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S1. Adversarial Objectives
In this section, we list the adversarial objectives evaluated in our experiments. As shown in Tab. S1, the adversarial

objectives can be categorized into two classes, symmetric and asymmetric ones, based on the term G(z) in the discriminator
and generator loss.

Additionally, we find that the objectives for both RelGAN [4] and FisherGAN [9] can not be explicitly split into the two
terms, one on fake sample G(z) and another on real sample x. However, since the derivation with respect to G(z) regards x
as a constant, in reality, we can omit the term about x when carrying out the derivation with respect to G(z). Therefore, we
may still stick to the two-term-split of the adversarial objective, as done in Eq. 4 of our main manuscript.

Method Discriminator Loss LD Generator Loss LG
DCGAN [10] (sym) − logD(x)− log (1−D(G(z))) log (1−D(G(z)))

WGAN [8] (sym) D∗(G(z))−D∗(x) −D∗(G(z))
DCGAN [1] (asym) − logD(x)− log (1−D(G(z))) − log (D(G(z)))
LSGAN [7] (asym) LD = (D∗(x)− 1)2 +D∗(G(z))2 (D∗(G(z))− 1)

2

GeoGAN [5] (asym) max {1−D∗(x), k · (1−D∗(x))} max {1−D∗(G(z))), k · (1−D∗(G(z))))}
+max {1 +D∗(G(z)), k · (1 +D∗(G(z)))}

RelGAN [4] (asym) − log (D(x)−D(G(z))) − log (D(G(z))−D(x))
− log (1− (D(G(z))−D(x))) − log (1− (D(x)−D(G(z)))

FisherGAN [9] (asym) D∗(G(z))−D∗(x)− λ · R+ 0.5 · ρ · R2, −D∗(G(z))
whereR = 1− 0.5 · (D∗(x)2 +D∗(G(z))2)

BGAN [2] (asym) − logD(x)− log (1−D(G(z))) 0.5 · (log G(z)− log (1−D(G(z))))2

Table S1: Various adversarial objectives. Specifically, “sym” and “asym” respectively denote Symmetric GANs and Asym-
metric GANs. D∗(·) denotes the discriminator whose output is not normalized by sigmoid operation.

S2. Back-Propagation Property
Here, we show an interesting observation on back-propagation, which allows us to derive the gradient-propagation equa-

tions in Tab. S2 and further enables our solution to training Asymmetric OSGANs.
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Specifically, the gradient propagation from l-th layer to (l − 1)-th layer can be expressed as follows:

∇xl−1L = P · F (∇xlL) ·Q. (S1)

The transformation is composed of three parts: P , Q and, F(·). Both P and Q here are matrices that change the size of the
gradient tensor ∇xlL, and their values depend on the specific module of the corresponding layer. For example, in a linear
module, P is the transpose of its weights (W l)T, which transforms the size of ∇xlL into the one of ∇xl−1L, while Q is an
identity matrix, F(·) depends on the corresponding module and its features: xl−1 or xl. Since xl−1 and xl remain constant
for different loss functions in the same one forward step, F(·) can be treated as a univariate function about ∇xlL. Except
batch normalization module, we can find F(·) in Tab. S2 satisfies

F(y1 + y2) = F(y1) + F(y2). (S2)

For batch normalization module, due to the involvement of the gradients from other samples: xj , it does not meet Eq. S2.

Module P F(∇xlL) Q Equation
Convolution I ∇xlL rot180(W l) ∇xl−1L = ∇xlL ∗ rot180(W l)

Linear (W l)T ∇xlL I ∇xl−1L = (W l)T∇xlL
Pooling I upsample(∇xlL) I ∇xl−1L = upsample(∇xlL)

Activation I ∇xlL � σ′(xl−1) I ∇xl−1L = ∇xlL � σ′(xl−1)
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Table S2: Gradient propagation equations for mainstream neural modules. Each equation is split into three parts, P ,
F(∇xlL), and Q. “I” denotes identity matrix, “∗” and “�” respectively denote convolution operation and element-wise
multiplication, and “σ(·)” denotes activation operation, “G” denotes group size, “Si” denotes the group set for sample xi.

S3. Derivation of Gradient Decomposition
Since all above neural modules are differentiable, F(·) is also differentiable. We set y1 = 0 and y2 = 0, then we have

F(0+ 0) = F(0) + F(0)⇒ F(0) = 0. (S3)



Combining with Eq. S2 and Eq. S3, we obtain

F(y1 + y2)−F(y1)

(y1 + y2)− y1
=
F(y2)

y2
=
F(y2)−F(0)

y2 − 0

⇒ limit
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⇒ F(y1)

F(y2)
=

y1
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where all divisions are element-wise operation. Based on Eq. S1, we obtain

∇xl−1L1 = P · F (∇xlL1) ·Q,
∇xl−1L2 = P · F (∇xlL2) ·Q, (S5)

where both L1 and L2 are loss terms for sample x in the one forward inference.
Combining with Eq. S4 and Eq. S5, we obtain
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=
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=
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. (S6)

Finally, for a fake sample x̂i in the discriminator, we obtain
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= · · · =
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i
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i
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= · · · =
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i
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i
L2

= γi, (S7)

where L is the total number of layers, and γi is an instance-wise scalar for x̂i.

S4. Time Analysis
In general, mainstream Convolutional Neural Networks (CNNs) spend more than 95% of their computation time on

convolution and linear operations [3, 6]. Hence, we focus on the analysis of time cost for CNNs on convolution and linear
operations. Convolution and linear operations can be regarded as the matrix multiplications between inputs and weights. As
shown by the gradient propagation equation in Tab. S2, in both the forward inference and back-propagation stages, and they
take an identical number of multiplication and addition operations. As a result, the time costs on the forward inference and
back-propagation for these modules are approximately equal, i.e., Tforw(x) = Tback(x).

We also analyze the number of float point operations of linear modules, such as convolution and linear operation, for the
computation of parameter gradients and gradients backward. We find that parameter gradients computation and gradients
backward cost the same number of float point multiply operations. Hence, the time for parameter gradients computation:
Tpara(x) and the one for gradients backward: Tback(x) are approximately equal, i.e., Tpara(x) = Tback(x).

S5. Simple One-Stage Adversarial Learning
The instance loss function as Eq. 9 is somewhat complex. We rethink the objective of one-stage adversarial learning from

another point of view. For the discriminator loss function in asymmetric GAN, the aim of our one-stage adversarial is identical
to the conventional two-stage one. Hence, the LinsD in Eq. 9 can be replaced by plain discriminator loss: LD = LrD + LfD
equivalently, which is simpler than Eq. 9. For the generator loss function in asymmetric GAN, its gradients are different from



the gradients of discriminator. With consideration of the property as Eq. 7, we find an alternative generator loss function,
LinsG = γLfD to achieve the same target as Eq. 9. In summary, we can simplify the loss function in Eq. 9 as

LinsD = LrD + LfD, (S8)

LinsG = γLfD,

which produces the same gradient information as Eq. 9 during adversarial learning.



S6. More Synthetic Results

CelebA LSUN Churches
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Figure S1: Results synthesized by TSGANs (“two”) and OSGANs (“one”) on CelebA and LSUN Churches. † adopts
asymmetric adversarial loss in [1];



S7. Efficiency Analysis
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Figure S2: Comparison of training efficiency between OSGANs and TSGANs. All results are averaged over five runs and
error bars correspond to the standard deviations. “sym” denotes symmetric GAN and “asym” denotes asymmetric GAN.
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Figure S3: Results synthesized by TSGANs (“two”) and OSGANs (“one”) on CelebA and LSUN Churches.
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