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1. Analysis of S;; in Seesaw Loss

In this work, we propose Seesaw Loss to dynamically
re-balance gradients of positive and negative samples for
each category. Specifically, Seesaw Loss mitigates the over-
whelming gradients of negative samples imposed by a head
class 7 on a tail class j via decreasing the value of S;; in the
following formula,
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To further analyze the effects of adjusting the value of S;;,
we calculate the partial derivative of Eqn A1 with respect to
Sij as
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The value of the partial derivative in Eqn A2 is always pos-
itive. This indicates that the gradients of negative samples
imposed by class ¢ on class 7 will be reduced as the value of
S;; decreases.
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2. How Seesaw Loss works

Via re-balancing gradients of positive and negative sam-
ples, Mask R-CNN [7] w/ Seesaw Loss significantly outper-
forms Mask R-CNN [7] w/ Cross-Entropy Loss on LVIS [6]
dataset. Here, we conduct a quantitative analysis of the ef-
fectiveness of Seesaw Loss on re-balancing the gradients
of positive and negative samples for each category. Specifi-
cally, we adopt Mask R-CNN [7] with ResNet-101 [8] back-
bone and FPN [!1] as instance segmentation framework.
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Figure Al: The distribution of the ratio of cumulative gradi-
ents between positive and negative samples for each category with
Cross-Entropy Loss and Seesaw Loss, respectively. The categories
are sorted in descending order with respect to their instance num-
bers. In contrast to Cross-Entropy Loss, Seesaw Loss effectively
re-balances the gradients of positive and negative samples.

The Cross-Entropy Loss and Seesaw Loss are integrated
into the framework and trained with random sampler by 2x
schedule. We accumulate the gradients of positive and neg-
ative samples on predicted logit z; of each category ¢ during
the whole training procedure.

Figure Al shows the distribution of the ratio of cumu-
lative gradients between positive and negative samples for
each category in Mask R-CNN [7] with Cross-Entropy Loss
and Seesaw Loss, respectively. With Cross-Entropy Loss,
tail classes obtain heavily imbalanced gradients of positive
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Figure A2: Per-category performance (AP) comparison between different methods in Table 1 of the main text. Norm Mask

is not adopted for a fair comparison.

and negative samples during training. The overwhelming
gradients of negative samples lead to a biased learning pro-
cess for the classifier, which results in the low classification
accuracy on tail classes. On the contrary, Seesaw Loss ef-
fectively re-balances the gradients of positive and negative
samples across different categories. Consequently, Mask R-
CNN with Seesaw Loss achieves significant improvements
on instance segmentation performance as shown in Figure
1 and Table 1 in the main text.

3. Per-category Performance Comparison

In addition to the performance reported in Table 1 of the
main text, we further show the per-category performance
(AP) to verify the superiority of Seesaw Loss compared to
other loss functions. As shown in Figure A2, compared to
other loss functions (i.e., Cross Entropy Loss, Equalization

Loss [15], and Balanced Group Softmax [10]), Seesaw Loss
consistently achieves strong performance across categories
with different frequency on different frameworks (i.e. Mask
R-CNN [7], Cascade Mask R-CNN [1]) and samplers (i.e.,
random sampler, repeat factor sampler [6]).

4. LVIS Challenge 2020

Here we present the approach used in the entry of team
MMDet in the LVIS Challenge 2020. In our entry, we adopt
Seesaw Loss for long-tailed instance segmentation as de-
scribed in the main text. Seesaw Loss improves the strong
baseline by 6.9% AP on LVIS vl val split. Furthermore, we
propose HTC-Lite, a light-weight version of Hybrid Task
Cascade (HTC) [3] which replaces the semantic segmen-
tation branch with a global context encoder. With a sin-
gle model and without using external data and annotations
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Table Al: Step by step results of our entry on LVIS v1 [6] val split.

Modification Schedule AP AP, AP, APy A pboz
Mask R-CNN 2x 18.7 1.0 16.1 294 20.1

+ SyncBN 2x 189 (+0.2) | 0.7 16.0 30.3 | 20.2 (+0.1)
+ CARAFE Upsample 2x 19.4 (+0.5) | 0.7 16.5 309 | 20.4 (+0.2)
+ HTC-Lite 2x 219 (+2.5) | 1.1 19.8  33.5 | 23.6 (+3.2)
+ TSD 2x 235(+1.6) | 23 223 340 | 255(+1.9)
+ Mask scoring 2x 239(+04) | 2.8 224 350 | 25.6 (+0.1)
+ Training-time augmentaion 45e 26.5(+2.6) | 3.6 257 37.4 | 28.1(+2.5)
+ Stronger neck 45¢ 27.0(+0.5) | 3.5 258 38.6 | 29.1 (+1.0)
+ Stronger backbone 45e 299 (+2.9) | 42 294 41.8 | 32.1 (+3.0)
+ Seesaw Loss 45¢e 36.8 (+6.9) | 25.5 356 429 | 39.8 (+7.7)
+ Dual Head Classification 1x 37.3(+0.5) | 26.4 363 43.1 | 40.6 (+0.8)
+ Test-time augmentation - 38.8 (+1.5) | 26.4 38.3 449 | 41.5(+0.9)

Table A2: Comparison of different cascading instance segmen-
tation frameworks on LVIS v1 [6] dataset with repeat factor sam-
pler and 1x training schedule. HTC w/o semantic indicates HTC
without adopting the semantic segmentation branch since semantic
segmentation annotations are not available on LVIS v1 dataset.

Method AP |AP, AP. APy AP [fps

Cascade Mask R-CNN [1]]24.3]13.7 23.8 29.6| 27.2 (0.1
HTC w/o semantic [3] [24.8]14.5 24.1 30.2| 27.0 [0.1
HTC-Lite 25.5/15.0 25.4 30.3| 28.0 |2.8

except for standard ImageNet-1k classification dataset for
backbone pre-training, our entry achieves 38.92% AP on
the test-dev split of the LVIS v1 benchmark.

4.1. HTC-Lite

We propose HTC-Lite, a light-weight version of Hybrid
Task Cascade (HTC) [3], to accelerate the training and in-
ference speed while maintaining good performance. As
shown in Figure A3, the modifications are in two folds:
replacing the semantic segmentation branch with a global
context encoding branch and reducing mask heads.
Context Encoding Branch. Since semantic segmentation
annotations are not available for LVIS [6] dataset, we re-
place the semantic segmentation branch with a global con-
text encoder [20] which works as a multi-label classifica-

tion branch trained by a binary cross-entropy loss. The con-
text encoder applies convolution layers and a global average
pooling on the input feature map to obtain a feature vec-
tor. And an auxiliary fully connected (fc) layer is applied
on the feature vector to predict the categories existing in
the current image. By this approach, this feature vector en-
codes the global context information of the image. Then it
is added to the Rol features used by box heads and mask
heads to enrich their semantic information.

Reduced Mask Heads. To further reduce the cost of in-
stance segmentation, HTC-Lite only keeps the mask head
in the last stage, which also spares the original interleaved
information passing.

In Table A2, we compare the performance and inference
speed on LVIS vl [6] dataset of HTC-Lite with two main-
stream cascading instance segmentation frameworks, i.e.,
Cascade Mask R-CNN and HTC. The ResNet-50 with FPN
backbone, repeat factor sampler and 1x training schedule
are adopted in these methods. The semantic segmentation
branch in HTC [3] is removed since semantic segmentation
annotations are not available on LVIS v1 [6] dataset. We
evaluate the inference speed for each framework with a sin-
gle Tesla V100 GPU. The experimental results show that
HTC-Lite is not only much more efficient than its counter-
parts but also outperforms them.



4.2. Step by Step Results

We report the step-by-step results of our entry in LVIS
Challenge 2020 as shown in Table A1.
Baseline. The baseline model is Mask R-CNN [7] using
ResNet-50-FPN [1 1], trained with multi-scale training and
random data sampler by 2x schedule [4].
SyncBN. We use SyncBN [12,
heads.
CARAFE Upsample. CARAFE [
pling in the mask head.
HTC-Lite. We use HTC-Lite as described in Section 4.1 in
supplementary materials.
TSD. TSD [14] is used to replace the box heads in all three
stages in HTC-Lite.
Mask Scoring. We further use the mask IoU head [°] to
improve mask results.

] in the backbone and

] is used for upsam-

Training Time Augmentation. We train the model with
stronger augmentations with 45 epochs. The learning rate is
decreased by 0.1 at 30 and 40 epochs. We randomly resize
the image with its longer edge in a range of 768 to 1792
pixels. And then, we randomly crop the image to the size of
1280 x 1280 after adopting instaboost augmentation [5].

Stronger Neck. We replace the neck architecture with
an enhanced version of Feature Pyramid Grids (FPG) [2].
The enhanced FPG uses deformable convolution v2
(DCNv2) [22] after feature upsampling, and a downsampler
version of CARAFE [16, 17] for feature downsampling.

Stronger Backbone. We use ResNeSt-200 [21] with
DCNvV2 [22] as the backbone.

Seesaw Loss. We apply the proposed Seesaw Loss to clas-
sification branches of the TSD box head, in all cascading
stages. Furthermore, we remove the original progressive
constraint (PC) loss on classification branches in TSD.

Dual Head Classification. Inspired by [19, 18], we adopt
a dual-head classification policy to further boost the perfor-
mance. Specifically, after obtaining the model with Seesaw
Loss trained by a random sampler, we freeze all components
in the original model. Then we finetune a new classification
branch for each cascading stage on the fixed model using
repeat factor sampler [6] by 1x schedule. During inference,
the classification scores of original classification branches
and the scores of new classification branches are averaged
to get the final scores.

Test Time Augmentation. We adopt multi-scale testing
with horizontal flipping. Specifically, image scales are
1200, 1400, 1600, 1800, and 2000 pixels.

Final Performance on Test-dev. After adding the above-
mentioned components step by step, we finally achieve
38.8% AP on the val split and 38.92% AP on the fest-dev
split.
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