
A. How Hard is it to Find a Surrogate Dataset?
To motivate the need for data-free approaches to model

extraction, we show here that an adversary relying on a sur-
rogate dataset must ensure that its distribution is close to the
one of the victim’s training set. Otherwise, model extraction
will return a poor approximation of the victim.

Consider a victim machine learning model, V , trained on
a proprietary dataset, DV . The victim model reveals its pre-
dictions through either a prediction API (as is common in
MLaaS) or through the deployment of the model on devices
accessible to adversaries. The adversary, A, attempts to
steal V by querying it with a surrogate dataset, DS . This
surrogate dataset is assumed to be publicly available or eas-
ier to access because it does not need to be labeled.

We now perform a systematic study of the features that
characterize the closeness of DS when compared to DV . Let
the private and surrogate datasets DV and DS be character-
ized by D = {X , P (X),Y, P (Y |X)} [35]. The private and
surrogate datasets can vary in three ways, which we will il-
lustrate in the following with object recognition tasks:

1. A: (XV 6= XS). When the inputs of DV and DS belong
to different feature spaces (i.e. domain). In computer
vision, for example, this can be a scenario wherein the
input data (e.g., images, videos) for the datasets con-
tain a different number of channels or pixels.

2. B: (P (XV) 6= P (XS)). While the input domain of
both the surrogate and private datasets is the same,
their marginal probability distribution is different. For
example, when the semantic nature is different for the
two datasets (images of animals, digits, etc).

3. C: (P (YV |XV) 6= P (YS |XS)). We consider a setting
where the semantic distribution (P (X)) is the same,
but the class-conditional probability distributions of
the victim and surrogate training sets are different, e.g.
when the two datasets have class imbalance.

A.1. Optimization Problem
The logit distribution of the victim network can often

have a strong affinity toward the true label. To address this
issue, Hinton et al. suggested scaling the logits to make the
probability distributions more informative [18].

Vi(x) =
exp (vi(x)/⌧)P
j exp (vj(x)/⌧)

; L = �⌧2KL (V(x),S(x))

where ⌧ > 1 is referred to as the temperature scaling param-
eter. In the knowledge distillation literature, a combination
of both the cross entropy and knowledge distillation loss are
used to query the teacher [9]. However, model extraction
we rely only on the KL divergence loss because the queries
are made from a surrogate dataset which may not have any
semantic binding to the true class.

A.2. Experimental Setting
Hyperparameters To search over a meaningful hyperpa-
rameter space for the temperature co-efficient ⌧ , we refer to
prior work in knowledge distillation such as [9, 18, 22] to
confine the search over ⌧ 2 {1, 3, 5, 10}. We used the SGD
optimizer, and train the CIFAR10 students for 100 epochs,
while the SVHN students were trained for 50 epochs. We
experimented with two different learning schedules: (1)
cyclic learning rate [38]; and (2) step-decay learning rate.
For step-decay, we reduced the learning rate by a factor of
0.2 at 30%, 60%, and 80% of the training process. In both
cases, the maximum learning rate was set to 0.1.

Experimental validation. To illustrate our argument, we
next detail the relation between a task-specific surrogate
dataset and the accuracy of state-of-the-art model extraction
techniques. The victim models under attack are ResNet-18-
8x models, their accuracy is reported in Table 4. Further
details on the victim models training are provided in Sec-
tion 5). We find that querying from the original dataset
yields the most query-efficient and accurate extraction re-
sults. This is not surprising given that this setup corresponds
to the original knowledge distillation setting. Our observa-
tions are made on both CIFAR10 and SVHN:

• CIFAR10. We benchmarked model extraction on 4
surrogate datasets, each reflecting a different property
detailed above: CIFAR10 [21], CIFAR100 [21] (BC),
SVHN [30] (AB) and MNIST [23] (AB). To ensure a
fair comparison, we bound the maximum number of
distinct samples queried by 50,000 while performing
model extraction.

• SVHN. We evaluated model extraction by querying
from SVHN, SVHNskew (C), MNIST (A) and CI-
FAR10 (B) as surrogate datasets. Similar to the case
for CIFAR10, we cap the maximum number of distinct
samples queried to 50,000.

Finally, as a control for our experiments, we also studied
the extraction accuracy of the models when trained using
totally random queries.

Dataset adaptation. The SVHN, CIFAR10, and CI-
FAR100 datasets contain 32 ⇥ 32 color images. To query
networks trained on CIFAR10 and SVHN with images from
the MNIST dataset, which contains grayscale images of size
28⇥28, we re-scaled the image and repeated the same input
across all three RGB channels. In case of random input gen-
eration, we sample input tensors from a normal distribution
with mean 0 and variance 1. Note that the teacher networks
were trained on normalized datasets in the first place. Fi-
nally, in case of SVHNskew, we supplied images from only

Victim CIFAR10 CIFAR100 SVHN MNIST SVHNskew Random

CIFAR10 95.5% 95.2% 93.5% 66.6% 37.2% - 10.0%
SVHN 96.2% 96.0% - 96.3% 89.5% 96.1% 84.1%

Table 4. Model Extraction accuracy across various surrogate datasets. Victim models were trained on the CIFAR10 and SVHN datasets,
and the source accuracies are reported under the heading ‘Victim’

the first 5 classes of the dataset to skew the distribution of
the modified dataset.

Results. We present the results for accuracy of extracted
models across various surrogate datasets for CIFAR10 and
SVHN in Table 4. Recall that both the CIFAR10 and
CIFAR100 datasets are subsets from the same TinyIm-
ages [40] dataset. We find that the identical source dis-
tribution was extremely useful in making relevant queries
to the CIFAR10 teacher. The accuracy of the extracted
model reached 93.5%, just below the 95.5% accuracy of
the teacher model. However, when we used the SVHN sur-
rogate dataset to query the CIFAR10 teacher, with a differ-
ent source distribution, the model extraction performance
dropped remarkably, attaining a maximum of 66.6% across
all of the hyperparameters tried. In the most extreme sce-
nario when querying the CIFAR10 teacher with MNIST–a
dataset with disjoint feature space both in terms of number
of pixels, and number of channels)—model accuracy did
not improve beyond 37.2%.

On the contrary, we notice that the victim trained on the
SVHN dataset is much easier for the adversary to extract.
Surprisingly, even when the victim is queried with com-
pletely random inputs, the extracted model attains an ac-
curacy of over 84% on the original SVHN test set. Further,
nearly all surrogate datasets are able to achieve greater than
90% accuracy on the test set. We hypothesize that this ob-
servation is linked to how the digit classification task, at
the root of SVHN, is a simpler task for neural networks to
solve, and the underlying representations (hence, not be-
ing as complex as for CIFAR10) can be learnt even when
queried over random inputs.

Given the current understanding of model extraction, we
make two conclusions: (1) the success of model extraction
largely depends on the complexity of the task that the vic-
tim model aims to solve; and (2) similarity to source domain
is critical for extracting machine learning models that solve
complex tasks. We posit that it may be nearly as expen-
sive for the adversary to extract a CIFAR10 machine learn-
ing model with a good surrogate dataset, as is training from
scratch. A weaker or non-task specific dataset may have
lesser costs, but has high accuracy trade-offs.

B. Recovering logits from probabilities

The main difficulty with computing L`1 is that it requires
access to V’s logits vi, but we only have access to the proba-
bilities of each class (i.e., after the softmax is applied to the
logits). In a first approximation, the logits can be recovered
by computing the log-probabilities but the resulting approx-
imate logits are computed up to an additive constant C(x) to
which we don’t have access in a black-box setting. This ad-
ditive constant is the same for all logits but is different from
one image to another. Related works on adversarial exam-
ples [4, 8] use losses that are the difference of two logits,
effectively canceling out the additive constant. In our case,
the logits need to be used individually which makes the `1
loss more difficult to compute in our setting.

To overcome this issue, we propose to approximate the
true logits of each image x in two steps. First, compute the
logarithm of the probability vector V (x).

ṽi(x) = logVi(x)= vi + C(x) (8)

Then, compute the approximate true logits v⇤i (x) by sub-
tracting the log-probability vector with its own mean:

v⇤i (x) = ṽi(x)�
1

K

KX

j=1

ṽj(x)

= vi(x)�
1

K

KX

j=1

vj(x) ⇡ vi(x) (9)

The second equality holds because the mean of the log-
probability vector ṽi(x) is equal to the mean of the true vic-
tim logits vi(x) plus the mean of the additive constant (i.e.
the C(x) itself). By analyzing the mean values of the true
logits from various pre-trained models—which proves to be
negligible in comparison to the logit values themselves, we
provide empirical evidence in Section 6.3 that this recovers
a highly accurate approximation of the true logits v⇤i (x).

C. Examples of Synthetic Images

Figure 7 shows 4 images from the generator towards the
end of the attack on CIFAR-10. We do not observe any sim-
ilarities with the images from the original training dataset.

Figure 7. Four synthetic images from the generator.

D. Hypothesis 1: Justification
D.1. Preliminary results
Lemma 1. If S(x) 2 (0, 1)K is the softmax output of a
differentiable function (e.g. a neural network) on an input x
and s is the corresponding logits vector, then the Jacobian
matrix J = @S

@s has an eigenvalue decomposition and all its
eigenvalues are in the interval [0, 1].

Proof. By definition:

8i 2 {1 . . .K}, Si =
exp(si)PK

k=1 exp(sk)

For some i, j 2 {1 . . .K}, if i 6= j:

@Si

@sj
= � exp(sj)

exp(si)

(
PK

k=1 exp(sk))
2

= �SiSj

if i = j:

@Si

@sj
=

exp(si)(
PK

k=1 exp(sk))� exp(sj) exp(si)

(
PK

k=1 exp(sk))
2

=
exp(si)PK

k=1 exp(sk)
� exp(si)2

(
PK

k=1 exp(sk))
2

= Si(1� Si)

Therefore, 8x,

J =
@S
@s

=

2

6664

S1(1� S1) �S1S2 . . . �S1SK

�S1S2 S2(1� S2) . . . �S2SK
...

...
...

�S1SK �S2SK . . . SK(1� SK)

3

7775

The matrix J is real-valued symmetric, therefore
it has an eigen-decomposition with real eigenvalues.
9�1,�2, . . . ,�K 2 R, X1, X2, . . . , XK 6= 0 such that:

8i 2 {1 . . .K}, JXi = �iXi

Let us prove that all eigenvalues are in the interval [0, 1].
Suppose for a contradiction that one eigenvalue � is strictly
negative. Let the associated eigenvector be:

X = [x1, x2, . . . , xK]T

The i-th component of the vector JX is:

[JX]i = Sixi � Si

KX

k=1

xkSk

= Sixi � SihX,Si

where h·, ·i is the standard inner product.
Since X is an eigenvector we have,

JX = �X

So 8 i,

Sixi � SihX,Si = �xi

xi(Si � �) = SihX,Si

Since X 6= 0, 9 i0 such that xi0 6= 0. Furthermore, � is
strictly negative so:

xi0(Si0 � �) = Si0hX,Si 6= 0

Therefore, the inner product on the right hand side is
non-zero.

In addition, � < 0 implies that Si � � > Si > 0 so
8 i, xi and hX,Si have the same sign. There are two cases
left.

If hX,Si > 0, then 8 i, xi > 0 and:

xi(Si � �) > xiSi

SihX,Si > xiSi

By summing on all i we obtain:

KX

i=1

SihX,Si >
KX

i=1

xiSi

hX,Si
KX

i=1

Si > hX,Si

hX,Si > hX,Si

Which is an absurdity.

If hX,Si < 0, then 8 i, xi < 0 and:

xi(Si � �) < xiSi

SihX,Si < xiSi

The same summation and reasoning yields an absur-
dity. We just proved that all the eigenvalues of J are non-
negative.

Lastly, the trace of the Jacobian matrix tr(J) equals the
sum of all eigenvalues. Computing the trace yields:

tr(J) =
KX

i=1

�i =
KX

i=1

Si(1� Si)

=
KX

i=1

Si �
KX

i=1

S2
i

= 1�
KX

i=1

S2
i < 1

Since �i � 0 and
PK

i=1 �i < 1, all eigenvalues must be
in the interval [0, 1], which concludes the proof.

Lemma 2. In the same setting as for Lemma 1, if J is the
Jacobian matrix @S

@s then for any vector Z we have:

kJZk  kZk

Proof. Let �1,�2, . . . ,�K be the eigenvalues of J and
X1, X2, . . . , XK be the associated eigenvectors. We can
decompose Z with the orthonormal eigenvector basis:

Z =
KX

i=1

↵iXi

Computing the product JZ yields:

JZ =
KX

i=1

�i↵iXi

The norm of the product is:

kJZk = (JZ)T (JZ) =
KX

i=1

�2
i↵

2
i


KX

i=1

↵2
i

because 8 i, |�i|  1 (see Lemma 1). Since the eigenvector
basis is orthonormal we have

kJZk 
KX

i=1

↵2
i = kZk

Lemma 3. Let S(x) and V(x) be the softmax output of two
differentiable functions (e.g. neural networks) on an input
x, with respective logits s(x) and v(x). When S converges
to V , then @S

@s converges to @V
@v .

Proof. Recall that

@S
@s

=

2

6664

S1(1� S1) �S1S2 . . . �S1SK

�S1S2 S2(1� S2) . . . �S2SK
...

...
...

�S1SK �S2SK . . . SK(1� SK)

3

7775

If Vi(x)� Si(x) = ✏i(x), then:

Si(1� Si) = (Vi + ✏i)(1� Vi � ✏i)

= Vi(1� Vi) + ✏i(1� Vi)� ✏2i
= Vi(1� Vi) + o(1)

and

�SiSj = �(Vi + ✏i)(Vj + ✏j)

= �ViVj � Vi✏j � Vj✏i � ✏i✏j

= �ViVj + o(1)

Therefore, we can write:

@S
@s

=
@V
@v

+ ✏̄(x)

where ✏̄(x) converges to the null matrix as S converges
to V . In other words we can write:

@S
@s

⇡
S!V

@V
@v

D.2. Justification of the hypothesis.
Hypothesis 1 states that for two differentiable functions

with softmax output S and V , and respective logits s and v,
the gradients of the KL divergence loss LKL with respect to
the input should be small compared to the gradients of the
`1 norm loss L`1 as S converges to V . 8x 2 [�1, 1]d:

krxLKL(x)k ⌧
S!V

krxL`1(x)k

Proof. First, we note that:

KX

i=1

Si = 1

implies

KX

i=1

@Si

@x
= 0

And the same holds for V because both are probability
distributions.

Then we compute the gradients for both loss functions:

For the `1 norm loss:

rxL`1(x) =
KX

i=1

sign(vi � si)

✓
@vi
@x

� @si
@x

◆

For the KL divergence loss:

rxLKL(x) =
KX

i=1

@Vi

@x
logVi + 1

@Vi

@x
� @Vi

@x
logSi �

@Si

@x

Vi

Si

=
KX

i=1

@Vi

@x
+

KX

i=1

@Vi

@x
log

Vi

Si
� @Si

@x

Vi

Si

=
KX

i=1

@Vi

@x
log

Vi

Si
� @Si

@x

Vi

Si

When S converges to V , we can write

Vi(x) = Si(x)(1 + �i(x))

where �i(x) !
S!V

0.

Since log 1 + x ⇡ x when x is close to 0 we can write:

rxLKL(x) =
KX

i=1

@Vi

@x
log

Vi

Si
� @Si

@x

Vi

Si

⇡
KX

i=1

@Vi

@x
�i �

@Si

@x
(1 + �i)

⇡
KX

i=1

�i

✓
@Vi

@x
� @Si

@x

◆
+

KX

i=1

@Si

@x

⇡
KX

i=1

�i

✓
@Vi

@x
� @Si

@x

◆

⇡
KX

i=1

�i
@V
@v

✓
@vi
@x

� @si
@x

◆
(Lemma 3)

⇡ @V
@v

KX

i=1

�i

✓
@vi
@x

� @si
@x

◆

Using Lemma 2, the norm is upper bounded by:

krxLKL(x)k 

�����

KX

i=1

�i

✓
@vi
@x

� @si
@x

◆����� (10)

For the `1 norm, however, the norm is:

krxL`1(x)k =

�����

KX

i=1

sign(vi � si)

✓
@vi
@x

� @si
@x

◆����� (11)

From equation 10, we can observe that each term is neg-
ligible compared to its counterpart in equation 11: for all i
we have:

�����i
✓
@vi
@x

� @si
@x

◆����  ✏

����

✓
@vi
@x

� @si
@x

◆����

And also 8i:

����sign(vi � si)

✓
@vi
@x

� @si
@x

◆���� =

����

✓
@vi
@x

� @si
@x

◆����

Therefore, by summing these terms on the index i we can
expect the KL divergence gradient to be small in magnitude
compared to those of the `1 norm. However, it does not
seem possible to prove this result rigorously without further
assumptions on the data distribution or the mode of conver-
gence of S .

