
The supplementary materials are organized as follows. In Appendix A, we illustrate the details of experimental settings. In
Appendix B, we provide the implementation details of evolutionary search. We report the effect of performance improvement
with more training and searching cost in Appendix C. Then we investigate the effect of the prior initial population in Appendix
D. We conduct the performance comparison of BCNet and AutoSlim [43] with the same training recipe in Appendix E. In
Appendix G, we investigate the effect of training BCNet with different epochs. We report more detailed searching results
of BCNet on ImageNet dataset. In Appendix I, we include more detailed searching results for Table 1. Then we present
the performance of searched models w.r.t. different FLOPs in Appendix H. Finally, we show the visualization of searched
network widths with 2× acceleration in Appendix J.

A. Details of Training Recipe

In this section, we present the training details of our BCNet w.r.t. experiments on various models. In detail, we search on
the reduced space CK with default K = 20. During training, except for EfficientNet-B0 and ProxylessNAS, we use SGD
optimizer with momentum 0.9 and nesterov acceleration. As for EfficientNet-B0 and ProxylessNAS, we adopt RMSprop
optimizer for searching optimal network width.

Training Recipe of ResNet50, MobileNetV2, and VGGNet. For ResNet50, we follow the same training recipe as TAS
[6]. In detail, we use a weight decay of 10−4 and batch size of 256; and we train the model by 120 epochs with the learning
rate annealed with cosine strategy from initial value 0.1 to 10−5. For MobileNetV2 and VGGNet, we set weight decay
to 5 × 10−5 and 10−4, respectively. Besides, for MobileNetV2, we adopt the batch size of 256, and the learning rate is
annealed with a cosine strategy from initial value 0.1 to 10−5. For VGGNet, we train it for 400 epochs using a batch size of
128; the learning rate is initialized to 0.1 and divided by 10 at 160-th, 240-th epoch. Moreover, we note that most pruning
methods do not report their results by incorporating the knowledge distillation (KD) [17] improvement in retraining except
for MobileNetV2. Thus in our method, except for MobileNetV2, we do not include KD in final retraining for a more fair
comparison of performance. All experiments are implemented with PyTorch on NVIDIA V100 GPUs.

Training Recipe of EfficientNet-B0 and ProxylessNAS. We use the same training strategies for both EfficientNet-B0
and ProxylessNAS. In detail, we train both models for 300 epochs using a batch size of 1024; the learning rate is initialized
to 0.128 and decayed by 0.963 for every 3 epochs. Besides, the first 5 training epochs are adopted as warm-up epochs, and
the weight decay is set to 1×10−5.

B. Details of Evolutionary Search

During our evolutionary search, each network width c is indicated by the averaged accuracy of its left and right paths,
which can be formulated as Eq. (15). The optimal width (rather than sub-nets) refers to the one with the highest performance
and we then train it from scratch.

Accuracy(W, c;Dval) =
1

2
· (Accuracy(Nl, c;Dval) + Accuracy(Nr, c;Dval)) . (15)

Concretely, we adopt the multi-objective NSGA-II [4] algorithm to implement the search. Note that some networks (e.g.,
MobileNetV2) may have batch normalization (BN) layers, and due to the varying network widths, the mean and variance in
the BN layers are not suitable to all widths. In this way, we simply use the mean and variance in batches instead, and we set
the batch size to 2048 during testing to ensure accurate estimates of the mean and variance.

In detail, we set the population size as 40 and the maximum iteration as 50. Firstly, we apply our proposed prior initial
population sampling method Eq. (12)∼ Eq.(14) to generate the initial population. In each iteration, we use the trained BCNet
to evaluate each width and rank all widths in the population. After the ranking, we use the tournament selection algorithm
to select 10 widths retained in each generation. And the population for the next iteration is generated by two-point crossover
and polynomial mutation. Finally, the searched width refers to the one with the best performance in the last iteration, and we
train it from scratch for evaluation.

Pipeline of training and evolutionary search: We follow a routine pipeline in width searching methods, such as TAS and
AutoSlim. We first train a supernet (i.e., BCNet) and then use it to search for the optimal width by evolutionary algorithms.
For each sampled width during the search, we evaluate it by the inference with the weights from BCNet and record its
accuracy; since there is no network training during evolutionary, it is thus very efficient. Finally, we only retrain the width
with the highest accuracy from scratch and report its performance.



C. Effect of Performance Improvement with more Training and Searching Cost

Since BCNet needs 2× of training and searching cost of the UA principle, one intuitive question comes to whether UA
principle can benefit from more training and searching cost and even surpass BCNet as a result. With this aim, we search
with UA principle on more times (1× and 2×) of training epochs and iterations with evolutionary search to search for 0.5×
FLOPs ResNet50 and MobileNetV2 on ImageNet dataset.

Table 5. Performance with more training and searching cost on ImageNet dataset. Note BCNet achieves 76.90% and 70.20% accuracy for
0.5× FLOPs ResNet50 and MobileNetV2, respectively.

ResNet50 MobileNetV2
SearchingTraining 1× 2× SearchingTraining 1× 2×

1× 75.63% 75.65% 1× 68.95% 68.98%
2× 75.74% 75.72% 2× 69.03% 69.06%

From Table 5, we can know that evolutionary search only benefits a little from more searching iterations. Simultaneously,
2 times of training epochs for supernet nearly does not affect the search result. As a result, our BCNet can efficiently boost
the performance of searching results with two times of training and searching cost. Note that after the search, we train the
searched network width from scratch for evaluation, which amounts to the same cost as other methods [6, 43, 25].

D. Effect of Prior Initial Population Sampling (PIPS)

Our proposed prior initial population sampling (PIPS) method aims to provide a better initial population for evolutionary
search, and the searched optimal width will have higher performance accordingly. Now we want to investigate how the
effect of directly leveraging PIPS to search for optimal width. With this aim, we pick up the optimal width with the highest
validation Top-1 accuracy after {100, 200, 500, 1000, 1500, 2000} of search number of widths, respectively. Then we train
them from scratch and report their Top-1 accuracy in Figure 6. The search is implemented on ResNet50 on ImageNet dataset
with 3 different settings and 0.5× FLOPs budget, i.e., evolutionary search with random initial population, evolutionary search
with prior initial population, and search with the only prior initial population.

0 500 1000 1500 2000
Search number of widths

74.5

75

75.5

76

76.5

77

Ac
cu

ra
cy

 (%
)

Evolutionary search with random initial population
Evolutionary search with prior initial population
Search with only prior initial population

Figure 6. Top-1 accuracy of searched models on ImageNet dataset by different methods with the increasing of search numbers.

From Figure 6, we can know that widths provided by our prior initial population sampling method can surpass those from
the random initial population by a larger gap on Top-1 accuracy. Besides, it also should be noticed that evolutionary search
benefits more from the increase of search numbers, which indicates that evolutionary search can better utilize the searched
width to achieve the optimal result. In addition, with our prior initial population, evolutionary search can get better network
width with higher performance (i.e., red line in Figure 8), which means that our prior initial population sampling method can
provide good initialization for evolutionary algorithm. Moreover, the Top-1 accuracy of searched models rises slowly after
1000 search numbers, which may imply that the evolutionary algorithm can already find a good solution in this case.



E. Comparison of BCNet and AutoSlim [43] under 305M FLOPs
To intuitively check the effect of BCNet with another baseline method, we visualize the network width searched by BCNet

and the released structure of AutoSlim [43] for 305M-FLOPs MobileNetV2 in Figure 7. In detail, BCNet saves more layer
widths in the first few layers, and prunes a bit more widths in the last few layers, which is more evenly than AutoSlim.

5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

AutoSlim

BCNet

Figure 7. Visualization of searched MobileNetV2 with 305M FLOPs on ImageNet dataset. Both networks are searched on 1.5× search
space as AutoSlim [43].

To promote the fair comparison of BCNet and AutoSlim, we retrain the released structure of AutoSlim (i.e., 305 FLOPs
MobileNetV2) with the same training recipe of ours. Note that we do not include KD for a more fair comparison of AutoSlim
[43], as shown in Table 6.

Table 6. Performance comparison with AutoSlim [43] of 305M MobileNetV2 on ImageNet by the same training recipe.
Methods FLOPs Parameters Top-1 Top-5
AutoSlim 305M 5.8M 73.1% 91.1%

BCNet 305M 4.8M 73.9% 92.2%

From Table 6 and Figure 7, we can know that BCNet retains more widths closer to the input layer, and thus the parameters
of our searched structures are lesser than AutoSlim. Moreover, with the same training recipe, BCNet achieves a 0.8% higher
on Top-1 accuracy than AutoSlim with 305M FLOPs MobileNetV2, which indicates the effectiveness of our method.

F. Transferability of the Searched Width to Object Detection Task
For object detection tasks, a pretrained model on ImageNet dataset is usually leveraged as its backbone. As a result, We

take the searched 2G FLOPs ResNet50 as the backbone in detection to examine the transferability of BCNet for other tasks
[23, 29]. The results are reported in Table 7 for both Faster R-CNN with FPN and RetinaNet, indicating the backbones
obtained by BCNet(0.5×) can achieve higher performance to the uniform baseline(0.5×)

Table 7. Detection performance with ResNet50 as the backbone.
Framework Original (4G) BCNet (2G) Uniform(2G)
RetinaNet 36.4% 35.4% 34.3%
Faster R-CNN 37.3% 36.3% 35.4%



G. Effect of Training BCNet with Different Epochs
Since BCNet is critical in searching width as a fundamental performance estimator, we investigate how much effort should

be spared in its training to ensure the searching performance. In this way, we train the BCNet with a different number of
epochs and use these BCNets to search MobileNetV2 with 50% FLOPs on ImageNet and CIFAR-10 datasets. The Top-1
accuracies of searched networks are presented in Figure 8.

30 60 90 120 150 180 210 240 270 300

#epoch

68.5

69

69.5

70

70.5

T
o

p
-1

 a
c
c
u

ra
c
y
 (

%
)

94

94.5

95

95.5

96

T
o

p
-1

 a
c
c
u

ra
c
y
 (

%
)

ImageNet

CIFAR-10

Figure 8. Performance of searched MobileNetV2 (50% FLOPs) w.r.t. different training epochs of BCNet on ImageNet and CIFAR-10
dataset.

From Figure 8, we can see that more challenging (e.g., ImageNet) datasets usually need more training epochs for the
performance estimator than simple datasets (e.g., CIFAR-10). Concretely, with 30 (300) training epochs of BCNet, the
searched MobileNetV2 can achieve 68.51% (70.20%) Top-1 accuracy on ImageNet dataset. In contrast, for CIFAR-10
dataset, the Top-1 accuracy w.r.t. 300 training epoch is merely 0.43% better than that of 30 training epochs.

H. Searching Performance with Different FLOPs
To explore the performance of searched models w.r.t. different FLOPs, we include more results on the Top-1 accuracy of

ResNet50, MobileNetV2, and VGGNet searched on ImageNet and CIFAR-10 datasets, as shown in Figure 9. Note that we
report the ratio of FLOPs of searched models instead of their absolute FLOPs values for clarity.

20 40 60 80 100

ratio of FLOPs (%)

71

72

73

74

75

76

77

78

T
o
p
-1

 a
c
c
u
ra

c
y
 (

%
)

62

64

66

68

70

72

74

T
o
p
-1

 a
c
c
u
ra

c
y
 (

%
)

ResNet50

MobileNetV2

(a) ImageNet.

20 40 60 80 100

ratio of FLOPs (%)

93

93.5

94

94.5

95

95.5

96

T
o
p
-1

 a
c
c
u
ra

c
y
 (

%
)

93

93.5

94

94.5

95

T
o
p
-1

 a
c
c
u
ra

c
y
 (

%
)

MobileNetV2

VGGNet

(b) CIFAR-10.

Figure 9. Top-1 accuracy of searched models on ImageNet and CIFAR-10 dataset w.r.t. different ratios of FLOPs.

Figure 9(a) shows that the performance of searched models worsens with decreasing ratios of FLOPs on ImageNet dataset.
However, the accuracy drop of ResNet50 under a small FLOPs ratio is slighter than that of MobileNetV2. For example, the
Top-1 accuracy of ResNet50 (MobileNetV2) drops for 5.2% (9.9%) with 14.1% (16.7%) ratio of FLOPs. Besides, as shown
in Figure 9(b), our searched MobileNetV2 and VGGNet can achieve better performance than the original model on CIFAR-



10 dataset. In details, our searched MobileNetV2 (VGGNet) with 50% ratio of FLOPs outperforms the original model (100%
ratio of FLOPs) by 0.63% (0.37%) on Top-1 accuracy.

I. More Detailed Results of ImageNet for Table 1
To investigate the effect of BCNet, we further report our algorithm on ResNet34 and ResNet18 with the same training

recipe as ResNet50. The original ResNet34 (ResNet18) has 21.8M (11.7M) parameters and 3.6G (1.8G) FLOPs with 74.9%
(71.5%) Top-1 accuracy, respectively. As shown in Table 8, our searched 0.5× ResNet34 (ResNet18) achieve 73.3% (69.9%)
FLOPs, which exceeds FPGM (DMCP) by 0.8% (0.7%) on Top-1 accuracy. Moreover, with tiny FLOPs (i.e., 360M and
450M), BCNet can surpass the unform baseline by a large margin.

Table 8. Performance comparison of ResNet34, ResNet18, and MobileNetV2 on ImageNet. Methods with ”*” denotes that the results are
reported with knowledge distillation.

ResNet34 MobileNetV2
Groups Methods FLOPs Parameters Top-1 Top-5 Groups Methods FLOPs Parameters Top-1 Top-5

2.7G

Rethinking 2.79G - 72.9% -

150M

TAS* 150M - 70.9% -
PF 2.79G - 72.1% - LEGR 150M - 69.4% -

MIL 2.75G - 73.0% - Uniform 150M 2.0M 69.3% 88.9%
Uniform 2.7G - 72.3% 90.8% Random 150M - 68.8% 88.7%
Random 2.7G - 71.4% 90.6% BCNet 150M 2.9M 70.2% 89.2%
BCNet 2.7G 20.2M 74.9% 92.4% BCNet* 150M 2.9M 71.2% 89.6%

CNN-FCF 2.7G 15.9M 73.6% 91.5% ResNet18
BCNet 2.5G 20.0M 74.6% 92.2% Groups Methods FLOPs Parameters Top-1 Top-5

1.8G

FPGM 2.2G - 72.5% -

1.2G

TAS* 1.2G - 69.2% 89.2%
SFP 2.2G - 71.8% 90.3% MIL 1.2G - 66.3% 86.9%

CNN-FCF 2.2G 12.6M 72.8% 91.0% Uniform 1.2G 8.5M 68.8% 88.5%
GS 2.1G - 72.9% - Random 1.2G - 68.4% 88.1%

Uniform 1.8G - 71.5% 90.2% BCNet 1.2G 11.6M 71.3% 90.1%
Random 1.8G - 70.9% 89.8%

1G

SFP 1.05G - 67.1% 87.8%
BCNet 1.8G 16.9M 73.3% 91.4% FPGM 1.04G - 68.4% 88.5%
CGNet 1.8G - 71.3% - DMCP 1.04G - 69.2% -

CNN-FCF 1.7G 9.6M 71.3% 90.2% CGNet 0.94G - 68.8% -

0.9G

CNN-FCF 1.2G 7.1M 69.7% 89.3% DCP 0.96G - 67.4% 87.6%
CGNet 1.2G - 70.2% - FBS 0.9G - 68.2% 88.2%

Uniform 0.9G - 69.6% 89.5% Uniform 0.9G 6.0M 67.1% 87.5%
Random 0.9G - 68.8% 88.7% Random 0.9G - 66.7% 87.1%
BCNet 0.9G 9.6M 72.2% 89.8% BCNet 0.9G 9.8M 69.9% 89.1%

0.36G
Uniform 0.36G - 59.6% 82.1%

450M
Uniform 450M 2.9M 61.6% 83.6%

Random 0.36G - 56.4% 80.7% Random 450M - 59.8% 82.3%
BCNet 0.36G 3.6M 64.4% 85.7% BCNet 450M 4.9M 65.8% 86.4%

J. More Visualization of Searched Network Widths
For intuitively understanding, we visualize our searched networks as in Figure 10. Moreover, we show the retained ratio

of layer widths for clarity compared to that of the original models. Note that for MobileNetV2, ResNet50, EfficientNet-B0,
and ProxylessNAS with skipping or depthwise layers, we merge these layers, which are required to have the same width.
From Figure 10, we notice that the width of EfficientNet-B0 and ProxylessNAS varies more evenly than other models, which
means these NAS searched models have more delicate widths than others. Besides, models pruned on CIFAR-10 tend to
retain a smaller width on the last layer than on ImageNet, which indicates that the difficulty of the dataset determines the
width of the last layer.



EfficientN
et-B0 on Im

ageN
et

5
10

15
20

0
0.5 1
1.5

385M
192M

ProxylessN
AS on Im

ageN
et

5
10

15
20

25
0

0.5 1
1.5

320M
160M

VG
G

N
et on C

IFAR
-10

2
4

6
8

10
12

14
16

0

0.5 1
197M
138M
77M

M
obileN

etV2 on C
IFAR

-10

5
10

15
20

25
0

0.5 1
200M
44M
28M

M
obileN

etV2 on Im
ageN

et

5
10

15
20

25
0

0.5 1
217M
105M
50M

R
esN

et50 on Im
ageN

et

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
0

0.5 1
3G1G570M

Figure 10. More visualization of searched networks w.r.t. different FLOPs. The vertical axis means the ratio of retained width compared to
that of original networks at each layer.


