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A. Supplementary V-COCO Settings

As mentioned in the main manuscript, the images of the
V-COCO dataset are split into three sets: a training set, val-
idation set, and testing set. Following previous works, the
training and validation sets are combined to train QPIC.

For calculating the mAP, 5 action classes out of the
29 classes are excluded from the evaluation following [4].
This is because four of the excluded action classes (“run”,
“smile”, “stand”, and “walk”) are the action without an ob-
ject, and one of them (“point”) has an insufficient number

of samples.

B. Supplementary Implementation Note

As usual training, we use data augmentation to alleviate
over-fitting. We use random horizontal flipping augmenta-
tion, scale augmentation, random crop augmentation, which
are used in DETR’s training [!], and color augmentation,
which is used in PPDM’s training [10].

Since each layer of a transformer decoder output its own
set of embeddings D = {d;|d; € RP<} N, the loss cal-
culation described in Sec. 3.2 of the main manuscript can
be conducted for each layer. Following the DETR’s train-
ing [1], these auxiliary losses are calculated to optimize
QPIC. To calculate the losses, FFNs are added on top of
each decoder layer’s output. Note that the parameters of the
FNNs are shared among all the decoder layers,

In the evaluation time, the second highest scoring class
and confidence of the object-class prediction ¢&; are used to
generate the detection result if &; has the highest score in
“no pair” class. This is the technique used in [ 1] to optimize
the mAPs.

C. Additional List of Comparison

Table 1 and Table 2 show the additional list of the com-
parison against state-of-the-art on HICO-DET [2] and V-
COCO [5], respectively. Six methods (PMFNet [15], Wang

Table 1. Comparison against state-of-the-art methods on HICO-
DET. The top, middle, and bottom blocks show the mAPs of the
two-stage, single-stage, and our methods, respectively.

Default Known object
Method full rare non-rare full rare non-rare
PMFENet [15] 17.46 15.65 18.00 20.34 17.47 21.20

Wang etal. [16]  17.57 1685 17.78 21.00 20.74 21.08
In-GraphNet [18] 17.72 1293 1931 - - -

VSGNet [14] 19.80 16.05 20.91 - - -

FCMNet [11] 20.41 17.34 21.56 22.04 18.97 23.13
ACP [8] 20.59 1592 21.98 - - -

PD-Net [19] 20.81 15.90 22.28 24.78 18.88 26.54
DJ-RM [Y] 21.34 18.53 22.18 23.69 20.64 24.60
VCL [6] 23.63 17.21 25.55 25.98 19.12 28.03
ConsNet [12] 24.39 17.10 26.56 - - -

DRG [3] 24.53 1947 26.04 2798 23.11 29.43
UnionDet [7] 17.58 11.72 1933 19.76 14.68 21.27
Wangetal [17] 19.56 12.79 21.58 22.05 1577 23.92
PPDM [10] 21.73 13.78 24.10 24.58 16.65 26.84

Ours (ResNet-50) 29.07 21.85 31.23 31.68 24.14 33.93
Ours (ResNet-101) 29.90 23.92 31.69 32.38 26.06 34.27

et al. [16], In-GraphNet [18], ACP [8], PD-Net [19], and
DJ-RM [9]) are additionally compared in these tables. As
stated in Sec. 4.3 of the main manuscript, our QPIC sig-
nificantly outperforms conventional two- and single-stage
methods on both datasets.

D. Computational Efficiency Comparison

To analyze the model efficiency of our QPIC, we com-
pare the inference times of QPIC and PPDM [10], which
is one of the highest speed models. We used the publicly
available source code of PPDM!, and tested each model on
a single Tesla V100 GPU with CUDA ver. 10.1 and PyTorch

Uhttps://github.com/YueLiao/PPDM
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Figure 1. Typical failure cases of conventional detectors (top row) and attentions of QPIC (bottom row). The ground-truth human bounding
boxes, object bounding boxes, object classes, and action classes are drawn with red boxes, blue boxes, blue characters, and yellow char-
acters, respectively. In (b) and (d), the attentions corresponding to different HOI instances are drawn with blue and orange, and the areas
where two attentions overlap are drawn with white.

Table 2. Comparison against state-of-the-art methods on V-COCO.
The split of the blocks are the same as Table 1.

Method Scenario 1 Scenario 2
VCL [6] 48.3 -
In-GraphNet [ 18] 48.9 -
DRG [3] 51.0 -
VSGNet [14] 51.8 57.0
PMFNet [15] 52.0 -
PD-Net [19] 52.6 —
Wang et al. [16] 52.7 -
ACP [8] 53.0 -
FCMNet [11] 53.1 -
ConsNet [12] 53.2 -
UnionDet [7] 47.5 56.2
Wang et al. [17] 51.0 -
Ours (ResNet-50) 58.8 61.0
Ours (ResNet-101) 58.3 60.7

Table 3. Comparison of the efficiency.

Method HICO-DET (mAP) Inference time (ms)
PPDM [10] 21.73 64
Ours (ResNet-50) 29.07 46
Ours (ResNet-101) 29.90 63

ver. 1.5 [13]. Table 3 shows the comparison result. As the
table shows, the inference time of QPIC with the ResNet-
50 backbone is smaller by 18 ms than that of PPDM. In
particular, PPDM takes 17 ms to organize outputs from the
network, while QPIC takes only 5.4 ms to do that. These
results indicate that QPIC is more efficient than conven-
tional methods mainly because the simple detection heads
of QPIC realize the simple inference procedures.
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E. Additional Qualitative Analysis

Figure 1 shows the additional failure cases of conven-
tional methods. Figure 1a and 1b show the failure cases of
DRG [3], and Fig. 1c and 1d show those of PPDM [10],
where QPIC successfully detects the human-object inter-
actions (HOIs). As discussed in the main manuscript, the
regions in an image other than a human and object bound-
ing box sometimes contain useful information. Fig. la is
a typical example case, where the basketball goal is likely
to be the important contextual information. The attention
of QPIC shows that it aggregates features from the region
of the basketball goal, resulting in the correct detection.
Figure 1b shows an example case where multiple HOI in-
stances are overlapped. As shown in the figure, the bound-
ing box of the track includes that of the driving human,
which may induce contaminated features. The performance
is degraded by this contamination. Unlike DRG, QPIC se-
lectively aggregates features for each HOI using the atten-
tion mechanism as shown in the attention map, and suc-
cessfully detects the HOIs. In Fig. Ic and 1d, the features
of the detection points, which are the locations to predict
HOIs in PPDM and drawn in the yellow circles in the fig-
ures, are likely to be dominated by irrelevant information
because the points are on the background or irrelevant hu-
man. As is the case with DRG, PPDM cannot predict HOIs
with these contaminated features, while QPIC can do it with
the selectively aggregated features.

References

[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV, September
2020.



(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

Yu-Wei Chao, Yunfan Liu, Michael Liu, Huayi Zeng, and
Jia Deng. Learning to detect human-object interactions. In
WACV, March 2018.

Chen Gao, Jiarui Xu, Yuliang Zou, and Jia-Bin Huang. DRG:
Dual relation graph for human-object interaction detection.
In ECCV, August 2020.

Georgia Gkioxari, Ross Girshick, Piotr Dollar, and Kaiming
He. Detecting and recognizing human-object interactions. In
CVPR, June 2018.

Saurabh Gupta and Jitendra Malik. Visual semantic role la-
beling. May 2015. arXiv:1505.04474.

Zhi Hou, Xiaojiang Peng, Yu Qiao, and Dacheng Tao. Vi-
sual compositional learning for human-object interaction de-
tection. In ECCV, August 2020.

Bumsoo Kim, Taeho Choi, Jaewoo Kang, and Hyunwoo J.
Kim. UnionDet: Union-level detector towards real-time
human-object interaction detection. In ECCV, August 2020.
Dong-Jin Kim, Xiao Sun, Jinsoo Choi, Stephen Lin, and
In So Kweon. Detecting human-object interactions with ac-
tion co-occurrence priors. In ECCV, August 2020.

Yong-Lu Li, Xinpeng Liu, Han Lu, Shiyi Wang, Junqi Liu,
Jiefeng Li, and Cewu Lu. Detailed 2d-3d joint representation
for human-object interaction. In CVPR, June 2020.

Yue Liao, Si Liu, Fei Wang, Yanjie Chen, Chen Qian, and
Jiashi Feng. PPDM: Parallel point detection and matching
for real-time human-object interaction detection. In CVPR,
June 2020.

Yang Liu, Qingchao Chen, and Andrew Zisserman. Ampli-
fying key cues for human-object-interaction detection. In
ECCV, August 2020.

Ye Liu, Junsong Yuan, and Chang Wen Chen. ConsNet:
Learning consistency graph for zero-shot human-object in-
teraction detection. In ACM Multimedia, October 2020.
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
imperative style, high-performance deep learning library. In
NeurIPS, December 2019.

Oytun Ulutan, A S M Iftekhar, and B. S. Manjunath. VS-
GNet: Spatial attention network for detecting human object
interactions using graph convolutions. In CVPR, June 2020.
Bo Wan, Desen Zhou, Yongfei Liu, Rongjie Li, and Xuming
He. Pose-aware multi-level feature network for human object
interaction detection. In /CCV, October 2019.

Hai Wang, Wei shi Zheng, and Ling Yingbiao. Contextual
heterogeneous graph network for human-object interaction
detection. In ECCV, August 2020.

Tiancai Wang, Tong Yang, Martin Danelljan, Fahad Shahbaz
Khan, Xiangyu Zhang, and Jian Sun. Learning human-object
interaction detection using interaction points. In CVPR, June
2020.

Dongming Yang and Yuexian Zou. A graph-based interactive
reasoning for human-object interaction detection. In IJCAI,
July 2020.

[19] Xubin Zhong, Changxing Ding, Xian Qu, and Dacheng Tao.

Polysemy deciphering network for robust human-object in-
teraction detection. In ECCV, August 2020.



