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Module Layer type K Sample rate MLP width

Set conv layer for PC0

1
and PC0

2
32 0.25 [8,8,16]

Set conv layer for PC1

1
and PC1

2
32 0.5 [16,16,32]

Set conv layer for PC2

1
and PC2

2
16 0.25 [32,32,64]

Siamese Point

Feature Pyramid

Set conv layer for PC3

1
and PC3

2
16 0.25 [64,64,128]

Attentive Cost Volume

(on the penultimate level)
Attentive cost volume for Ecoarse 4, 32 1 [128,64,64], [128,64]

Set conv layer for E3 16 0.25 [128,64,64]

Shared MLP for M3 — 1 [128,64]

FC for q3, FC for t3 — 1 [4], [3]

Generation of Initial

Embedding Mask and Pose

Attentive cost volume for RE2 4, 6 1 [128,64,64], [128,64]

Set upconv for CE2 8 4 [128,64], [64]

Shared MLP for E2 — 1 [128,64]

Set upconv for CM2 8 4 [128,64], [64]

Shared MLP for M2 — 1 [128,64]

Pose Warp-Refinement

FC for q2, FC for t2 — 1 [4], [3]

Attentive cost volume for RE1 4, 6 1 [128,64,64], [128,64]

Set upconv for CE1 8 4 [128,64], [64]

Shared MLP for E1 — 1 [128,64]

Set upconv for CM1 8 4 [128,64], [64]

Shared MLP for M1 — 1 [128,64]

Pose Warp-Refinement

FC for q1, FC for t1 — 1 [4], [3]

Attentive cost volume for RE0 4, 6 1 [128,64,64], [128,64]

Set upconv for CE0 8 4 [128,64], [64]

Shared MLP for E0 — 1 [128,64]

Set upconv for CM0 8 4 [128,64], [64]

Shared MLP for M0 — 1 [128,64]

Pose Warp-Refinement

FC for q0, FC for t0 — 1 [4], [3]

Iterative Pose

Warp-Refinement

Table 1: Detailed network parameters in PWCLO-Net. K points are selected in the K Nearest Neighbors (KNN) of set

conv layer, set upconv layer, and attentive cost volume layer. Set conv layer uses the Farthest Point Sampling (FPS) to obtain

the sampling points, and the sampling rate is less than 1. For the set upconv layer, skip connections are used to propagate the

sparse features to dense features, and the sampling rate is larger than 1. MLP width means the number of output channels for

each layer of MLP. The variables in the table are defined the same as the main manuscript.

1. Overview

In this supplementary material, we provide detailed net-

work parameters and data augmentation parameters in Sec. 2.

Sec. 3 contains the comparison experiments on removing

and reserving the ground mentioned in the main manuscript.

More ablation studies are presented in Sec. 4 to show the ef-

fectiveness of the design details of our model. Sec. 5 shows
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00∗ 01∗ 02∗ 03∗ 04∗ 05∗ 06∗ 07 08 09 10 Mean on 07-10
Method

trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

Ours (removing ground less than 0.55m in height) 0.78 0.42 0.67 0.23 0.86 0.41 0.76 0.44 0.37 0.40 0.45 0.27 0.27 0.22 0.60 0.44 1.26 0.55 0.79 0.35 1.69 0.62 1.085 0.490

Ours (removing ground less than 0.3m in height) 0.78 0.36 0.51 0.21 0.76 0.29 0.58 0.58 0.30 0.22 0.43 0.27 0.25 0.14 0.78 0.46 1.45 0.67 0.71 0.34 2.38 0.90 1.330 0.593

Ours (reserving ground) 0.68 0.28 0.68 0.18 0.74 0.23 0.58 0.41 0.38 0.08 0.40 0.19 0.28 0.13 0.60 0.38 1.13 0.35 0.86 0.45 1.18 0.74 0.943 0.480

Table 2: The LiDAR odometry experiment results of our model removing the ground less than different heights and reserving

the ground on KITTI odometry dataset [1].

00∗ 01∗ 02∗ 03∗ 04∗ 05∗ 06∗ 07 08 09 10 Mean on 07-10
Method

trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

(a) Ours (with ℓ2-norm for t and ℓ2-norm for q) 0.75 0.36 0.46 0.15 0.77 0.37 0.93 0.68 0.37 0.27 0.62 0.29 0.35 0.19 0.84 0.48 1.35 0.66 1.03 0.34 1.29 0.55 1.128 0.508

Ours (with ℓ1-norm for t and ℓ1-norm for q) 0.78 0.46 0.70 0.43 0.78 0.43 0.74 0.49 0.38 0.55 0.57 0.33 0.35 0.23 0.68 0.54 1.48 0.70 1.04 0.50 1.49 0.57 1.173 0.578

Ours (selected, with ℓ1-norm for t and ℓ2-norm for q) 0.78 0.42 0.67 0.23 0.86 0.41 0.76 0.44 0.37 0.40 0.45 0.27 0.27 0.22 0.60 0.44 1.26 0.55 0.79 0.35 1.69 0.62 1.085 0.490

(b) Ours (one Dimensional Mask) 0.84 0.56 0.56 0.24 0.94 0.42 0.74 0.70 0.29 0.43 0.73 0.40 0.37 0.21 0.87 0.72 1.58 0.66 0.98 0.46 1.89 0.99 1.330 0.708

Ours (selected, Multidimensional Mask) 0.78 0.42 0.67 0.23 0.86 0.41 0.76 0.44 0.37 0.40 0.45 0.27 0.27 0.22 0.60 0.44 1.26 0.55 0.79 0.35 1.69 0.62 1.085 0.490

Table 3: The ablation study results of LiDAR odometry on KITTI odometry dataset [1].

more visual results on successful and failing cases. Sec. 6

shows more visual trajectory results on KITTI odometry

dataset [1]. We give a video demo in Sec. 7.

2. Network Details

2.1. Network Parameters

In the training and evaluation process, the input point

number N is set to be 8192.

Each layer in MLP contains the ReLU activation function,

except for the FC layer. For shared MLP, 1 × 1 convolu-

tion with 1 stride is the implement manner. The detailed

layer parameters including K values in K Nearest Neigh-

bors (KNN), the sample rate of each sampling layer, and

each linear layer width in MLP are described in Table 1.

2.2. Data Augmentation Parameters

We augment the training dataset by the augmentation

matrix Taug , generated by the rotation matrix Raug and the

translation vector taug. Varied values of yaw-pitch-roll Eu-

ler angles are generated by Gaussian distribution around 0◦.

Due to the motion characteristics of the car, the standard

deviation is different for each angle and each direction of the

translation vector. We set the standard deviations are 0.01◦,

0.05◦ and 0.01◦ for the yaw-pitch-roll Euler angles respec-

tively. We set the standard deviations are 0.1m, 0.05m, and

0.5m for the XYZ of the translation respectively. In these

Gaussian distributions, we select the data in the range of

2 times standard deviation around the mean value for data

augmentation.

The composed Taug from Raug and taug is then used to

augment the PC1 to obtain new point clouds PC1,aug .

3. Comparison Experiment on Removing and

Reserving Ground

To speed up the data reading and speed up the training,

the ground less than 0.55m in height is removed in the main

manuscript. We also did the ablation study on removing the

ground less than different heights, including 0.55m (in the

main manuscript) and 0.3m (like the scene flow estimation

in [3, 2]) and reserving the ground. The comparison results

are listed in Table 2. For our model, the performances of

removing and reserving the ground are similar. On average,

the performance of reserving the ground is a little better due

to the plane characteristics of the ground.

4. Additional Ablation Experiments

In our main manuscript, we remove or change compo-

nents of our model to do the ablation studies and confirm

the contributions of the key components. In this section,

we change some other design details of our model to do

the ablation studies on the KITTI odometry dataset [1]. We

analyze the effectiveness of these details in our network. The

training/testing details are the same as the ablation studies

in the main manuscript.

Comparisons with Wang et al. [2] Wang et al. [2] is an

end-to-end learnable 3D scene flow estimation method based

on PWC structure. However, Wang et al. [2] only estimate

the motion of each point. Thus, to generate a transformation

of two point clouds, it needs further calculation, which is

influenced a lot by the presence of dynamic obstacles and

other outliers. So using Wang et al. [2] in odometry tasks

will lead to performance degradation. Unlike Wang et al.

[2], we creatively design optimizable embedding masks and

pose refinement modules to address the above challenges

and successfully solve the odometry problem. The results in

Table 4 show the necessity and superior performance of our

end-to-end trainable LiDRA odometry.

ℓ1-norm or ℓ2-norm in Loss Function: Different from the

LO-Net, we use the ℓ1-norm for the translation t and the ℓ2-

norm for the quaternion q. We also test the ℓ2-norm both for

the translation t and the quaternion q, and the ℓ1-norm both

for the translation t and the quaternion q. The experiment

results are listed in Table 3(a). The results show that ours

with ℓ1-norm for t and ℓ2-norm for q has the best average

performance in the three.
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07 08 09 10 Mean on 07-10
Method

trel rrel trel rrel trel rrel trel rrel trel rrel
Wang et al. [2] 14.24 8.15 24.59 9.64 21.43 8.51 19.03 8.29 19.823 8.648

Wang et al. [2]-Refine 2.92 1.82 4.13 1.60 3.05 1.11 3.62 1.78 3.430 1.578

Ours 0.60 0.44 1.26 0.55 0.79 0.35 1.69 0.62 1.085 0.490

Table 4: The LiDAR odometry results on KITTI test seq. 07-10. Wang et al. [2] is trained on Flything3D scene flow dataset.

Wang et al. [2]-Refine is trained on KITTI seq. 00-06 again after being trained on Flything3D dataset. This refined-training

process generates the ground truth 3D scene flow from ground truth pose transformation based on the assumption that all

points are static in the frame. Ours are only trained on KITTI seq. 00-06.

αl (l = 1, 2, 3, 4) 1.6, 0.8, 0.4, 0.2 0.2, 0.4, 0.8, 1.6 1.6, 0.4, 0.1, 0.025 0.025, 0.1, 0.4, 1.6 1, 1, 1, 1 Learnable

Mean trel on 07-10 1.085 1.130 1.220 1.150 1.228 1.255

Mean rrel on 07-10 0.490 0.558 0.573 0.638 0.598 0.588

Table 5: The results adopting different αl on KITTI test seq. 07-10. Models are traned on KITTI seq. 00-06.

αl in Loss Function: αl represents the weight of each level

in the loss function. Table 5 shows changing αl has little

effect on results. A learnable αl is feasible, but has lower

performance.

Multidimensional Mask or One Dimensional Mask: In

our submitted paper, the mask has the same feature dimen-

sion as the embedding features, which means there is a differ-

ent mask for each feature dimension of embedding features.

(We use the mean value of multidimensional mask to obtain

the visualization of mask in the main manuscript.) In this sec-

tion, we test the difference between using a one-dimensional

mask and our choice in the main manuscript.

Original mask generation process: The embedding fea-

tures E = {ei|ei ∈ R
c}ni=1

and the features F1 of PC1 are

input to a shared MLP followed by the softmax operation

along the point dimension to obtain the trainable embedding

mask M = {mi|mi ∈ R
c}ni=1

, as follows (This is for ini-

tial mask generation. For embedding mask refinement, the

coarse mask from last level is also used.):

M = softmax(sharedMLP (E ⊕ F1)). (1)

We change the dimension of the mask by adding a mean-

pooling along the feature dimension to the middle of the

equation and obtain the one dimension mask:

M = softmax(meanpooling(sharedMLP (E ⊕ F1))).
(2)

The ablation study results are listed in Table 3(b). The

results show that our multidimensional mask has better per-

formance. We believe this is because different dimensions

of features describe different characteristics. For local corre-

spondence of different objects, the features of each dimen-

sion have different contribution weights.

5. Pose Transformation Visualization of Two

Consecutive frames

We visualize the consecutive frames to present some suc-

cessful and failing cases of pose estimation by registering

the two point clouds through the ground truth pose and our

estimated pose. We register the PC2 to the first frame in this

supplementary material.

The registered PCgt,trans is obtained by:

PCgt,trans = TgtPC2 (3)

where Tgt is the ground truth pose transfrmation between

PC1 and PC2. The registered PCours,trans is obtained by:

PCours,trans = ToursPC2 (4)

where Tours is the estimated pose transfrmation between

PC1 and PC2.

The effect of registration is visulized in Figs. 2 and 1.

In Fig. 2, the static objects all have right correspondences

between registered PCours,trans and PC2. The dynamic

objects between PCours,trans and PC2 are not correspon-

dences because of the ego-motion of dynamic objects. It is

noted that there is one case in the last line of Fig. 2, where

the ground truth of pose is wrong while ours has the right

correspondence.

In Fig. 1, some highly dynamic scenarios are visual-

ized to see the robustness of our model for dynamic ob-

jects. In Fig. 1(b) and (c), we visualized two images in

sequences 11-21 without ground truth because there are few

highly dynamic scenarios in sequences 00-10 with ground

truth. In Fig. 1(a) and (b), when there are many dynamic

cars, ours also have right correspondence between registered

PCours,trans and PC2, which can be seen by zooming in

on static objects. There is one case in Fig. 1(c), where ours

has a little error because of tons of dynamic objects and few

static, rigid objects. Overall, the visualization of registration

in many scenes demonstrates the effectiveness of our model

for dynamics.

6. More Trajectory Results on KITTI Odome-

try Dataset

We list all visualized trajectory results on sequences 00-

10 of KITTI odometry dataset [1] with the ground truth in
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The Image Corresponding to PC1 The Image Corresponding to PC2

PC1 , PC2 , PCgt,trans PC1 , PC2 , PCours,trans

(a) Sequence 04 frames 257-258

The Image Corresponding to PC1 The Image Corresponding to PC2

PC1 , PC2 , PCours,trans

(b) Sequence 21 frames 841-842

The Image Corresponding to PC1 The Image Corresponding to PC2

PC1 , PC2 , PCours,trans

(c) Sequence 22 frame 24-25

Figure 1: Cases to analyze the influence of dynamic ob-

jects on odometry estimation on KITTI odometry dataset [1].

The image corresponding to PC1, the image correspond-

ing to PC2, the point clouds visulaization of PC1 (gree

color), PC2 (red color), PCgt,trans (purple color), and

PCours,trans (blue color) are visualized. We zoom in on

some static details of the point clouds to see the registration

effect as there are many dynamic objects in the scenes. The

highly dynamic scenes in (b) and (c) have no ground truth.

Figs. 3 and 4 excluding the results that have been listed

in our submitted paper. The results demonstrate that our

method outperforms the LOAM without mapping and even

outperforms full LOAM on most sequences of the KITTI

odometry dataset [1].

7. Video Demo

We present a video demo, demo.mp4, on sequence 07 of

the KITTI odometry dataset [1] with the ground truth. In this

video, the trajectory results and the effect of the embedding

mask are prseneted.
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(b) Seq. 01 

Frame 14-15

(d) Seq. 02 

Frame 54-55

(c) Seq. 02 

Frame 12-13

(a) Seq. 00 

Frame 582-583

(e) Seq. 03 

Frame 154-155

(f) Seq. 04 

Frame 228-229

(g) Seq. 05 

Frame 1980-1981

(h) Seq. 06 

Frame 309-310

(i) Seq. 07 

Frame 26-27

(j) Seq. 09  

Frame 232-233

(k) Seq. 08  

Frame 49-50

The Image Corresponding to PC1 The Image Corresponding to PC2 PC1 , PC2 , PCgt,trans PC1 , PC2 , PCours,trans

Figure 2: Some sucessful cases of odometry estimation on KITTI odometry dataset [1] with ground truth. The image

corresponding to PC1, the image corresponding to PC2, the point clouds visulaization of PC1 (gree color), PC2 (red color),

PCgt,trans (purple color), and PCours,trans (blue color) are visualized. The ground truth pose visualized in the last line has

error, while ours has a good effect of registration.
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(a) 2D Trajectory Plots of Seq. 00 (b) 2D Trajectory Plots of Seq. 02

(c) 2D Trajectory Plots of Seq. 03 (d) 2D Trajectory Plots of Seq. 04

Figure 3: Trajectory results of LOAM and ours on KITTI training sequences 00, 02, 03, and 04 with ground truth.
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(a) 2D Trajectory Plots of Seq. 05 (b) 2D Trajectory Plots of Seq. 08

(c) 2D Trajectory Plots of Seq. 09 (d) 2D Trajectory Plots of Seq. 10

Figure 4: Trajectory results of LOAM and ours on KITTI training sequence 05, and validation sequences 08, 09, and 10 with

ground truth.
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