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1. Notation Clarification
To distinguish from the main text, we use S-Fig, S-Tab,

and S-Eq to name figures, tables, and equations presented
in the supplementary material, correspondingly.

2. Pseudocode of Mutual CRF-GNN
Algorithm 1 and Algorithm 2 summarize the training and

evaluation protocol of Mutual CRF-GNN (MCGN), respec-
tively.

Algorithm 1 Training procedure of Mutual CRF-GNN in one
episode

Require: a support set
S = {(x1, y1), (x2, y2), ..., (xN×K , yN×K)};

Require: a query set
Q = {(xN×K+1, yN×K+1), ..., (xN×K+T , yN×K+T )};

Require: the backbone of feature extractor femb;
Require: feature transformer σ in GNN;

Initialize features nodes F1 and affinities A0 by F1 =
femb(xi) and Eq. (8);
for l in [1, L] do

Compute unary compatibility Ψl and binary compatibility
Φl in Gcrfl by Eq. (3) and Eq. (4), respectively;

Compute marginal distribution P(ul
i) in Gcrf by Eq. (5);

Compute Al by Eq. (6);
Aggregate features Fl+1 by Eq. (1);

end for
Compute Lcrf by Eq. (9), Lgnn Eq. (10) and L = λcrfLcrf +
λgnnLgnn;
Update femb and σ by backward propagation;

3. Flowcharts of Baseline, GNN-only, CRF-
only, CRF+GNN and MCGN

In the ablation study (Sec. 4.4), we introduce five
variants of Mutual CRF-GNN Network, namely Base-
line, GNN-only, CRF-only, CRF+GNN, and MCGN. The

†This work was done when Shixiang Tang was an intern at SenseTime.

Algorithm 2 Evaluation procedure of Mutual CRF-GNN in
one episode
Require: a support set
S = {(x1, y1), (x2, y2), ..., (xN×K , yN×K)};

Require: a query set
Q = {(xN×K+1, yN×K+1), ..., (xN×K+T , yN×K+T )};

Require: the backbone of feature extractor femb;
Require: feature transformer σ in GNN;

Initialize features nodes F1 and affinities A0 by F1 =
femb(xi) and Eq. (8);
for l in [1, L] do

Compute unary compatibility Ψl and binary compatibility
Φl in Gcrfl by Eq. (3) and Eq. (4), respectively;

Compute marginal distribution P(ul
i) in Gcrf by Eq. (5);

Compute Al by Eq. (6);
Aggregate features Fl+1 by Eq. (1);

end for
Compute prediction of samples in query set by Eq. (11);

flowcharts of these variants are presented in S-Fig. 1.
Specifically, Baseline is the MatchingNet [6] where sim-
ilarities between support samples and query samples are
directly calculated from feature embeddings. GNN-only
is the GNN embedding model which can aggregate fea-
tures and affinities but the affinity for GNN is defined by
the embeddings of two connected nodes. CRF-only is the
model where a single CRF directly follows the backbone.
CRF+GNN is the model with two branches. One is the
GNN branch which is the same as GNN-only and the other
is the CRF branch which is the same as CRF-only. In this
setting, CRF and GNN can not mutually contribute to each
other. MCGN is the proposed method where CRF inference
is leveraged to infer the affinity in GNN.

4. Sensitivity of Hyper-parameters
In this paper, we introduce several hyper-parameters, in-

cluding the tolerance η when constructing unary compati-
bility ψ, the weight λgnn, λcrf of loss Lgnn and Lcrf in
the final loss L.
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S-Figure 1: The flowchart of five variants, namely Baseline, CRF-only, GNN-only, CRF+GNN and MCGN in the ablation study.
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S-Figure 2: Sensitivity of tolerance η. All experiments are tested
on miniImageNet in the 5-way 5-shot setting. The number of lay-
ers L is fixed to 5 and the maximum round number R = 7.

4.1. Tolerance η

We tune the tolerance in miniImageNet in 5-way 5-shot
setting. We set the number of layers L = 5 and the max-
imum round number R = 7. The results are presented
in S-Fig. 2 When tolerance η is near zero, the accuracy
is relative low because it lacks flexibility that the variable
has a tiny possibility of mislabelled even though they are
observed. Specifically, if the tolerance η is set to 0, the
marginal distribution of all random variables corresponding
to support samples is deemed to be one-hot. In this scenario,
the marginal distribution of random variables is dependent
on affinities between query variables and support variables
only. When the tolerance η is very high, the accuracy also
decreases because there are too much noisy messages for
the observations to be delivered to the random variable. We
experimentally find that η = 0.3 is the optimal choice.
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S-Figure 3: Sensitivity of loss weight ratio λcrf/λgnn when fix-
ing λgnn = 1. All experiments are tested on miniImageNet in the
5-way 5-shot setting. The number of layers L is fixed to 5 and the
maximum round number R is fixed to 7.

4.2. Loss weight ratio λcrf/λgnn

The loss weight λgnn and λcrf denotes the importance
of Lgnn and Lcrf , respectively. Following the typical im-
plementations in EGNN [3] and DPGN [7], we set µcrf

l and
µgnn
l to be 0.2 when l < L+1 and 1 when l = L+1. We

fix λgnn to be 1 and then tuned λcrf from 0 to 0.7. As
shown in S-Fig. 3, the performance of MCGN is low when
removing Lcrf from the loss function (i.e., set λcrf = 0),
which shows the importance of jointly optimizing pairwise
relations by Lgnn and class-level relations by Lcrf . Be-
sides, the accuracy is not sensitive to λcrf/λgnn when
λcrf/λgnn > 0.1. Please note that λcrf = 0 is differ-
ent from GNN-only in Tab. (3). In GNN-only, we only use
GNN and no CRFs are involved. However, when λcrf = 0,
we still incorporate CRF in each GNN layer but do not
supervise the marginal distribution of CRF. In this case,
GNN can benefit from support labels by CRF although the
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S-Figure 4: The impact of the different round number of LBP
with the belief change. When the round number r ≥ 6, the be-
lief change approaches 0, which indicates the convergence of LBP.
Please note the number of layer in Mutual CRF-GNN is 5.

marginal distribution can not be directly supervised.

5. Marginal Distribution Inference by Loopy
Belief Propagation

The marginal distribution P(uli|Fl,Ys) of variable uli is
obtained by marginalizing out all random variables other
than uli in CRF. Mathematically, i.e.,

P(ul
i|Fl,Ys) ∝

∑
Vcrf
l
\{ul

i}

P(ul
1, u

l
2, . . . , u

l
NK+T |Fl,Ys), (1)

where P(uli = m|Fl,Ys) = pli,m, in which pli,m represents
the possibility of uli assigned label m. Marginal distribu-
tion requires the summation of all possible configures and
can give a better prediction for each variable. In this paper,
we adopt the loopy belief propagation [8, 4] to calculate
marginal distribution.

5.1. Loopy Belief Propagation

In the following, we briefly introduce Loopy Belief
Propagation (LBP) for inferring the marginal distributions
of random variables P(uli|Fl,Ys). LBP maintains a belief
b′l,i of random variable ui to represent the marginal dis-
tribution P(uli|Fl,Ys). b′l,i ∈ R1×N is a column vector
and its j-th element is the marginal probability of uli taking
value j. According to LBP [8], given a initial (bl,i)

0, the
belief b′l,i is obtained by running the following update rules
until convergence,

mr
l,i→j = [φ(ul

i, u
l
j)((bl,i)

r−1 �mr−1
l,j→i)], (2)

(bl,j)
r ∝

{
ψ(ul

j)
∏

i∈Nj
mr

l,i→j if j ≤ N×K,∏
i∈Nj

mr
l,i→j if j > N×K.

(3)

where r denotes the round index of belief propagation and
r ∈ [0, R] with R as the maximum round number, mr

l,i→j
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S-Figure 5: The impact of maximum round number of belief
propagation. We perform the experiments on miniImageNet in 5-
way 5-shot setting. When the maximum round number R<7, the
accuracy increases with larger maximum round number. Please
note the number of layer in Mutual CRF-GNN is 5.

is the message from uli to ulj , φlij is the compatibility be-
tween variables for the l-th layer obtained using Eq. (4), [·]
represents a normalization function that divides a vector by
the sum of its elements, � represents the element-wise di-
vision between two vectors, Nj represents the neighbors of
node j and the product of messages

∏
i∈Nj

mr
l,i→j means

element-wise multiplication. We do not have unary com-
patibility ψl

j when j >N×K because query samples have
no observations (labels). We get b′l,i = (bl,i)

R, where R is
the index of last iteration before LBP stops.

5.2. Convergence of LBP for Inference

Loopy belief propagation is a standard method of
marginal distribution inference. It converges in most cases
but cannot be theoretically confirmed, which leads to di-
vergence in some cases [2, 1]. To explore the convergence
empirically, we define belief change in MCGN as

∆r =
1

L

L∑
l=1

N×K+T∑
i=1

||(bl,i)
r+1 − (bl,i)

r||, (4)

where L is number of layers in Mutual CRF-GNN. We
report ∆r with the r-th round of belief propagation in S-
Fig. 4. ∆r is large when the round index r is less than 3 and
will decay from r = 3 to r = 5. Finally, it will converge to
0 when the round index is larger than 5. The diminish of ∆r

illustrates the convergence of belief {(bl,i)
r}N×K+T

i=1 when
r ≥ 6.

5.3. Maximum Round Number R in LBP

To illustrate the improvement by the maximum round
number R of belief propagation, we initialize the belief
(b0

l,i in S-Eq. 3) by the cosine similarity of the features
Fl = {f li}

N×K+T
i=1 and the prototypes {cli}Ni=1, i.e., (bl,j)

0 =



(cl1
>f lj , ..., c

l
N
>f lj), where cli = 1

K

∑
ym=i f

l
m and K is the

number of shots. In this paper, we treat the maximum round
number as a hyperparameter and perform experiments on
it. The results are reported in S-Fig. 5. The testing accu-
racy raises from 76.34% to 83.03% when R increases and
it comes to converge if R ≥ 7. The convergence can be
explained by the convergence of LBP. As illustrated in S-
Fig. 4, when r ≥ 6, the belief change approaches 0, which
means LBP converges when we set the maximum round in-
dex R ≥ 7.

5.4. Time Complexity of LBP

The computational cost of LBP is |E|S2r [5], where |E|
is the number of edges in CRF, S is number of possible vari-
able states, R is the maximum round number of LBP. Here,
|E| ≈ (N×K+T )2, S = N , where N is the number of
classes and K is the number of shots. So the time complex-
ity is O

(
(N×K+T )2N2R

)
.
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