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A. Overview
We include additional implementation details and results

in Sec. B. These experiments demonstrate the following.
First, the importance of both the distinctiveness score and
CoAM to achieve sota results with comparison to other sin-
gle stage approaches on the challenging YFCC100 dataset.
Second, they demonstrate how our approach can use a refine-
ment step to achieve state-of-the-art results for all thresholds
>1px on HPatches. Third, they provide additional ablations
including the use of a Noise Contrastive (NCE) loss as op-
posed to the hinge loss presented in the paper. Finally, we
provide more results and explanation for the SfM results
given in the main paper. We define the metrics used in ob-
taining the SfM results in Sec. B.3 and provide additional
baselines. We also demonstrate that our model is more robust
than the one using SIFT on a challenging, new dataset of
Henry Moore sculptures. Finally, we provide visualisations
of our reconstructed 3D models here and in the attached
video.

Additionally, we provide further details of the architec-
tures used in Sec. C for the CD-UNet, CoAM + CAPSNet
[31], and the stylization model.

We also provide qualitative samples of the distinctive-
ness scores learned by our model in Sec. D.2. We provide
additional qualitative results for the stylization experiment,

HPatches dataset, SfM experiment, and Aachen dataset in
Sec. D.3.

B. Additional Experiments
In this section we report the results of additional exper-

iments which consider additional ablations of the grid size
chosen at test time (Sec. B.1), a refinement of our model to
improve local matching (Sec. B.2) to achieve state-of-the-
art results on HPatches, further comparisons of our model
on the 3D reconstruction task (Sec. B.4.1), results on the
YFCC100M dataset (Sec. B.5), and results using another
popular contrastive loss (NCE) (Sec. B.6).

B.1. Further Ablations

In this section we discuss and ablate how we select candi-
date matches at test time.

In order to compare all descriptor vectors at test time, we
operate as follows. We create a G×G pixel grid and bilin-
early interpolate on this grid from both the descriptor maps
and distinctiveness scores. (Note that we have to normalize
the interpolated descriptors.) We consider all pairs of de-
scriptors as candidate matches and compare all descriptors in
one image to those in the other. In practice we use G = 128.

At test time, we could use a larger grid size for better
granularity. However, this comes with the additional com-
putational cost of performing G4 comparisons. We tried
using a larger grid (G = 256) on the Aachen-Day Night
dataset in Tab. 4 but obtained comparable results to using
G = 128. As a result, we continued to use G = 128 for all
our experiments. Using a larger grid for the larger datasets in
SfM (where the number of images are approximately 1500)
would have made these experiments intractable using current
pipelines.

However, we note that because we only consider points
on a grid, we are losing some granularity which presum-
ably impacts the performance on the 3D reconstruction tasks.
We discuss a method to refine the correspondences to ob-
tain a finer granularity in the next section and the resulting
complications.

B.2. Refining Local Matching

In this section, we demonstrate that our local matching re-
sults can be improved by using a simple refinement strategy.

Description of Refinement Strategy. In order to refine
the matches obtained using CD-UNet, we use a local neigh-
bourhood to refine the match in the second image. Given a
correspondence with location (x1, y1) in the first image and
(x2, y2) in the second image, we look at the similarity score
between (x1, y1) and the locations in a 3x3 grid centered on
(x2, y2).

These scores are used to reweight the location in the
second image using a normalized weighted sum with one
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Figure 1: Results on HPatches when refining correspondences.
In this experiment, we look at the results of using a refinement strat-
egy based on a local neighbourhood to improve the accuracy of the
detected correspondences. We see that using the refinement scheme,
we obtain a big boost in performance. In particular, we improve
our results for fine-grained pixel thresholds on the viewpoint task.
We achieve comparable results with state-of-the-art methods for
small pixel thresholds and better performance for larger thresholds
(> 4px). On illumination we maintain performance except for very
small thresholds (≤ 1px). This small degradation is probably due
to limited noise that is introduced with the refinement strategy. In
general, using this strategy we improve our results to achieve state
of the art performance for all pixel thresholds.

difference. Because the similarity scores are not evenly
distribute and cluster around 0.5, they give too much weight
to less likely matches. As a result, we subtract the minimum
similarity from all scores in a local neighbourhood before
computing the normalized weighted sum.

Results. The results are given in Fig. 1. As can be seen,
this simple refinement scheme gives a large boost in perfor-
mance. In particular, using this simple modification gives
superior results to state of the art approaches for pixel thresh-
olds > 4px for viewpoint and all thresholds > 2px for illu-
mination. Overall, our model with the refinement scheme
achieves state-of-the-art results for all thresholds > 1px.

Discussion. While we could achieve high quality per-
formance on HPatches using this simple modification, we
note that it is not straightforward to apply this to the cam-
era localization or 3D reconstruction tasks. This is because
both of these tasks require a single point to be tracked over
multiple images in order to perform 3D reconstruction (the
camera localization performs 3D reconstruction as part of
the evaluation pipeline). 3D reconstruction pipelines assume
a detect and describe pipeline for extracting matches, which
implicitly have this assumption baked in to their setup, as
they match the same detected points across different images.

However, this assumption is not implicit to our approach,
as we only find correspondences between pairs of images at
a time. Further refining the points means that the location of
a refined point from one pair of images will not necessarily
match that of another pair, invalidating the track and nega-
tively affecting the 3D reconstruction. Incorporating these
refined points would require rethinking how we incorpo-
rate refined correspondences in a 3D reconstruction pipeline.

For example, we could use a reference image against which
further images are compared and incorporated. Once a ref-
erence image has been exhausted, a new reference image
would be chosen and so on. We leave such an investigation
to future work, but the boost in performance demonstrates
the further potential of our setup.

B.3. SfM Terminology

Here we define the metrics used in reporting the SfM
results. Note that these metrics are only indicative of the
quality of the 3D model; please look at the reconstructed
models in the zipped video for a qualitative estimate as to
their respective quality.

1. ↑ # Reg. Ims: The number of registered images. This
is the number of images that are able to be put into
correspondence and for which cameras were obtained
when doing the 3D reconstruction. A higher values
means more images were registered, implying a better
model.

2. ↑ # Sparse Pts: The number of sparse points. This is
the number of sparse points obtained after performing
the 3D geometry estimation. The higher the number
indicates a better model, as more correspondences were
able to be triangulated.

3. ↑ Track Len: The track length. How many images a
given 3D point is seen in on average. If this is higher, it
indicates that the model is more robust, as more images
see that 3D point.

4. ↓ Reproj err: The repreojection error. This is the av-
erage pixel error between a 3D point and its projection
in the images. If this is lower, it indicates the 3D points
are more accurate.

5. ↑ # Dense Points: The number of dense points. This
is the number of dense points in the final 3D model.
The higher this is, the more of the 3D structure was
able to be reconstructed.

B.4. Further Results for SfM

We include additional baselines on the Local Feature
Evaluation Benchmark of the original paper. We additionally
include results in a challenging scenario where the dataset
contains fewer (≈ 10 − 100 images) images of the same
scene and where the object (a sculpture) may differ in mate-
rial, location, and context.

B.4.1 Further Baselines on Local Feature Evaluation
Benchmark

In this section we compare our 3D reconstruction on the
Local Feature Evaluation Benchmark [27] to two additional
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Table 1: SfM. We compare our approach to three baselines on 3D reconstruction for three scenes with a large number of images. Our
method obtains superior performance across the metrics except for reprojection error, despite using coarse correspondences and a single
scale. In particular, our method registers more images and obtains more sparse 3D points. ↑ denotes higher is better. ↓ denotes lower is
better.

LMark Method ↑ # Reg. Imgs ↑ # Sparse Pts ↑ Track Len ↓ Reproj. Err ↑ # Dense Pts

Madrid RootSIFT [10] 500 116K 6.32 0.60px 1.82M
Metropolis GeoDesc [13] 495 144K 5.97 0.65px 1.56M
1344 images D2 MS [3] 495 144K 6.39 1.35px 1.46M

Ours 702 256K 6.09 1.30px 1.10M

Gendarmen- RootSIFT [10] 1035 338K 5.52 0.69px 4.23M
markt GeoDesc [13] 1004 441K 5.14 0.73px 3.88M
1463 images D2 MS [3] 965 310K 5.55 1.28px 3.15M

Ours 1072 570K 6.60 1.34px 2.11M

Tower of RootSIFT [10] 804 239K 7.76 0.61px 3.05M
London GeoDesc [13] 776 341K 6.71 0.63px 2.73M
1576 images D2 MS [3] 708 287K 5.20 1.34px 2.86M

Ours 967 452K 5.82 1.32px 1.81M

Table 2: SfM. We compare our approach to using SIFT features on 3D reconstruction on a challenging new SFM dataset of sculptures.
This dataset contains images from the web containing large variations in illumination and viewpoint. These metrics are a proxy for 3D
reconstruction quality, so we encourage the reader to view the reconstructions in the supplementary. X: failure. ↑: higher is better. ↓: lower
is better.

Sculpture Dataset

Landmark: HM1 HM2 HM3 HM4 HM5 HM6 HM7 HM8 HM9
# Images: 12 124 250 266 78 31 358 238 74

# Reg. Ims ↑ SIFT [10]: X 103 198 212 61 22 266 201 53
Ours: 12 108 194 215 67 25 284 201 57

# Sparse Pts ↑ SIFT [10]: X 48K 70K 102K 28K 9K 128K 99K 23K
Ours: 2.9K 63K 83K 121K 40K 10K 190K 99K 21K

Track Len ↑ SIFT [10]: X 5.33 5.92 5.80 4.54 4.73 4.46 5.24 4.75
Ours: 3.60 5.03 5.43 5.61 4.32 4.00 4.23 5.24 4.77

Reproj Err (px) ↓ SIFT [10]: X 1.31 1.32 1.28 1.30 1.33 1.22 1.30 1.32
Ours: 1.33 1.30 1.30 1.29 1.29 1.26 1.23 1.30 1.32

# Dense Pts ↑ SIFT [10]: X 160K 143K 307K 73K 46K 174K 333K 54K
Ours: 0.2K 188K 156K 296K 82K 44K 187K 333K 53K

baselines [3, 13] in Tab. 1. These results were not included
in the paper as these additional baselines perform similarly
to SIFT [10] and there was limited space. However, we
note that both of these baselines use learned descriptors, yet
they do not perform any better than SIFT in terms of the
number of registered images and sparse 3D points. Our
method performs significantly better across all three large
scale datasets for obtaining sparse 3D points and registering
images.

B.4.2 Further Results on a Sculpture SFM Benchmark

We use images from the Sculpture dataset [5], which consists
of images of the same sculpture downloaded from the web.
As an artist may create the same sculpture multiple times,
a sculpture’s material (e.g. bronze or marble), location, or
context (e.g. the season) may change in the images (refer to
the supplementary for examples). In particular, we evaluate
on nine sculptures by the artist Henry Moore. These sets
of images contain large variations and the sculpture itself is

often smooth, leading to less texture for finding repeatably
detectable regions.

We report the results in Tab. 2 and visualise samples in
Fig. 10. While these metrics are proxies for reconstruction
accuracy, our approach is able to consistently obtain more
3D points than the others for each image set. These results
validate that our approach does indeed make our model ro-
bust in this context and it performs as well if not better than
the SIFT baseline method.

B.5. The YFCC100M Dataset

Here we report results for our model and ablations on
the YFCC100M [30] dataset. This dataset further demon-
strates the superiority of our approach to other detect and
describe setups and the utility of each component of our
model (i.e. the distinctiveness score and CoAM).

Setup. The task of this dataset is to perform two view
geometry estimation on four scenes with 1000 pairs each.
Given a pair of images, the task is to use estimated corre-
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Table 3: Results on the YFCC dataset [30]. Higher is better. Our
approach outperforms all other detect and describe approaches
(e.g. all but RANSAC-Flow) that operate directly on features for
smaller angle errors and performs competitively for larger angle
errors. Additionally, this dataset clearly demonstrates the utility of
CoAM and the distinctiveness score. †Note that RANSAC-Flow
[28] is a multi stage approach that iteratively registers images. Such
an approach could be added on top of ours.

Method mAP@5◦ mAP@10◦

SIFT [10] 46.83 68.03
Contextdesc [12] 47.68 69.55
Superpoint [2] 30.50 50.83
PointCN [17, 33] 47.98 -
PointNet++ [21, 34] 46.23 -
N3Net [20, 34] 49.13 -
DFE [22, 34] 49.45 -
OANet [34] 52.18 -
RANSAC-Flow† [28] 64.68 73.31

Ours (w/o conf) 31.60 40.80
Ours (w/o cond) 53.43 65.13
Ours 55.58 66.79

Ours (E-B1) 57.23 68.39

spondences to predict the essential matrix using the known
intrinsic matrices. The essential matrix is decomposed into
the rotation and translation component [7]. The reported er-
ror metric is the percentage of images that have the rotation
and translation error (in degrees) less than a given threshold.

To run CD-UNet on this dataset, we first use CD-UNet to
extract high quality matches for each pair of images. We
use the known intrinsics to convert these to points in camera
space. We then use RANSAC [4] and the 5-point algorithm
in order to obtain the essential matrix [7].

Results. The results are given in Tab. 3. They demon-
strate that our model achieves superior performance for low
error thresholds to other methods that directly operate on
extracted features. The results further demonstrate that the
distinctiveness score and CoAM are crucial for good perfor-
mance, validating our model design.

Finally, our model does a bit worse than RANSAC-Flow
[28]. However, we note [28] uses a segmentation model to
restrict correspondences to only regions in the foreground
of the image (e.g. the segmentation model is used to re-
move correspondences in the sky). Additionally, this method
first registers images under a homography using predetected
correspondences and then trains a network on top of the
transformed images to perform fine-grained optical flow. As
a result, this method performs as well as the underlying cor-
respondences. Considering that our method has consistently
been demonstrated to perform comparably or better than
previous approaches for obtaining correspondences, we note
that this method could be used on top of ours for presumably
further improved performance. However, as this work was

Figure 2: Results on HPatches using a NCE loss. In this exper-
iment, we look at the results of using a NCE loss as opposed to
a hinge loss. We see that using a NCE loss, we still achieve high
quality results, demonstrating the robustness of our approach.

Table 4: Results on Aachen Day-Night using a NCE loss. We
can see that training with NCE is slightly worse than our hinge loss,
but it is competitive with other state-of-the-art methods. Higher is
better. * indicates the method was trained on the Aachen dataset.

Method Type Threshold Accuracy

0.25m (2◦) 0.5m (5◦) 5m (10◦)

Upright RootSIFT [10] Spa 36.7 54.1 72.5
DenseSFM [25] Den 39.8 60.2 84.7
Han+, HN++ [15, 14] Spa 39.8 61.2 77.6
Superpoint [2] Spa 42.8 57.1 75.5
DELF [18] Spa 39.8 61.2 85.7
D2-Net [3] Spa 44.9 66.3 88.8
R2D2* [23] Spa 45.9 66.3 88.8

Ours (nce) Den 42.9 62.2 87.8
Ours (G = 256) Den 44.9 68.4 87.8
Ours Den 44.9 70.4 88.8

only recently published, we leave this for future work.

B.6. An InfoNCE Loss

In the paper we demonstrate the robustness of our ap-
proach to the precise choice of architecture (e.g. we can
achieve impressive results using a ResNet [8] or EfficientNet
[29] backbone).

Here, we consider using the CPC objective [19], which is
inspired by Noise-Contrastive Estimation (NCE) approaches
[6, 16], and so is called an InfoNCE loss. While this is also a
contrastive loss, similarly to the hinge loss in the main paper,
the implementation is different. We find that we can still
achieve impressive results with this loss, demonstrating the
robustness of the approach to the precise choice of loss.

B.6.1 Implementation

We follow the implementation of [19], except that because
we use normalized features, we add a temperature τ . This is
essential for good performance.

The setup is the same as that described in the paper, except
for the implementation of the loss. Assume we have two
descriptor maps D1 and D1 corresponding to the two input
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images I1 and I2. At a location i in D1, we obtain the
descriptor vector d1i ∈ Rc. To compare descriptor vectors,
we first normalize and then use cosine similarity to obtain a
scalar matching score:

s(d1i , d
2
j ) =

(
d1i
||d1i ||2

)T d2j
||d2j ||2

. (1)

If the score is near 1, this is most likely a match. If it is near
−1, it is most likely not a match.

Again, as in the paper, given two images of a scene I1 and
I2 with a known set of correspondences from MegaDepth
[9], we randomly select a set P of L true correspondences.
For each positive correspondence p, we additionally select
a set Np of N negative correspondences. The loss Lnce is
then

− log
1

L

∑
p=(x,y)∈P

e(τ∗s(d
1
x,d

2
y)

e(τ∗s(d
1
x,d

2
y)) +

∑
(x,ŷ)∈Np

e(τ∗s(d
1
x,d

2
ŷ))

(2)
where τ = 20 is a temperature.

B.6.2 Experiments

We train the InfoNCE model using the Lnce in the same
manner as in the paper and evaluate it on two of the datasets
discussed in the paper: HPatches [1] and Aachen [25, 26].

HPatches. The results are given in Fig. 2. From here we
see that our model with an NCE loss performs competitively
on this dataset, obtaining superior results to that of the model
in the paper.

Aachen Day-Night. The results are given in Tab. 4.
These results demonstrate that using an NCE loss with our
backbone achieves results competitive with other state-of-
the-art approaches but it performs a bit worse than the hinge
loss used in the paper.

Discussion. These experiments have shown that we can
achieve high quality results when using a different but effec-
tive contrastive loss. As a result, our approach is robust to
not only the backbone architecture (as shown in the paper)
but also the precise choice of the contrastive loss.

C. Architectures
C.1. Architecture for CD-UNet

The components of the main model are described in the
main text. Here we give further details of the different com-
ponents. The encoder is a ResNet50 model, except that we
extract the features from the last two blocks to obtain feature
maps f iS and f iL. The details are given in Tab. 5.

The features f iL and f iS are projected in order to reduce
the number of channels using linear layers. There are four
linear layers (one for each of f1L, f2L, f1S , f2S). The linear

Table 5: Encoder of CD-UNet. The encoder is a Resnet50 [8]
encoder. The convolutions column denotes the convolutional and
max-pooling operations. Implicit are the BatchNorm and ReLU
operations that follow each convolution.

layer name output size convolutions

conv 1 128× 128 7× 7, 64, stride 2

conv2_x 64× 64
3× 3 max pool, stride 2 1× 1, 64

3× 3, 64
1× 1, 256

× 3

conv3_x 32× 32

1× 1, 128
3× 3, 128
1× 1, 512

× 4

conv4_x (fi
L) 16× 16

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

conv5_x (fi
S ) 8× 8

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

Table 6: Decoder of CD-UNet. The decoder is a UNet [24] vari-
ant. The convolutions column denotes the convolutional operations.
Implicit are the BatchNorm and ReLU operations that follow each
convolution as well as the bi-linear upsampling operation that re-
sizes features from the previous layer before the convolutional
blocks.

layer name inputs output size convolutions

deconv_5 conf5_x (×2), f̂i
S 16× 16

(
3× 3, 256
3× 3, 256

)
deconv_4 deconv_5, conv4_x, f̂i

L 32× 32

(
3× 3, 256
3× 3, 256

)
deconv_3 deconv_4, conv3_x 64× 64

(
3× 3, 128
3× 3, 128

)
deconv_2 deconv_3, conv2_x 128× 128

(
3× 3, 128
3× 3, 128

)
deconv_1 deconv_2, conv1_x 256× 256

(
3× 3, 64
3× 3, 64

)

Table 7: Encoder of CAPSNet [31] variant. The encoder is a
ResNet34 [8] encoder. The convolutions column denotes the convo-
lutional and max-pooling operations. Implicit are the BatchNorm
and ReLU operations that follow each convolution.

layer name output size convolutions

conv 1 240× 320 7× 7, 64, stride 2

conv2_x 120× 160
3× 3 max pool, stride 2(

3× 3, 64
3× 3, 64

)
× 2

conv3_x (fi
L) 60× 80

(
3× 3, 128
3× 3, 128

)
× 2

conv4_x (fi
S ) 30× 40

(
3× 3, 256
3× 3, 256

)
× 2

layers operating at the larger resolution (f iL) project the
features from 2048 size vectors to 256. The linear layers
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Table 8: Decoder of CAPSNet [31]. The decoder is a UNet [24]
variant. The convolutions column denotes the convolutional opera-
tions. Implicit are the BatchNorm and ReLU operations that follow
each convolution as well as the bi-linear upsampling operation that
resizes features from the previous layer before the convolutional
blocks.

layer name inputs output size convolutions

deconv_3 f̂2
S , f1

S 60× 80

(
1× 1, 256
3× 3, 512

)

deconv_2 f̂2
L, f1

L, deconv_3 120× 160

1× 1, 256
3× 3, 512
3× 3, 256


deconv_1 deconv_2, conv2_x 120× 160

(
3× 3, 512
3× 3, 128

)

operating at the smaller resolution (f iS) project the features
from 1024 size vectors to 128.

The decoder consists of a sequence of decoder layers. A
layer takes the bi-linearly upsampled features from the previ-
ous layer, the corresponding encoded features, and optionally
the attended features. The details are given in Tab. 6. Finally,
the unnormalized features are passed to a MLP which re-
gresses the distinctiveness score. The MLP consists of three
blocks of linear layer (with no bias) and batch normalization
followed by a sigmoid layer. The channel dimensions are
64→ 1→ 1.

C.2. Architecture for CoAM + CAPSNet [31]

Here we further describe the CAPSNet architecture and
how we incorporate CoAMs into the architecture. We use
the ResNet34 encoder (in order to fit a batch size of 6 on our
GPUs). We extract the features from the 2nd and 3rd blocks
to obtain feature maps f iL (at a fine level) and f iS (at a coarse
level). The details are given in Tab. 7.

The features f1L, f2L, f1S , and f2S are projected as above.
The linear layers operating at the larger resolution (f iL)
project the features from 128 size vectors to 16. The lin-
ear layers operating at the smaller resolution (f iS) project the
features from 256 size vectors to 32.

The decoder operates as above. The details are given in
Tab. 8. This gives the final set of descriptors of size 128D.
We find that using just the fine features performs (output of
deconv_1) better than usin a concatenation of the coarse (at
a resolution 60× 80 and fine features).

C.3. Architecture for Stylization

In Fig. 3, we illustrate further our method for stylizing
images using our initial set of dense correspondences. Given
two images Iv and IS , the task is to generate an image with
the viewpoint of Iv and the style of IS . In brief, we first
use the dense correspondences to sample from IS to obtain
the initial image. We then use a refinement network to fix
errors and fill in missing regions. We do this in two stages.

The first stage fixes errors and can be trained with an L1
loss. However, we wish to use a discriminator loss, but using
this directly on the intermediary image causes information
to leak and the generated image to match Iv , which is input
to the network. To use a discriminator loss without leaking
information, we use a second network (a sequence of ResNet
blocks) which is trained with both an L1 and discriminator
loss. Crucially, we do not allow gradients to flow from the
second network (the set of ResNet blocks) to the first.

D. Additional Results
D.1. Further Visualisation of CoAM’s Attention

In Fig. 4 we illustrate additional predicted attention maps
from our CoAM when trained with CAPSNet [31] in a self-
supervised framework. Again, it is not clear apriori what
the model should attend to. However, in these results, we
can see how the attention varies as a function of the query
location and seems to attend to relevant regions.

D.2. Visualising the Distinctiveness Score

In Fig. 5 we illustrate the predicted distinctiveness score
and in Fig. 6 the similarity score. Here we can see that the
most confident parts of both images are regions that exist
in both images. We further test this by looking at what the
distinctiveness scores look like when we keep one input view
the same but change the other in Fig. 7. We can see that the
distinctiveness score changes depending on the input images:
the output is indeed dependent on both input images.

To visualise the similarity score, we proceed as follows
in Fig. 6. For a query point k in I1, we display the corre-
spondence map ckl. The point in the sky matches a region
around the building; a point on the arch matches a point on
the arch (shown by the bright spot)

D.3. Qualitative Results

In Fig. 8 we show random matches obtained by our
method on random samples from the Aachen Day-Night
test set and similarly in Fig. 9 for HPatches, Fig. 10 for 3D
reconstruction using SfM and Fig. 11 for the stylization task.
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Figure 3: Illustration of the architecture used for the downstream stylization task. We first use our model to predict correspondences to
transform the input image IS into the position of Iv . The next step is to learn how to fill in and fix errors with a discriminator. However, we
additionally can train the portion of the generated image visible in both input images to match the true transformed image. We also can use
high frequency information in Iv when performing this transformation. However, if we train end-to-end then information will leak from Iv
to the generated image. As a result, we train in two stages. We first generate an intermediary image using a UNet [24] which is trained using
an L1 loss on the generated intermediary image for regions that are in common between the two images (and for which we can determine
what the true pixel colour should be). We input this intermediary image to a set of ResNet blocks to refine the original prediction: this is
trained with both a discriminator (pix2pixHD [32]) and L1 loss.

I1

I2

A

Figure 4: CoAM Attention. Here we visualize more samples of CoAM’s predicted attention for sample image pairs. As in the main paper,
the red dot in I1 denotes the point for which we compute the attention. It is not clear apriori what the attention module should do but it does
attend to relevant, similar regions in the other image and is dependent on the query location.
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Figure 5: Random pairs associated with their predicted distinctiveness score on the MegaDepth test set. Top row shows the input pairs,
bottom row the associated distinctiveness scores.

Figure 6: Pairs of images with their similarity scores on the MegaDepth test set. For a query point k in I1, we display the correspondence
map ckl. The point in the sky matches a region around the building; a point on the arch matches a point on the arch (shown by the bright
spot).
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Figure 7: Random pairs associated with their predicted distinctiveness score on the MegaDepth test set. Top: Pairs of image of the same
scene. Bottom: Pairs with one image from the top associated with another from a different scene. Notice that the distinctiveness score
changes between the two cases and becomes irrelevant.
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Figure 8: Random sample matches found on the Aachen Day-Night test set. We show the original image pairs top and the pairs with a
random subset of located correspondences overlaid below.
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Figure 9: Random sample matches found on the HPatches test set. Rows show progressively harder illumination or viewpoint changes. We
first show the original image pairs followed by the pairs with a random subset of located correspondences overlaid.
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Input Images Our 3D Reconstruction SIFT [10] 3D Reconstruction

Figure 10: Additional SfM results. Randomly selected input images and 3D models reconstructed using our matches and those obtained
using the SIFT [10] baseline. This figure demonstrates the variety of the input images and their scene shift as well as that both our and [10]
are of similar quality for these image sets. However, unlike [10], our model is able to determine that there are 3 statues in the first example.
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Iv Is GTS Ours [11]

Figure 11: Additional stylization results. These results are random sampled from the test set of MegaDepth.
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