXN

subject to I; ; > 0,

1 1+ A
ESZHM ki)

IA

n

“ym, < L+X
J

n

Roughly speaking, it allows to give more weight to the transportation of the closest pairs by admitting to deviate
from the marginals with a tolerance that depends on \. Since the closest pairs in the two distributions are the
most difficult to classify, it illustrates why this formulation is more adequate for classification problems. The dual
formulation of this transportation problem is a discrete counterpart of Equation 5 :

2n

max Z [F; %« u; — AN0,1 — Fy s« u;) 4]
k=0

subject to Vi,jenxn, Fy— Foy; <.

We observe that the constraint in the dual problem are not affected by the new formulation and still corresponds
to a the 1-Lipschitz constraint in the continuous case.

B. Theorem proofs
B.1. Proof Theorem 1

We denote as
fri=f% e argming oy, o) L35 (f) and fo = far € argminfeLipl(Q)ﬁliﬁR(f) (18)
If we assume that (6) is not true, then there exists x € Q such that f*(x) > 1 + diam(Q) + &)) or f*(x) <

inf(p,1—p

—1 —diam(Q) — mé}ﬂ%. We suppose without loss of generality that the first inequality holds. If z € Q then the

1-Lipschitz condition in f* implies that f*(z) > 1+ Ll(w) . Hence (1 — f*);+ =0 and
L(f*) < sup La(g) — AL1(f7)
g€ Lip1(Q)

GLSUP(Q) Exjy=1(9(X)) = Exjy=—1(9(X)) = E{AM1 =Y f*(X))+}

= La(¥) = MpExy=1(1— f*(X)+ + 1 —p)Exjy=—1(1 + f*(X))+}

< La(¢) = M = p)Exjy=—1(1+ f*(X))}
< La() - M- P Exy— a2+ 20}
= La(¥) = 2M1 —p) — MEx|y=—1(L1(¥))} = L2(¢0) — 2A\(1 — p) — AL1 (%)

Then f* can not be an optimal solution of the problem (18). Then there exists some constant M large enough,
such that f* belongs to Lipi? (Q) := {f € Lip;(Q) : || f||cc < M} and not to Lip; (). Since the functional £L3KF
is convex and Lip? (Q) is compact in C(2), we are able to make use of Ascoli-Arzela Theorem and conclude that
there exists at least one function minimizing the expected loss. Furthermore the set of those functions is compact
and convex.

B.2. Proof Theorem 2

Definition B.1. Let u, v two positive measures in R?. The Kullback-Leibler divergence from p to v is defined as

(19)

KL(uly) = [log(%)dy — [du+ [dv if p<<v
wrr= 00 otherwise

Theorem 3. Let ¢y, g2 : 2 — R be lower semicontinuous convex functions and i, v € P() be probability measures.
Then for all € > 0 the following equality holds

dm
inf = (a))dpu(
wenl?wm/gbl Jdu(@ /¢2

S (dp % dv))

dv(z) + eK L(m|e”

(20)
. 3 f@tecwmd e
- s - [sits@anta) [it —e [(c e dpu.
Furthermore if € = 0 then
. dm dﬂ'z
WGI_IIE{/J V)/Qxﬂ c(z, z)dr(z, 2) /¢1 /¢52 dv(2)
(21)
— . d
R R IC R D

Where 14 (u,v) is the set of positive measures m € M (Q x Q) which are absolutely continuous with respect
to the joint measure dp x dv, and ®(u,v) consists of the pairs of functions (f,g) € L1(Q) x L1(Q) such that
c(x,z) — f(x) —g(2) > 0du x dv —a.s..

First we recall the Fenchel-Rockafellar Duality result, we use a weaker version given in Theorem 1.12 in [6]

Proposition 3. Let E be a Banach space and T,V : E — RU {oc} be two convex functions, assume that there
exist zg € dom(¥) N dom(Y) such that U is continous in zy. Then strong duality holds

inf {T(a) +¥(a)} = sup {=T*(=b) — U*(b)} (22)

We identify the different elements of our problem with such of previous Proposition.

e F is the space of continuous functions in 2 x 2. Note that the set is bounded, hence E*, by Riesz theorem,
is the set of regular measures in Q x Q.

e Ife=0:
o {2, fthﬁ’;z;z—“*’” -
o = (LTSI TSN LTINS

Ife>0:

U (u) = 6/ (eu(x’z)zc(x’Z) e Z)) dp(x)dv(z) (25)
Te(u) = To(u) (26)

Note that T.(u) = To(u) could be non well defined, to avoid this situation we fix xo € and consider u(x,z) =
(u(x,20) — u(20,20)/2) + u(z0,2) — u(2zo, Z0)/2). Now we compute the dual operators

U () = Sup{—e / (e“(’”)?c"“” e ”)du()dv(z) — / u(x,z)dﬂ(x,z)}

uek

:S‘é‘;{_e / (e“("*”z”‘“) e ”)du()dv(z) + / u(x,z)dﬂ(x,z)}

Now if 7 were not absolutely continuous respect the joint measure e_@d,u x dv then we would have a continuous
function u(x,z) = 0 dp x dv almost surely and such that [u(x,z)dr(x,z) # 0. If we take the function \u(z,z)

and A tends to +00 we deduce that the supremum is co. Then suppose that dm = m(x,z)e” e (dp x dv).

U (—m) = SUPyer {Ef (— st 4 ulx)m(x,z)) e du(x)dz/(z)} if drr = me— %% (dp x dv).
6 o0 otherwise.

= K L(nle™ % (dp x dv))

With some similar calculation, we compute for € = 0:

W (=) [¢(x,2)dn(x,2) if 7 is a positive measure.
) =
0 00 otherwise.

Finally for TF = T

= o { [760+ gtarantx.2) / BTG — [¢§(9(Z)>dV(Z)}
:ueE u(xiup)+9(2) {/f Jamx /¢1)+/ z)dma(2 /(ZS2)}
fszpm{/ i) [i >}+g:3?m{/ apira(e)~ [o5(otmnavtn)

= (L) +

We first consider (I7). The same reasoning will hold for (I). If m, were not absolutely continuous respect g then

reasoning as before we obtain co. Then dmy = diu"du and

)= s { [(=7605 - 6100) dut |

feC()

= [(sup {=xm = ot}) o0 = [0=)t

Note that the inversion of the supremum and the integral is guaranteed here since (x,m) +— fmddil;‘(x) + o7 (m)

is lower semi-continuous and convex in m and measurable in (x,m). Then it is a normal integrand, and we can
apply Theorem 14.60 in [30].
Then computing both in Equation (22) we end with the following result

gttt + [o3-gtaniv

= f(x)ﬂi(rzl)fgc(m){ / ¢1(f(x))dp(x) + / ¢>§(9(Z))dV(Z)}

e { [oitro0nuto - [¢;<g<z>>du<z>}

F(x)+g(z)<c(x,z)

o {= [etxninten - [oa-Tauta) - [or(- =)t}

:—WeMif(fQXQ){e/c(x,z)dﬂ(x,z) +/¢2(—du)du(z)+/¢1(—du)du(x)}-

{of (e c e Y auivta) + [o100 duto + [osi-ataivia) |
—int fe [() dunta) + [61060060 + [63(0()av(a)

f.9

= s { e [(e) - [o760t - [oxtataniva))

fi9

inf
u(x,2)=f(x)+g(z)

c(x,2z)

sup {—GKL(TFE_
TEM4(Q2XQ)

ut KD o an) + [oal-T2anta) + o= T2t}

1
TI'EM+(Q><Q)

Proof of Theorem 2 With the same notation of Theorem 3, it is enough to consider, p = Py v = P_ and

p—s if s€p,p+Ap

Pa(s) = (27)
00 else.

l—-p—s if se[l—p1l—p+A1-p)]

Pa(s) = (28)

00 else.

Then for each f € Li(du), g € L1(dv)
—Vi(f(x)) = —sup{—tn(s) + f(x)s} = inf{eh1 (=5) — f(x)s} = mf{en(s) + f(x)s}
f(x) if 1< f(x)
fx) =pA(1 = f(x)) else.

fx) =pA(1 = f(x))+
—15(9(2)) = f(2) = (1 = p)A(1 - f(2))+-

Note that when A > 0 the functions r — hqy(r) := r—pA(1—7r); and ho(r) := r—(1—p)A(1—r), are nondecreasing.
Now if we denote as J the right hand side of (20) then

J= s /mmmww+4mwmwm.

(f,.9)€2(p,v) JQ

We denote as f¢ the d—conjugate of f defined as the function
diy o A
Fr) = g flr =] = £(5)),

see for instance in [12] for a suitable definition. It is clear that f9¢ > f, and the equality holds if f is a d—concave
function since it is said that f is d—concave if it is the d-conjugate of another function. Hence using the nonde-
creasing condition of h we get to

J = sup /hl (f(x))du(x /hz (f%(z))dv(z).

On the other side f4(r) = infseq {|r — s| — f(s)} is a limit of a sequence of 1—Lipschitz functions in (2, hence it
belongs to Lip; (). Using the 1-Lipschitz property and taking r = s in the infimum leads to

—fU(r) < inf {lr — 5| —)} < /),

This means that f% = —f?(r), hence we have that

h:wp/muwmwm+4mwwmm»

(=f4fHJQ

< swp /mu%wwm+émeﬂmwm3J

fE€Lip, () JQ

where the last inequality comes from the fact that if f € Lip,(Q) then (f,—f) € ®(u,v).

B.3. Proof Proposition 1

Even though the proof of Proposition 1 can be done following the frame of the proof of Proposition 1 in [16],
we have provided here an easier proof in order to make this document self-content. The proof of this Proposition
requires some properties on the transport plan.

Definition B.2. A set ' C R? x R? is said to be d-cyclically monotone if for alln € N and {(zg,yx)}r_, C T it
is satisfied

n

n
Zc(xk, yi) < Zc(wk+1,yk), assuming that n +1 = 1. (29)
k=1 k=1

It is said that a measure is d— cyclically monotone if its support is d— cyclically monotone.

In particular the optimal transference plan in Kantorovich problem for the cost d is d—cyclically monotone, see
Theorem 2.3 [12]. The same characterization holds for the optimal measures of (20), this claim is proved in the
following Lemma.

Lemma 4. The optimal measure © of (20) is d—cyclically monotone for d(x, z) = ||z — 2||.

If 7 were not d—cyclically monotone, in [37] it is built another measure 7, with the same marginals as 7, such
that the value of [|x — z|dn(x,2) > [|x — z|7(x,2). Computing this we deduce

inf / |x — z|ldm + 7% (Q) + 7,(2) —1 > inf / |x — z|dT + Tx () + T,(Q) — 1.
QxQ Qx0

TEMR (1) memf (u,v)

Hence 7 cannot be optimal.

We replicate this construction on order to build this proof as self content as possible.

If P, and P_ are discrete probabilities. Then Py = 37} | updx, and P— = 377 v;d,, then the optimal measure
has the form:

1 n
- '5x.z' 30
nkZ Tk, 102, (30)

J=1

If it is not d-cyclically monotone then there exist N € N and {(xx,,zx,)}; C supp(n) such that:

N N
Z ||sz - Zk?H»lH < Z ||Xk7i - Zki”a assuming that kN-l-l = k1.
=1 =1

Let a :=inf;—1,_ n{mk, k, } > 0. And let’s define 7 as

n
B 1
Ti=T+ ﬁ E 6xki Bk, 5in 2k,)t
i=1

Then

n

F(Ax Q) =m(Ax Q)+ %Z (5,% (A) = 6x,, (A)) = 1(A % Q).

i=1
And the same holds with (2 x B) and the other marginal, and also it satisfied that

n

1 — 1
- E Ixi — 2;|Tr; < — E 1%k — 2|7k, 5-
n - n -

k,j=1 k,j=1

Hence 7 is the searched measure in the discrete case.
15 (S, T) is sequentially compact respect the weak convergence denoted * of measures if both S, 7 are also.
Because of the compactness of 2 x 0, we only have to check that the set is bounded in total variation. But this is

straightforward because for each m € II§ (P, P_) it is satisfied |7|(Q x Q) < (p + pA)(p + pA).

If P, and P_ are general probabilities. Let X ,..., X} and Z;,..., Z} be sequences of independent random
variables with law Py and P_. And let P,7, P™ be the associated empirical measures. Buy using the strong law
of large numbers we deduce that P — P, and P™ — P_ with probability one.

Now let 7, be the corresponding optlmal measure for PF, P™ then there exist a measure 7 such that m, —* .
It means that for each continuous and bounded function f in © x Q we get

/fdﬂ'n—>/fdﬂ'.

Since the norm (x,z) — ||x — z|| is continuous and bounded, once again because 2 is compact, we derive that
[l = ldm, + (@) + 7, ()~ 1 — [= aldr + () + (@) - 1

Finally it is known that if a sequence of measures is d-cyclically monotone and converges weak* to another measure,
then it is also d-cyclically monotone. This concludes the proof.

The proof of Proposition 1 is achieved as follows. The assumption of d-cyclically monotone involves that in
particular g(x) — g(z) = ||x — z|| m-a.s. for some function g. Then for the balanced case

/(g - l)dm, — /(g—|— 1)dr, + 2
Then we split (g9 —1) = (g — 1)]197120 +(g—1)1y-1<0 and
/(g —1)dm, + 1

— (@43 [(9 = Dlyrz0dPs + [(9= DyorcodPy = [(g=1) = A1 = g)1aP

Doing the same with P_, we deduce that this g is optimal and g(x) — g(z) = ||x—z|| m-a.s. for the optimal measure
m. As a consequence of such observations, following exactly the same arguments of the proof of Proposition 1 in
[16], note that the key is g(x) — g(z) = ||x — z|| 7-a.s. which comes from what follows.

Let f* be the optimal of Lemma 4, x be a differentiable point of f*. By assumption, the density property
implies that m(x = z) = 0, and then with probability one, there exist z such that f*(x) — f*(z) = ||x — z|| and
both points are different x # z. For each ¢ € [0,1] let x, = (1 — ¢)x + tz and the path o : [0,1] — R defined as
o(t) := f*(x¢) — f*(x). The proof is split in two steps;

Step 1 (o(t) = |lx; — 2| = t]|x — z|)
First of all we realize that for each s,t € [0, 1]

o(t) = a(s)| = [F7(%) = F* (%) < [Ixe = x| < [t = s][[x — 2]].
Actually if we consider ¢ € [0, 1] then
(1) —o(0) < o(1) —o(t) + o(t) — o(0)
< (I =Dlx -zl +o(t) —a(0)
< (L =t)lx =zl +1f[x —z][= |]x — 2| = o(1) = o(0)
And the inequalities become equalities and because o(0) = 0 we conclude o(t) = t||x — z||.

Step 2 (There exists some unitary vector v such that |(0f*/0v)(x)| = 1)
The candidate is v = H and lets compute the partial derivative

ZH’

8f*(X): im f(X+hV)—f(X)
ov h—0 h
o(—h
S = LY

h—0 h

Then for each differentiable point x of f* there exists an unitary vector v such that |0f*/0v(x)| = 1. Then by
creating an orthonormal base such that v belongs to it we can deduce that ||V f*(x)|| = 1. And this event occurs
with almost surely because of Rademacher Theorem.

B.4. Proof Proposition 2

As a direct consequence of Theorem 2 we derive the next equality

1
inf / <|x—z|—2> dr +2
mellA (P, P-) Jaxa \ €

= sw [arc—ar) -3 ([a-pearcr [0 par).

feLip; /()

(31)

We denote as I the left hand side of (31) and II(Py, P_) the set of measures with marginals P, P_. Now using
the hypothesis (10) we derive the next inequality

1 1
I= inf / <|x—z|—2> dr +2=-W(Py, P_).
well(Py,P_) QxQ € €

Since Lipy JV(Py, P-) = SUD feLip, . (0) Jo f(dPy — dP-), we denote as ¢, € Lip; .(Q) the function where the
supremum is achieved. Hence we derive the following inequality

%W(PJHP_) =/ fa(dPy —dP_) — X (/9(1 — fr)+dPy + /9(1 + fmdP—)
< /de& —dP_)— A (/Q(l —) dPy + /Qu + fA)+dP)
= %W(P%Pf) - A (/ (1= fa)+dPy + / (1+ f,\)+dP) :

Q Q

Then [,,(1 — fa)+dPy + [,(1+ fa)4+dP- = 0 and the first assert of the proof is completed. The second assertion
is a straightforward consequence of the previous one.

C. Lipshitz constant for convolutional networks
C.1. Enforcing 1-Lipschitz dense layer

A neural network is a composition of linear and non-linear function. Let’s study first a multilayer perceptron is
defined as follows :

f(@) = oW (1 (W1 ... 01(W1.2))).

We name L(f) the Lipschitz constant of a function f. As a composition of functions, the Lipschitz constant of a
multilayer perceptron is upper bounded by the product of the individual Lipschitz constants:

L(f) < L(¢w) * L(Wy) % L(¢p_1) * L(Wi_1) % ... % L(¢) * L(Wy.2).

The most common activation functions such as ReLU or sigmoid are 1-Lipschitz. Thus, we can ensure that
a perceptron is at most 1-Lipschitz by ensuring each dense layer Wy is 1-Lipschitz. Given a linear function
represented by an n X m matrix W, it is commonly admitted that:

LW) = W] < [IWllr < maz([Wi;]) * vnm (32)

where ||[W]]| is the spectral norm, and ||W||r is the Frobenius norm. The initial version of WGAN [2] clips the
weights of the networks. However, this is a very crude way to upper-bound the 1-Lipschitz (see equation 32).
Normalizing by the Frobenius norm have also been proposed in [31]. In this paper, we use spectral normalization
as proposed in [25]. At the inference step, we normalize the weights of each layer by dividing the weight by the
spectral norm of the matrix: -

W=
W]

Even if this method is more computationally expensive than Frobenius normalization, it gives a finer upper bound
of the 1-Lipschitz constraint of the layer. The spectral norm is computed by iteratively evaluating the largest
singular value with the power iteration algorithm [13]. This is done during the forward step and taken into account
for the gradient computation.

C.2. Enforcing 1-Lipschitz convolutional layer

In this section we will show that enforcing convolution kernels to 1-lispchitz is not enough for ensuring the
1-lipschitz property of convolutional layers, and will propose two normalization factors. Notations: We consider
a Convolutional layer with an input feature map X of size (¢, w, h), and L output channels obtained with kernels
W = {Wi}igpo,r of odd size (¢, k, k), i.e. k=2x k + 1. Considering the classical same configuration which output
size is (L, w, h), we use the following matrix notations of the convolution ¥ = W * X:

e X the zero padded matrix of X of size (c,cw+k—1,h+k—1)
e W the vectorized matrix of weights of size (L, c.k?)

e X a matrix of size (c.k?, w.h), a duplication of the input)Z', where each column j correspond to the c.k? inputs
in X used for computing a given output j

e Y = W.X the vectorized output of size (L, w.h)

Given two outputs X; and X», we can compute an upper bound of convolutional layer lipschitz constant (Eq. 33).

1Y: = Va2 = (13 = Val > < W] 21X — Kol -

< A2 WIRIXy — Xo?

The coefficient A? can be estimated, as in [3], by the maximum number of duplication of the input matrix X in X:

each input can be used at most in k2 positions. But since within X, part of the values come from the zero padded

zones in X, and have no influence on ||Y; — YQUQ, we propose a tighter estimation of A, computing the average
duplication factor of non zero padded value in X. - B

For a 1D convolution (see Fig. 6), the number of zero values in the k first columns of X (symmetrically on the

k last columns) is (k,k — 1,...,1). So the number of zero padded values is k.w — 2 * Zle t=kw—k(k+1).

Total 0 padded
o mmm - -d0[0]0] values

SN

Figure 6: Zero padded elements in a 1D convolution with k& = 7(k = 3)

We propose to use Eq. 34 as a tighter normalization factor?.

(34)

C.3. Convolution layers with zero padding and stride

Convolution layers are sometimes used with stride (as in Resnet layers [17]) to reduce the computation cost of
these layers®. Given a stride (s, s), the output layer size of the layer will be (wo, ho) such as w = s.wo + rw and

2this factor Eq. 34 does not lead to a strict upper bound of the lipschitz constant, since particular matrix with high value on the
center and low values on borders won’t satisfy the inequality (33)
3main drawback with stride is that each point in the input feature map has not the same number of occurrences

Upper lip

Layer type Parameters constant Thighter Lip estimation
Dense [|W|
kernel size (k, k) _ _
Convolution wo stride k=2k+1 k)W \/(k'w_k‘(kJrlzl).'u(jk‘h_k‘(k+1)).||W||

kernel size (k, k)
Convolution with stride stride (s, s) (&7, |wy| \/(k'wof‘zl*”"ﬁﬁ'ho*d*zr") QW

MaxPoolig 1
averaging size po
AveragePooling stride s [e2]. L

Table 2: Main

h = s.ho 4+ rh. We also introduce o = [f] the maximum number of overlapping stride positions. As in previous

section, we can build a matrix X of size (c.k?, wo.ho), as a duplication of X. The maximum duplication factor of
an element of X in X is A2 = o2

As in section C.2, we can compute a tighter factor using the average duplication factor of input in X, by
computing the number of non-zero-padded values used in X. We introduce &, 5 such as k = a.s + 3.

For a 1D convolution (see Fig. 7), the number of zero values in the first columns of X is (k,k — s, ..., 3). So the
number of zero padded values on the left side is 2l = Y20 (k — t.s) = (& + 1)k — S.@(a;_l) = (@+1)(§S+26).

On the right side (last columns), we introduce 7,, = argmaz{y = w — 1 —i.s, such as i >= 0 and v < k} i.e.

Yo =w—1—s. f“’%_k-\ 7w represents the first half-kernel to include the last element of the line. We also introduce
Quy, Buy Such as v, = .5+ 5. The number of zero values in the last columns is (k—Yws k—Yw+S8, et k=Y + Q- 8),
Le. zry = > o0 (k — Y + t.8) = (v + 1) (k — 70 + g,

Total 0 padded
[oloofrolulalalwl sl [= o[- [-[-bef o olo] vaies

3
1
0

Figure 7: Zero padded elements in a 1D convolution with stride: k =7 (k = 3), and s = 2

For the matrix Y the average duplication factor for a value of the input X is (k‘wo_zl_zr'“;L)"l(Uk'hO_Zl_z”‘)

We propose to use Eq. 35 as a tighter normalization factor®®.

A= \/(k.wo —zl = zry).(k.ho — zl — zry)
h.w

C.3.1 Pooling layers

By definition, the max pooling layer is 1-lipschitz, since ||maz(X1) — maz(X2)|| < || X1 — X2||-

Considering average pooling layer with a averaging size of po, and a stride of s. Since a mean is equivalent to a
convolution with the matrix p%]lpox;;m The average pooling layer is equivalent to a convolution with stride (sec
C.3). Introducing o = [22], which is 1 in the common case where s = po. So an upper bound of lipschitz constant

for the average pooling layer is A.[[W]| = &

4 As in previous section, this factor is not an upper bound of the lipschitz constant
5

in case of stride s = 1, we have @ = k, B = 0, 7 = ayw = k and By, = 0. So we can retrieve zl+ 21y, = E‘(;l) + E'(E;l) =k.(k+1)

C.4. Gradient norm preserving and general architecture

As proven Sections 3.2 and , the optimal function f* with respect to Equation 5, verifies ||V f*|| = 1 almost
surely. In [10], the authors propose to add a regularization terms with respect to the average gradient norm with
respect to inputs in the loss function. However, the estimation of this value is difficult and a regularization term
doesn’t guarantee the property. In this paper, we apply the approach described in [1], based on the use of specific
activation functions and a normalization process of the weights. Three norm preserving activation functions are
proposed:

e MaxMin : order the vector by pairs.
e GroupSort : order the vector by group of a fixed size.
e FullSort : order the vector.

These function are vector-wise rather than element-wise. We also propose the activation ConstPReLU, a PReLLU
[18] activation function complemented by a constraint such that || < 1 (« the learnt slope). This last function
is norm preserving only when |a| = 1 (linear, or absolute value function), but being computed element wise, it is
then more efficient for convolutional layers outputs.

Given a vector v of size k the P-norm pooling is defined in [1] as follows :

1
k +
1
Poolp_porm(v) = (k vaP)
i=1

Concerning gradient norm preserving linear layers, a weight matrix W is norm preserving if and only if all the
singular values of W are equals to 1. In [l], the authors propose to use the Bjérk Orthonormalization algorithm
[3]. The Bjork algorithm compute the closest orthonormal matrix by repeating the following operation :

Wit = Wi (I + Z(—l)p <_i> QL) (36)

where Q) = 1 — WI'W,, and Wy = W. This algorithm is fully differential, and as for spectral normalization, it is
applied during the forward inference, and taken into account for back-propagation.

C.5. Robustness bounds

Given a 1-lipschitz neural network g and N functions compose one 1-lipschitz dense layer with a single output
gi- We consider the multi-outputs neural network f = [g; o glieo,n[, and denote f; = g; o g.

For a given input x of label ¢, we denote
My(x) = max(0, fi(z) — maziz(fi(x))

Theorem 4 (Adversarial Perturbation Robustness Condition under Lp Norm). If My(z) > 2.e where f = [g; o g;
is a concatenation of 1-lipschitz neural network under the L, norm. Then x is robust to any input perturbation Ax
with ||Az||, < €

Proof: Suppose z well classified of class t, such that My(z) > 2e. We have
Vit fi(@) - fila) > My(a) > 2€

Given Az such that ||Az||, <e¢, and 2’ = z + Axz.
Since g; and g are 1-lipschitz, for all 7, we have:

[Ay[” = |gi 0 9(2") = gi 0 g(@)[" < [lg() — g(@)[[; < [|Az|[} < €

So,
[Ay:|P + |Ay,|? < 2.€°

Layer | Number of neurons | Kernel | Output Size
Input |N/A N/A | 784x1

dense | 256 N/A | 256

dense | 256 N/A | 256

output | 10 N/A |10

Table 3: MNIST dense general architecture

Layer | Number of neurons | Kernel | Output Size
Input | N/A N/A | 28x28x1
Conv 16 3x3 28x28x16
pooling | N/A 2x2 14x14x16
Conv |32 3x3 14x14x32
pooling | N/A 2x2 Tx7x32
dense | 100 N/A | 100

output | 10 N/A |10

Table 4: MNIST CNN general architecture

|Ayn| + |A%\
2

(|Ayn| + Ay|)?
2p—1

g() < g(|Ay|) = <Ay + [Ay, [P < 2.€°

So, Vn # t
Yt — Yo = Yt — Yn + Ays — Ay > My(2) — (|Ayn| + [Aye]) > My(z) —2¢ >0

So for all Az such that ||Az||, <€, and 2’ =z + Az, 2’ is classified as ¢.

In [22], authors report a provable robustness of /2. However, in their case the global classifier with the N
outputs is 1-lipschitz meaning that the f; have a lipschitz constant lesser than 1. Then, in their case the maximal
value of My(x) is lesser than the one of our network, making the comparison of the robustness provable constants
not possible directly.

D. Experiments : additional results

D.1. Networks architecture

In order to have a fair comparison of the competitors, we use the same architectures for the neural network given
a dataset. The architectures are described in Tables 3, 4, 5 and 6. The activation functions, pooling functions,
and normalization functions are described in Tables 7, the optimizations parameters in Table 8 and the attacks
parameters in Table 9.

Layer | Number of neurons | Kernel | Output Size
Input | N/A N/A | 32x32x3
Conv 128 3x3 32x32x128
Conv 128 3x3 32x32x128
pooling | N/A 2x2 16x16x128
Conv | 256 3x3 16x16x256
Conv | 256 3x3 16x16x256
pooling | N/A 2x2 8x8x256
Conv | 512 3x3 8x8x512
Conv 512 3x3 8x8x5H12
pooling | N/A 2x2 4x4x512
dense | 512 N/A | 512

dense | 512 N/A |512
output | 10 N/A |10

Table 5: CIFAR CNN general architecture

Layer | Number of neurons | Kernel | Output Size
Input |N/A N/A | 128x128x3
Conv 16 3x3 128x128x16
Conv 16 3x3 128x128x16
Conv 16 3x3 128x128x16
pooling | N/A 2x2 64x64x16
Conv |32 3x3 64x64x32
Conv 32 3x3 64x64x32
Conv |32 3x3 64x64x32
pooling | N/A 2x2 16x16x32
Conv |64 3x3 16x16x64
Conv |64 3x3 16x16x64
Conv |64 3x3 16x16x64
pooling | N/A 2x2 8x8x64
Conv 128 3x3 8x8x128
Conv 128 3x3 8x8x128
Conv 128 3x3 8x8x128
pooling | N/A 2x2 4x4x128
Conv 256 3x3 4x4x256
Conv 256 3x3 4x4x256
Conv 256 3x3 4x4x256
pooling | N/A 2x2 2x2x256
dense | 512 N/A | 512

dense | 512 N/A |512

output | 10 N/A |10

Table 6: CelebA CNN general architecture

Network | Conv activation | Dense activation | Output activation | Pooling | Orthonormalization
Adv ReLU ReLU softmax Maxpooling None
1LIP ReLU ReLU softmax Maxpooling Bjorck
GNPy GroupSort2 Fullsort softmax 2-norm Bjorck
GN Pyin GroupSort2 Fullsort linear 2-norm Bjorck
hKR GroupSort2 Fullsort linear 2-norm Bjorck

Table 7: Algorithms specific features

Dataset Optimizer | Steps per epoch | Nb epochs | Learning rate | Batch size | Augmentation
MNIST dense Adam 60000 100 0.01 256 no
MNISTY conv Adam 60000 100 0.01 256 no

CIFAR 10 Adam 45000 100 .00001 256 no

CELEB A Adam 10000 200 0.0005 64 yes

Table 8: Optimization parameters
Dataset l> deepfool l» FGM > PGD o CW

MNIST dense | e € RT € from 0.1 to 7.9 st. 0.1 | € from 0.1 to 7.9 st. 0.1 | e € [0,1,2,4,6, 8]
2000 attacks | 500 attacks 500 attacks 500 attacks
MNIST conv | e € RT € from 0.1 to 7.9 st. 0.1 | € from 0.1 to 7.9 st. 0.1 | e € [0,1,2,4,6, 8]
2000 attacks | 500 attacks 500 attacks 500 attacks
CIFAR 10 |ee Rt € from 0.1 to 8 st. 0.2 | € from 0.1 to 8 st. 0.2 | e €[0,1,2,4,6,8]
2000 attacks | 500 attacks 500 attacks 500 attacks
CELEB A |ecRT €€ [2,5,7] €€ [2,5,7] €€[2,5,7]

2000 attacks

500 attacks

500 attacks

500 attacks

Table 9: € values for the different dataset and attacks

