
Unsupervised Visual Representation Learning by Tracking Patches in Video
Supplementary Material

A. Evaluation Pipeline

In this section, we introduce the evaluation details when
transferring the pretrained models to the downstream tasks.
Action recognition We follow the common practice [4]
to construct an action recognition model. Specifically, we
adopt a CNN encoder to extract the spatial-temporal feature
from the raw video clip. The CNN encoder can be initial-
ized from the pretrained models of various proxy tasks, e.g.,
VCOP [3], 3DRot [1] or our CtP. The feature extracted by
the CNN encoder is averaged in both spatial and temporal
dimensions, which leads to a feature vector of size 512 (for
R3D-18 and R(2+1)D-18 in our work). We append a one-
layer linear classifier based on the averaged feature.

The entire action recognition model is finetuned on the
target datasets. The input video clip has a temporal cover-
age of 32 frames. For UCF-101 and HMDB-51 datasets,
we sample 16 frames with a temporal stride of 2. For
Something-Something dataset, we successively sample 32
frames since this dataset emphasizes more fine-grained tem-
poral relationships. The standard data augmentation strat-
egy is applied in the training period, including random crop-
ping, horizontal flip and color jitters. During inference
time, the video frames are resized to a spatial resolution
of 171 × 128, and we center crop the regions of shape
112 × 112. For each video, we temporal-uniformly pick
10 clips. The final classification decision of the video is
averaged by the prediction results of these clips.

The optimization lasts for 150 epochs with standard
SGD algorithms. The learning rate is started from 0.01 and
it is gradually decayed by a factor of 0.1 at 60th epoch and
120th epoch. The weight decay and the momentum value is
set to 5×10−4 and 0.9, respectively. After the optimization,
we adopt the model produced in the last epoch for evalua-
tion.
Video clip retrieval In the video clip retrieval task, the
pretrained CNN encoder is directly used without further
finetuning. We follow the same implementation as in VCOP
[3]. The output feature of the CNN encoder is transferred
to a fixed shape of 2 × 3 × 3 × 512 by an adaptive pooling
operation, where each dimension denotes the temporal size,
height, width and channels, respectively. For each video, we
uniformly sample 10 clips and use the averaged feature of

0 20 40 60 80 100 120 140
Training epoch

0

1

2

3

4

5

Tr
ai

ni
ng

 lo
ss

 @
 U

C
F-

tra
in

0.4

0.5

0.6

0.7

0.8

0.9

To
p-

1 
ac

c.
 @

 U
C

F-
va

l

Train from CtP
Train from scratch

Figure 1: Training loss curves and validation accuracy
curves on UCF-101 dataset. The training process of action
recognition task lasts for 150 epochs. We test the classifier
in every 10 epochs.

these 10 clips to represent the video-level feature. The co-
sine similarity between two different videos is considered
as the distance metric. If a test video shares the same class
label with one of its k-nearest training videos, it will be
viewed as a correct retrieval.

B. Analysis of Action Recognition

In this section, we have a closer look at the training pro-
cess of action recognition tasks. Generally, we consider two
configurations when building a classifier on the UCF-101
dataset: (1) initialization from the CtP-learned model or (2)
training from scratch. The training loss curve and test ac-
curacy of both settings are shown in Figure 1. Compared
with the baseline, our CtP pretraining enables a faster con-
vergence speed in the early epochs. More importantly, even
if both settings achieve close values of training losses in
the final epoch, our CtP-pretrained model is significantly
better than the baseline model in terms of validation accu-
racy. This is because our CtP game introduces motion pri-
ors about object movements, which helps the model quickly
capture the moving targets and prevent overfitting.

1



Table 1: Evaluation on the validation set of Kinetics-400.

Backbone Pretraining K400-val Acc. (%)
Top-1 Top-5

R3D-18 None 64.1 85.3
R3D-18 CtP 65.0 85.7

Table 2: Ablation analysis on the backbone stride in the
pretraining stage. The models are pretrained on the UCF-
101 dataset and transfer to the action recognition task.

Backbone Stride Top-1 Acc. (%)
UCF-101 HMDB-51

R3D-18 16 83.5 52.5
R3D-18 8 83.9 53.6

Table 3: Ablation analysis on the temporal squeezing oper-
ation. The models are pretrained on the UCF-101 dataset
and transfer to the action recognition task.

Backbone Squeeze? Top-1 Acc. (%)
UCF-101 HMDB-51

R3D-18 82.9 52.3
R3D-18 X 83.9 53.6

C. Evaluation on Kinetics Dataset
As suggested by the common practice, most of our

experiments are conducted on UCF-101 and HMDB-51
datasets. However, these two datasets are relatively small
(less than 10k videos). One may raise a natural concern,
whether the CtP pretraining can still improve the perfor-
mance when the downstream task has plenty of data. In
order to address the concern, in this section, we transfer
the CtP-pretrained model to the action recognition task on
Kinetics-400 dataset. It has about 220k labeled videos for
training and 18k videos for validation.

The experimental results are presented in Table 1. Our
CtP-pretrained model outperforms the baseline model by a
considerable margin. It proves that the downstream task on
the large-scale dataset can still benefit from the CtP pre-
training.

D. Analysis of Backbone Stride
In the pretraining stage, we introduce a slight modifica-

tion to the backbone CNN encoder. The spatial stride of
the last residual block is set to 1 instead of 2, i.e., the to-
tal spatial stride is decreased to 8. This strategy will lead
to a finer feature map in the spatial dimensions, which has
proven effective in object tracking literature. Note that the
architecture is only modified in the pretraining stage. We
reset the backbone is to the standard configuration for fair

#1 #6 #11 #16

Figure 2: Generated training examples.

evaluations in the downstream tasks. The ablation results
are presented in Table 2. It clearly shows that this modifica-
tion is helpful to video representation learning.

E. Analysis of Scaling Factors
When calculating the loss function, we apply four con-

stant scaling factors σ to the prediction targets. It is a
widely-used strategy in the area of object tracking and helps
to balance the penalties of different regression terms. We
provide the additional analysis on the choice of scaling fac-
tors, as shown in Table 4. The performance is rather stable
when the scaling factors are drawn from a reasonable range.

F. Analysis of Temporal Squeezing
In our framework, we squeeze the temporal dimension of

the extracted features before they are fed into the RoI align
module. This operation can aggregate the information of the
entire video and encourage the model to learn a more com-
pact feature representation. As shown in Table 3, the action
recognition results slightly degrade without this operation.

G. Details of Trajectory Synthesis
In this section, we present the details of trajectory syn-

thesis. Firstly, we determinate the bounding box location
in the starting frame, which is randomly picked within a
size range of [16, 64] and an aspect ration range of [1/2, 2].
Secondly, we choose several key frames (3 to 5 in our ex-
periments), and decide the bounding boxes in these key
frames. To avoid the vast change of the synthetic trajectory,
we add two constraints, namely speed constraint and scale
constraint. For the former one, we force the position dif-
ferences between the boxes in two neighbour key frames to
be less than 3∆T pixels, where ∆T is the difference of two

2



F
ra
m
es

P
re
tr
ai
n

R
a
n
d
o
m

F
ra
m
es

P
re
tr
ai
n

R
a
n
d
o
m

Figure 3: More visualization examples. The important pixels are highlighted by Guided GradCAM algorithms [2].

scaling factors (0.8/0.04) (0.8/0.08) (0.8/0.02) (1.0/0.05)
Cls. Acc. U101 83.9 83.3 83.6 83.2

(%) H51 53.6 52.9 55.0 54.8

Table 4: Ablation analysis on the impact of scaling factors.

Speed 1 3 5 15
U101 80.6 83.9 83.4 80.6
H51 48.6 53.6 54.0 49.3

Scale 0.010 0.025 0.040 0.100
U101 83.3 83.9 83.5 84.3
H51 54.3 53.6 53.2 54.2

Table 5: Ablation analysis on the patch speed and scaling
ratio (described in L543.). The blue columns denote the
default setting.

frame indexes. While for the scale constraint, the size ratio
should lie in a range of [exp(−0.025∆T ), exp(0.025∆T )].
Finally, the bounding boxes in the rest of frames are linearly
interpolated between two key frames. Once we have the tra-
jectory of bounding boxes, we can copy and paste the image
patch to fill this trajectory. In Fig. 2, we provide some gen-
erated examples, with one to three synthetic trajectories.

We also analyzes how the hyper-parameters of two con-
straints affect the pretraining performance. As shown in Ta-
ble 5, the performances are harmed if the speed is too fast
or too slow. Besides, CtP pretraining is not sensitive to the
scale changes.

H. More Visualizations

Due to the space limitation, we only show two sequences
in Section 5.7. Here, we further present more visualization
examples in Figure 3. The classifier trained from the CtP
model can well capture the salient targets and avoid overfit-
ting to the background regions.

References
[1] Longlong Jing, Xiaodong Yang, Jingen Liu, and Yingli Tian.

Self-supervised spatiotemporal feature learning via video ro-
tation prediction. arXiv preprint arXiv:1811.11387, 2018. 1

[2] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-
cam: Visual explanations from deep networks via gradient-
based localization. In ICCV, pages 618–626, 2017. 3

[3] Dejing Xu, Jun Xiao, Zhou Zhao, Jian Shao, Di Xie, and
Yueting Zhuang. Self-supervised spatiotemporal learning via
video clip order prediction. In CVPR, pages 10334–10343,
2019. 1

[4] Dahua Lin Yue Zhao, Yuanjun Xiong. Mmaction. https:
//github.com/open-mmlab/mmaction, 2019. 1

3

https://github.com/open-mmlab/mmaction
https://github.com/open-mmlab/mmaction

