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In this supplementary material, we provide more details
and experimental results to complement the manuscript.

A. Data Augmentation for LiDAR Points
For LiDAR points P in the scene, we transform the point

p = (x, y, z) into the LiDAR spherical coordinate system as
(r, θ, φ) by the following equations:

r =
√
x2 + y2 + z2, θ = arccos(

z

r
), φ = arctan(

y

x
)

(1)
Given an object and its ground-truth box with eight cor-

ners C = {(rk, θk, φk), k = 1, 2, ..., 8}, the perspective V
of an object is represented by the range of θ and φ, where

V = ([θmin, θmax], [φmin, φmax])

θmin, θmax = min(θk),max(θk), k = 1, 2, ..., 8

φmin, φmax = min(φk),max(φk), k = 1, 2, ..., 8

(2)

For a LiDAR point p = (ri, θi, φi) ∈ P , if θi ∈
[θmin, θmax] and φi ∈ [φmin, φmax], we denote the point
p in the perspective of this object.

When pasting virtual objects into current training scene,
we restrict the perspective overlap between objects. Specif-
ically, we denote the perspective area of an object as ∆θ ×
∆φ, where ∆θ = θmax − θmin and ∆φ = φmax − φmin.
For a candidate virtual object M , it will be pasted if its per-
spective IoU with any object N in current scene is within a
threshold T as illustrated in Equation 3. In experiments, we
set T to be 0.7.

VIoU =
Area(M ∩N)

Min(Area(M), Area(N))
≤ T (3)

B. Discussion of 2D Network.
In our PointAugmenting, we employ CNN features from

pretrained 2D detection networks as image representation
to fuse with LiDAR points for 3D object detection. In this
section, additional discussion about the choice and training
scheme of 2D network are provided.

Methods Pretrained 2D model Joint training mAP
CenterPoint - - 37.6

PointAugmenting - X 38.3
PointAugmenting X - 47.3
PointAugmenting X X 47.7

Table S1. Training schemes on the 2D network. Using pretrained
2D detection network and finetuning the 2D network (joint train-
ing) with the supervision of 3D labels achieve the best mAP.

Pretrained 2D network. Table S1 shows that the pre-
trained 2D model facilitates overall 3D detection accuracy.
This is due to the straightforward semantics provided for
point clouds. Without the pretrained model, image features
are implicitly learned from 3D labels from scratch, leading
to significant performance drop.

Joint training. Jointly training 2D and 3D networks to-
gether could achieve better results (+0.4% mAP) than
freezing the pretrained model. With the use of the supervi-
sion information from 3D labels, the 2D network generates
better image features, but this consumes larger memory and
longer time during training.

Pretrained ImageNet. During our experiments, we find
that a pretrained ImageNet classification network can also
boost 3D detection by providing semantic information. Due
to the domain gap between datasets and tasks, using the pre-
trained classification network yields a performance drop of
-2.1% in comparison with the detection counterpart on the
1/8 nuScenes dataset.

C. Additional Experimental Results
We visualize the qualitative results of our PointAug-

menting on the nuScenes and Waymo datasets. Figure S1
and Figure S2 show that our approach successfully detects
objects in the challenging scenes, where red boxes denote
ground truth and yellow boxes denote our predictions.
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Figure S1. Qualitative results on the nuScenes dataset. Red: Ground Truth. Yellow: Predictions by our PointAugmenting.
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Figure S2. Qualitative results on the Waymo dataset. Red: Ground Truth. Yellow: Predictions by our PointAugmenting.
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