
A. Implementation Details

We describe here the architectures, hyperparameters,
and other implementation details used in our experi-
ments.

A.1. Class Incremental Learning

CIFAR-100 [19] is a medium-scale dataset widely
used for supervised classification. It contains 100 di-
verse classes that can grouped into 20 superclasses. We
leverage the CIFAR-100 dataset for the class incremen-
tal learning setup. We perform experiments in three
settings: CIFAR-100/10 which contains 10 task of 10
classes each, CIFAR-100/20 which contains 20 task of
5 classes each and CIFAR-100/5 which contains 5 task
of 20 class each. CIFAR-100/20 tests the model’s abil-
ity to resist catastrophic forgetting for a large number
of task, while CIFAR-100/5 tests the model’s ability
when each task contains more classes. Interestingly, we
observe that many models from the literature showing
good results for a small number of tasks perform badly
for a larger number of tasks. Thus, we find a large
number of tasks to be a more reliable setting to test a
model’s continual learning ability.

We use the ResNet-18 [11] architecture for all ex-
periments on the CIFAR dataset. ResNet-18 contains
11.69M parameters across 18 layers. The proposed
Efficient Feature Transformation (EFT) module can
be applied in two ways: i) Serial adaptation and ii)
parallel adaptation (see Section 2.1.3). The added se-
rial adapter on ResNet-18 architecture is shown in the
Figure 6 (top).

We use the SGD optimizer for all experiments with
a weight decay of 0.005. The ResNet-18 architecture
is trained for 250 epochs for the first task and 200
epochs for subsequent tasks, as forward transfer from
the first task leads to quicker convergence. We train
the first task with an initial learning rate of 0.01, with
0.1× learning rate decay at epochs 100, 150, and 200.
For the second task onward, the same initial learning
and decay rate are used, with decay steps occurring
at epochs 70, 120 and 150. In all our experiments
(CIFAR-100/10, CIFAR-100/20 and CIFAR-100/5), we
set λ = 0.05. For hyperparameter tuning, 10% data was
held out as validation data; for final training, we merge
the training data and validation data. In Equation 4,
γ = 0 indicates that the 1 × 1 filters are not used for
the EFT transformation. We show a setting with such
a case in Tables 6 and 8. In the class incremental
learning scenario, task IDs are available during training,
but they must be inferred at test time to determine the
corresponding τt. During training, only samples of task
t are present, while at test time, test samples may come
from any of tasks 1 to t.

A.2. Task Incremental Learning

We perform experiments in the task incremental
learning scenario on medium- and large-scale datasets
with two standard architectures: VGG-16 [47] and
AlexNet [20].

ImageNet-1K The ImageNet-1K [6] classification
dataset contains 1000 classes based on the WordNet [33]
hierarchy. In the continual learning setup, 1000 classes
are divided into 10 tasks of 100 classes each. We use
the SGD optimizer to optimize an AlexNet architecture.
The model is trained for 90 epochs for ImageNet with
a weight decay of 0.0005 for the first task and a weight
decay of 0.00005 for subsequent tasks. An initial learn-
ing rate of 0.0001 is used with a step decay of 0.5× at
epochs 40, 60 and 80. EFT layers are appended after
each layer.

Tiny-ImageNet-200 The Tiny-ImageNet-200
dataset is a subset of the ImageNet dataset and
contains 200 classes at downsampled resolution. For
continual learning, these 200 classes are divided into
10 tasks with 20 classes each. Since Tiny ImageNet
has a lower resolution, the last maxpool layer and
the last three convolutional layers from the feature
extractor are removed from the standard VGG-16
architecture [30]. The VGG-16 model is trained for
160 epochs with an initial learning rate of 0.01 and a
weight decay of 0.0005, for all tasks. The learning rate
is decayed by a factor of 0.1× at epochs 70, 100, and
120. EFT layers are appended as shown in Figure 6.

A.3. VGG-16 for Heterogeneous Datasets

Many previous approaches evaluate the model’s per-
formance in homogeneous settings: tasks strongly re-
semble the preceding ones. We evaluate the model
on heterogeneous datasets, where later tasks are very
different from previous ones, and the number of
classes may change between tasks. In this challeng-
ing setup, we use the VGG-16 architecture with batch-
norm to learn CIFAR-10, SVHN, and CIFAR-100 in
sequence. We show results for two different task orders:
CIFAR-100→CIFAR-10→SVHN and SVHN→CIFAR-
10→CIFAR-100. We report the results in Table 3 as the
final performance of the model on each of the datasets
at the conclusion of the task sequence. The VGG-16
architecture is trained for 200 epochs with an initial
learning rate of 0.01 and a weight decay of 0.0005. A
learning rate decay of 0.1× is used at steps 100, 150,
and 170.

A.4. Parallel Adaptation

An alternative parallel adaptation strategy is pro-
posed in Section 2.1.3. We show results for the parallel

12



Figure 6. Overview of inserted transformations for ResNet-18. The added EFT layers in each architecture used for continual
learning are shown in green. Except for the EFTs, all parameters remain unchanged between tasks.

adaptation strategy in Table 8. We observe that par-
allel adaptation with EFTs results in slightly inferior
performance compared to serial adaptation. Note that
for both parallel and serial adaptation, we use the same
optimizer, learning rate, learning rate decay, and weight
decay. Please refer to Section A.1 for more details.

A.5. StackGAN-v2 for Generative Modeling

Continual learning in generative models (e.g., GANs)
is a challenging problem rarely explored by recent liter-
ature. Existing methods tend to rely on replay-based
approaches. In contrast, we use an expansion-based
method to learn to generate successive datasets in a
continual fashion. Specifically, we use StackGAN-v2 [64]
as the base network and use EFT layers to continually
expand the architecture for each novel task. We append
EFT layers after each convolutional layer (serial adap-
tation) in both the generator and the discriminator,
before batchnorm and ReLU activations are applied,
resulting in 4.8% extra parameters per dataset. We use
the default StackGAN-v2 hyperparameter values for
learning rate and the number of epochs.

B. Others Comparisons

The model architectures used for continual learning
tend to vary from paper to paper, so we did our best to
compare our proposed approach with recent baselines in
a fair, consistent setting. However, other papers occa-
sionally report results with other setups. For example,
continual learning performance on CIFAR is occasion-
ally reported with CIFAR-10 being the base dataset,

Figure 7. Comparison of the proposed model on the ResNet-
32 architecture on the CIFAR10-CIFAR100 dataset.

with 5 subsequent tasks of 10 classes drawn from the
CIFAR-100 dataset. For this setting, we follow prior
work in using ResNet-32 [11], an architecture with a
smaller number of parameters and FLOPs commonly
used for CIFAR. We compare our proposed approach
with the recent works HNet [51] and CCLL [48] in this
setting. The results are shown in Figure 7. We use the
same training procedure as discussed we did with the
ResNet-18 architecture. We see stronger results with
our EFT approach.

ResNet-18/3 [62], a standard ResNet-18 but with a
third of the filters per layer, is another widely used ar-
chitecture for continual learning. We compare our EFTs
with the recently proposed SupSup [54] and BatchE [53]
on CIFAR-100/20 in the task incremental setting, show-
ing the results in Table 9. Again, we observe the pro-

13



Table 8. Average accuracy on CIFAR-100 in class incremental learning setting when trained on 10 tasks sequentially.

Dataset / #Tasks Methods 1 2 3 4 5 6 7 8 9 Final

CIFAR-100/10

Finetune 88.5 47.1 32.1 24.9 20.3 17.5 15.4 13.5 12.5 11.4
FixedRep 88.5 45.9 30.1 22.4 17.7 15.2 12.3 11.1 9.8 8.8
LwF [25] 88.5 70.1 54.8 45.7 39.4 36.3 31.4 28.9 25.5 23.9
EWC [18] 88.5 52.4 48.6 38.4 31.1 26.4 21.6 19.9 18.8 16.4
EWC+SDC [61] 88.5 78.8 75.8 73.1 71.5 60.7 53.9 43.5 29.5 19.3
SI [62] 88.5 52.9 40.7 33.6 31.8 29.4 27.5 25.6 24.7 23.3
MAS [1] 88.5 42.1 36.4 35.1 32.5 25.7 21.0 19.2 17.7 15.4
RWalk [2] 88.5 55.1 40.7 32.1 29.2 25.8 23.0 20.7 19.5 17.9
DMC [65] 88.5 76.3 67.5 62.4 57.3 52.7 48.7 43.9 40.1 36.2

EFT-a4b0 (+1.7%) 90.3 73.9 65.9 59.0 54.6 50.6 48.4 45.6 43.3 41.2
EFT-a4b8 (+2.0%) 90.3 73.9 65.9 59.0 54.6 50.6 48.4 45.6 43.3 41.5
EFT-a8b16 (+3.9%) 90.3 74.2 66.5 60.4 55.8 51.5 49.5 46.7 44.7 42.7

posed model shows significant improvements compared
to the baseline model.

Entry Avg Acc@1

Upper Bound 91.62 ± 0.89
SupSup (GG) [54] 86.45 ± 0.61
SupSup (GG) Transfer [54] 88.52 ± 0.85
BatchE (GG) [53] 79.75 ± 1.00
Separate Heads 70.60 ± 1.40

EFT a4b0(+5.2%) 89.25 ± 0.31
EFT a5b0(+6.7%) 90.17 ± 0.47

Table 9. Task incremental learning accuracy on CIFAR-
100/20 with the ResNet-18/3 [62] architecture.

C. Selection of Hyperparameter a and b

The choice of the hyperparameters a and b control
both the model’s representational power per task, as
well as the growth in parameters and FLOPs. This
leads to a trade-off: increasing the value of a and b
will increase the model’s performance at the cost of
higher computation and memory (refer to Table-6 for
ablation). Optimal values depend on the situation and
can vary based on architecture. We observe that for
ResNet [11] and VGG [47], we can use lower values a
and b, leading to a parameter growth of 2-4%, while for
the AlexNet [20] architecture, higher values of a and b
only lead to 0.6% growth, as a significant proportion of
the model parameters are in the fully connected layer.
Using lower hyperparameter values for AlexNet results
in a very small number of parameters per task, making
it difficult for the model to adapt to novel tasks. Addi-
tionally, the proposed EFT for fully connected layers
only adds a diagonal matrix for continual adaption,
which adds only a negligible number of parameters.

We observe that architectures with more parameters
in fully connected layers (especially AlexNet) have a
harder time adapting features with just diagonal ma-
trices. Therefore, we find it advantageous to increase
the number of convolutional layer parameters. We can
observe this in Table 2 for the AlexNet architecture.

14


