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1. Discussion
Differentiability of Cascade Cost Volume: We use Eq.3
(main paper) to generate the next stage’s disparity map,
which is denoted as:

d̂i=
∑
∀di

d× σ(−cid) (1)

where the hypothetical disparity index di is adjusted by
uncertainty estimation. Compared with the Eq.2 (main
paper) used in GC-Net [2], we replaced the dense disparity
index (hypothesis plane interval equals to 1) with the
sparse one. Such an operation does not influence the
differentiability of Eq.3.

d̂ = 6.0, U = 8.0 d̂ = 6.0, U = 8.8

Figure 1. Some corner cases of multi-modal distribution. Expected
value (ground truth) is 6px. The disparity searching range is from
2 to 10 with 5 hypothesis planes.

Limitation of Uncertainty Estimation: Although our un-
certainty estimation can generate a reasonable uncertainty
map to evaluate the confidence of disparity estimation, limi-
tations still exist. As shown in Figure 1, we notice that some
special multi-modal distribution can achieve accurate esti-
mation with high uncertainty. However, these cases appear
with little probability and most of the multi-modal distribu-
tion leads to inaccurate estimation according to our visual-
ization in Figure 8 of the main paper. In addition, although
these cases can achieve accurate estimation, their dispar-
ity probability distribution is unreasonable and will hinder
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overall performance if this special case is underconstrained
[7]. Thus, we tend to set a large disparity search range to
push the network to generate a predominantly unimodal dis-
parity probability distribution at the next stage. In future
work, we plan to distinguish and constraint this special case
by better design our formula of uncertainty estimation.

Method Stage
KITTI
D1 all

Middlebury
bad 2.0

ETH3D
bad 1.0

Casstereo
stage2 3.44 43.71 9.39
stage1 1.78 34.81 4.44

CFNet(ours)
stage3 3.54 40.99 8.92
stage2 2.15 27.04 5.33
stage1 1.71 22.27 3.57

Table 1. Comparison of each stage’s performance between CFNet
and Casstereo on KITTI, Middlebury, and ETH3D validation set.
The initial disparity estimation result of each method is bolded and
underlined. As shown, the stage three (1/8 of the original input
image resolution) result of our CFNet can surpass the stage two
result of Casstereo (1/4 of the original input image resolution) on
two datasets.

2. Additional Comparison with Casstereo
In this section, we first give a more specific mathematical

definition to show the difference between our method and
Casstereo [1] when estimating the initial disparity. Then we
employ two comparative experiments to further show the
superiority of our method.

Specifically, the first stage disparity searching index of
Casstereo is defined as:

di = 0 + n(Dmax

2i − 1)/(N i − 1)

n ∈ {0, 1, 2.....N i − 1}, i = 2
(2)

where N i is the number of hypothesis planes at stage i. In-
stead, the first stage disparity searching index of CFNet is
defined as:

di = 0 + n

n ∈ {0, 1, 2.....Dmax

2i − 1}, i ∈ (3, 4, 5)
(3)



Method stage Joint Generalization coverage ratio(%) Cross-domain Generalization coverage ratio(%)
KITTI Middlebury ETH3D KITTI Middlebury ETH3D

Casstereo stage2 100 99.69 100 100 99.15 100
stage1 99.75 92.70 99.54 97.02 86.94 99.74

CFNet(ours)
stage3 100 99.92 100 100 99.50 100
stage2 99.99 99.19 99.73 99.30 97.48 99.98
stage1 99.70 97.24 99.56 98.23 93.77 99.83

Table 2. Disparity search ranges setting evaluation in terms of joint generalization and cross-domain generalization. Coverage radio denotes
the percentages of disparity search range that cover the ground truth depth. The final disparity estimation result of each method is bolded
and underlined.

Note that (Dmax

2i − 1)/(N i − 1) ≥ 4 in the stage two of
Casstereo. That is we employ multi-scale small-resolution
dense cost volume fusion to replace single higher resolution
sparse cost volume for initial disparity estimation.

Next, to make a fair comparison, we use the same train-
ing strategy to pretrain Casstereo on Scene Flow dataset
and finetune it on KITTI 2015, Middlebury, and ETH3D
datasets (fixing the disparity search range to 256) and com-
pare with our method. As shown in Table 1, the stage
three result (1/8 of the original input image resolution) of
our method can even outperform the stage two result (1/4
of the original input image resolution) of Casstereo on two
datasets, which further supports our claim that multi-scale
small-resolution dense cost volumes fusion can generate a
more accurate initial disparity estimation than single higher
resolution sparse cost volume.

In addition, as both methods select to iteratively narrow
down the disparity space and improve the cost volume res-
olution, the ratio of the pixels whose generated disparity
search range cover the ground truth disparity is an essential
indicator to evaluate the reasonability of current disparity
search range setting. As shown in Table 2, we evaluate the
coverage ratio in two terms of generalization. Comparing
with Casstereo, our method can better adjust the disparity
search range according to different datasets, especially on
the Middlebury. The gap is larger when generalizing to un-
seen scenes.

3. Details of the Architecture
Table 3 presents the details of our pyramid feature ex-

traction. We employ it to extract multi-scale image features.
The final output of each scale is bolded and underlined.

4. More Results
4.1. Error Map vs Uncertainty Map

We give more comparison between each stage’s error
map and uncertainty map in Figure 2. As shown, the er-
ror map is highly correlated with the uncertainty map on all
three real datasets. In addition, the higher resolution un-
certainty map can better identify the error regions, which
further emphasizes the effectiveness of our uncertainty esti-
mation in evaluating the pixel-level confidence of disparity

estimation.

4.2. Generalization Results on Different Datasets

In this section, we give more results about the two kinds
of generalization we defined in the main paper. As shown in
Figure 3, our method can perform well on all three datasets
when trained on the same training images and tested on
three datasets with single model parameters and hyper-
parameters.

Cross-domain generalization is shown in Figure 4.
When only trained on synthetic datasets and generalized
to real-world datasets, our method can significantly surpass
dataset-specific methods [6, 1].

4.3. Finetuning Results on KITTI Dataset

We visualize the results of our fine-tuned CFNet on
KITTI2015 and KITTI 2012 datasets and compare it with
some state-of-the-art real-time methods [3, 5] in Figure 5.
Our method can generate more extract estimation results in
the fence and texture-less regions (see dash boxes in the pic-
ture).
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Output input Layer Description(k,s,f) Output dimension
conv0 1 picture 3× 3, 2, 32 1

2H ×
1
2W × 32

conv0 2 conv0 1 3× 3, 1, 32 1
2H ×

1
2W × 32

conv0 3 conv0 2 3× 3, 1, 32 1
2H ×

1
2W × 32

conv0 4 conv0 3
[

3× 3, 64
3× 3, 64

]
1
2H ×

1
2W × 64

conv0 5 conv0 4
[

3× 3, 128
3× 3, 128

]
, stride = 2 1

4H ×
1
4W × 128

conv0 6 conv0 5
[

3× 3, 192
3× 3, 192

]
, stride = 2 1

8H ×
1
8W × 192

conv0 7 conv0 6
[

3× 3, 256
3× 3, 256

]
, stride = 2 1

16H ×
1
16W × 256

conv0 8 conv0 7
[

3× 3, 512
3× 3, 512

]
, stride = 2 1

32H ×
1
32W × 512

conv0 9 conv0 8 SPP 1
32H ×

1
32W × 512

deconv0 10 conv0 9
Upsample

3× 3, 1, 256
1
16H ×

1
16W × 256

deconv0 11
deconv0 10

conv0 7 concat 1
16H ×

1
16W × 512

deconv0 12 deconv0 11 3× 3, 1, 256 1
16H ×

1
16W × 256

deconv0 13 deconv0 12
Upsample

3× 3, 1, 192
1
8H ×

1
8W × 192

deconv0 14
deconv0 13

conv0 6 concat 1
8H ×

1
8W × 384

deconv0 15 deconv0 14 3× 3, 1, 192 1
8H ×

1
8W × 192

deconv0 16 deconv0 15
Upsample

3× 3, 1, 128
1
4H ×

1
4W × 128

deconv0 17
deconv0 16

conv0 5 concat 1
4H ×

1
4W × 256

deconv0 18 deconv0 17 3× 3, 1, 128 1
4H ×

1
4W × 128

deconv0 19 deconv0 18
Upsample
3× 3, 1, 64

1
2H ×

1
2W × 64

deconv0 20
deconv0 19

conv0 4 concat 1
2H ×

1
2W × 128

deconv0 21 deconv0 20 3× 3, 1, 64 1
2H ×

1
2W × 64

Table 3. Detailed network structure of our pyramid feature exaction module. Each convolutional layer is followed by the batch normaliza-
tion and activation function. The final output of each scale is bolded and underlined.



(a) left image (b) stage 3 (c) stage 2 (d) stage 1
Figure 2. Comparison between each stage’s error map and uncertainty map on three real datasets (from top to bottom: KITTI2015,
Middlebury, and ETH3D). The left panel shows the left input image of the stereo image pair, and for each example, the first row shows the
disparity, the second row shows the error map and the third row shows the uncertainty map. Red and white denote large errors and high
uncertainty, respectively.



(a) left image (b) CF-Net (c) GANet [6] (d) HSMNet [4]
Figure 3. More visualization of some state-of-the-art methods’ generalization ability on three real-world dataset testsets (from top to
bottom: KITTI2015, Middlebury, and ETH3D). The left panel shows the left input image of the stereo image pair, and for each example,
the first row shows the predicted colorized disparity map and the second row shows the error map (we omit the error map of ETH3D
because the evaluation server doesn’t provide it). Our CFNet achieves SOTA or near SOTA performance on all three datasets without any
adaptation.



(a) left image (b) CF-Net (c) GANet[6] (d) Casstereo[1]
Figure 4. Unseen scene generalization evaluation on ETH3D, Middlebury, and KITTI training sets (from top to bottom: KITTI2015,
KITTI2012, Middlebury, and ETH3D). All methods are only trained on the Scene Flow datatest and tested on full-resolution training
images of four real datasets. The left panel shows the left input image of the stereo image pair, and for each example, the first row shows
the predicted colorized disparity map and the second row shows the error map.



KITTI2015

KITTI2012
(a) left image (b) CF-Net (c) AANet [3] (d) HD3 [5]

Figure 5. Visualization results of our finetune model on the KITTI dataset testset.The left panel shows the left input image of the stereo
image pair, and for each example, the first row shows the predicted colorized disparity map and the second row shows the error map. Our
method can generate more extract estimation results in the fence and texture-less regions.


