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Figure A. Two Structural Causal Models which are (a) a backdoor
model and (b) a front-door model.

This supplementary document will further detail the fol-
lowing aspects in the submitted manuscript: A. Causal Pre-
liminaries, B. Formula Derivations, C. More results D. Im-
plementation Details.

A. Causal Preliminaries
A.1. Structural Causal Model

In Causality [7, 8], a Structural Causal Model (SCM) is
used to describe the causal relationships. Such a graph con-
nects different variables by directed edges which denote the
causal directions. For example, as shown in Figure A(a),
X → Y denotes that X is the cause of Y . In an SCM, if a
variable is the common cause of two variables, it is called
the confounder. For example, C is the cause of both X
and Y , thus it is a confounder which will induce spurious
correlation between X and Y to disturb the recognition of
the causal effect between them. In particular, such spurious
correlation is brought by the backdoor path created by the
confounder. Formally, a backdoor path between X and Y
is defined as any path from X to Y that starts with an
arrow pointing into X . For example, in Figure A(a), the
path X ← C → Y is a backdoor path. Here we use another
two examples for helping understand this concept, as in Fig-
ure A(b), X ← C → Y ← Z and Z ← X ← C → Y are
two backdoor paths between X and Z and Z and Y , respec-
tively.

In an SCM, if we want to deconfound two variables X
and Y to calculate the true causal effect, we should block

every backdoor path between them [8]. For example, in
Figure A(a), we should block X ← C → Y to get the
causal effect between X and Y .

A.2. Blocking Three Junctions

In an SCM, there are three elemental “junctions” which
construct the whole graph and we have some basic rules
to block them. In particular, three junctions are given as
follows:

1. X → Z → Y . This is called chain junction, which
constructs a front-door path between X and Y , as shown
in Figure A(b). In this junction, once we know the value
of the mediator Z, learning about X will not give us any
information to raise or lower our belief about Y . Thus, if we
know what Z is or directly intervene it as a specific value,
we block this chain junction.

2. X ← C → Y . This is called confounding junction
which induces spurious correlation between X and Y , as
shown in Figure A(a). In this junction, once we know what
the value of C is or directly intervene it to a specific value,
there is no spurious correlation between X and Y and thus
we block this junction.

3. Z → Y ← C. This is called “collider” which works
in an exactly opposite way from the above chain and con-
founding junctions. Once we know what the value of Y is,
Z and C are correlated. However, if we do not know what
Y is or do not intervene it, Z and C are independent and
this junction is naturally blocked.

To sum up, if we want to block a path between two vari-
ables, we should intervene the middle variables in the chain
and confounding junctions and should not intervene in the
collider junction. To block a long path, we only need to
block a junction of it, e.g., for X ← C → Y ← Z in Fig-
ure A(b), we can block X ← C → Y by intervening C or
block C → Y ← Z by not intervening Y .

A.3. The Backdoor Adjustment

The backdoor adjustment is the simplest formula to elim-
inate the spurious correlation by approximating the “physi-



cal intervention”. Formally, it calculates the average causal
effect of one variable on another at each stratum of the con-
founder. For example, in Figure A(a), we can calculate the
causal effect of X on Y as P (Y |do(X)):

P (Y |do(X)) =
∑

c
P (Y |X,C = c)P (C = c), (A)

where do(·) signifies that we are dealing with an active in-
tervention rather than a passive observation. The role of
Eq. (A) is to guarantee that in each stratum c, X is not
affected by C and thus the causal effect can be estimated
stratum by stratum from the data.

A.4. The Front-door Adjustment

From Eq. (A), we find that to use the backdoor adjust-
ment, we need to know the details of the confounder for
splitting it into various strata. However, in our case, we
have no idea about what constructs the hidden confounders
in the dataset, thus we are unable to deploy the backdoor
adjustment. Fortunately, the front-door adjustment [6] does
not require any knowledge on the confounder and can also
calculate the causal effect between X and Y in a front-door
SCM as in Figure A(b).

In Section 3.1 of the submitted manuscript, we have
shown the derivation of the front-door adjustment from the
attention mechanism perspective. Here we demonstrate a
more formally derivation. The front-door adjustment cal-
culates P (Y |do(X)) in the front-door X → Z → Y by
chaining together two partially causal effects P (Z|do(X))
and P (Y |do(Z)):

P (Y |do(X)) =
∑

z
P (Z = z|do(X))P (Y |do(Z = z)).

(B)
To calculate P (Z = z|do(X)), we should block the

backdoor path X ← C → Y ← Z between X and Z.
As we discussed in Section A.2 that a collider junction is
naturally blocked and here C → Y ← Z is a collider, thus
this path is already blocked and we have:

P (Z = z|do(X)) = P (Z = z|X). (C)
For P (Y |do(Z)), we need to block the backdoor path Z ←
X ← C → Y between Z and Y . Since we do not know
the details about the confounder C, we can not use Eq. (A)
to deconfound C. Thus we have to block this path by inter-
vening X:

P (Y |do(Z = z)) =
∑

x
P (Y |Z = z,X = x)P (X = x).

(D)
At last, by bringing Eq. (C) and (D) into Eq. (B), we have:

P (Y |do(X))

=
∑

z
P (Z = z|X)

∑
x
P (X = x)[P (Y |Z = z,X = x)],

(E)
which is the front-door adjustment given in Eq. (3) of the
submitted manuscript.

B. Formula Derivations

Here we show how to use Normalized Weighted Geo-
metric Mean (NWGM) approximation [14, 11] to absorb
the sampling into the network for deriving Eq. (5) in the
submitted manuscript. Before introducing NWGM, we first
revisit the calculation of a function y(x)’s expectation ac-
cording to the distribution P (x):

Ex[y(x)] =
∑

x
y(x)P (x), (F)

which is the weighted arithmetic mean of y(x) with P (x)
as the weights.

Correspondingly, the weighted geometric mean (WGM)
of y(x) with P (x) as the weights is:

WGM(y(x)) =
∏

x
y(x)P (x), (G)

where the weights P (x) are put into the exponential terms.
If y(x) is an exponential function that y(x) = exp[g(x)],
we have:

WGM(y(x)) =
∏

x
y(x)P (x)

=
∏

x
exp[g(x)]P (x) =

∏
x

exp[g(x)P (x)]

= exp[
∑

x
g(x)P (x)] = exp{Ex[g(x)]},

(H)

where the expectation Ex is absorbed into the exponential
term. Based on this observation, researchers approximate
the expectation of a function as the WGM of this function
in the deep network whose last layer is a Softmax layer [14,
11]:

Ex[y(x)] ≈WGM(y(x)) = exp{Ex[g(x)]}, (I)
where y(x) = exp[g(x)].

In our case, we treat P (Y |X,Z) (Eq. (3) of the submit-
ted manuscript) as a predictive function and parameterize it
by a network with a Softmax layer as the last layer:

P (Y |X,Z) = Softmax[g(X,Z)] ∝ exp[g(X,Z)]. (J)

Following Eq. (3) of the manuscript and Eq. (I), we have:
P (Y |do(X))

=
∑

z
P (Z = z|X)

∑
x
P (X = x)[P (Y |Z = z,X = x)]

=E[Z|X]E[X][P (Y |Z,X)] ≈WGM(P (Y |Z,X))

≈ exp{[g(E[Z|X][Z],E[X][X])]}.
(K)

Note that, as in Eq. (J), P (Y |Z,X) is only proportional
to exp[g(Z,X)] instead of strictly equalling to, we only
have WGM(P (Y |Z,X)) ≈ exp{[g(E[Z|X][Z],E[X][X])]}
in Eq. (K) instead of equalling to. Furthermore, to guaran-
tee the sum of P (Y |do(X)) to be 1, we use a Softmax layer
to normalize these exponential units:

P (Y |do(X)) ≈ Softmax(g(E[Z|X][Z],E[X][X])), (L)
where the first part E[Z|X][Z] is In-Sample Sampling (IS-
Sampling) and the second part E[X][X] is CS-Sample Sam-
pling (CS-Sampling). Since the Softmax layer normal-
izes these exponential terms, this is called the normalized



Table A. The performances of various single models on the online
MS-COCO test server.

Model B@4 M R-L C-D
Metric c5 c40 c5 c40 c5 c40 c5 c40
BUTD [1] 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
CAVP [5] 37.9 69.0 28.1 37.0 58.2 73.1 121.6 123.8
RFNet [3] 38.0 69.2 28.2 37.2 58.2 73.1 122.9 125.1
SGAE [15] 37.8 68.7 28.1 37.0 58.2 73.1 122.7 125.5
CNM [16] 37.9 68.4 28.1 36.9 58.3 72.9 123.0 125.3
AoANet† [2] 37.3 68.1 28.3 37.2 57.9 72.8 124.0 126.2
Transformer 37.9 69.2 28.7 37.7 58.3 73.3 124.1 126.7
Transformer+CATT 38.8 70.6 28.9 38.2 58.7 73.9 126.3 128.8

weighted geometric mean (NWGM) approximation.
In a network, the variables X and Z are represented

by the embedding vectors and thus we use x and z to de-
note them. Following the convention in attention research
where the attended vectors are usually represented in the
matrix form, we also pack the estimated IS-Sampling and
CS-Sampling vectors to X̂ , Ẑ. In this way, we have:

P (Y |do(X)) ≈ Softmax[g(Ẑ, X̂)], (M)
which is given in Eq. (5) of the submitted manuscript.

To estimate Ẑ, researchers usually calculate a query set
from X: QI = h(X) and use it in the Q-K-V operation.
Similarly, to estimate X̂ , we can also calculate a query set
as: QC = f(X) and use it in the Q-K-V operation. In this
way, we have Eq. (5) in the submitted manuscript:

P (Y |do(X)) ≈ Softmax[g(Ẑ, X̂)],

IS-Sampling: Ẑ =
∑

z
P (Z = z|h(X))z,

CS-Sampling: X̂ =
∑

x
P (X = x|f(X))x.

(N)

Note that although P (X) in CS-Sampling does not condi-
tion on any variable, we still require a query in Q-K-V op-
eration, since without a query, the estimated result will de-
grade into a fixed single vector for each different input X:
x̂ =

∑
x P (x)x, where P (x) is the prior probability. We

can also treat it as the strategy to increase the representation
power of the whole model.

C. More Results
C.1. Online Captioning Test

We report the performances of the MS COCO online
split in Table A. It can be found that our single Trans-
former+CATT can achieve higher performances than the
other state-of-the-art models on this split.

C.2. More Qualitative Examples

Figure B shows more qualitative examples where our
CATT helps different models confront the dataset biases.
The first two rows show six examples of image caption-
ing and the last two rows show the examples of VQA. For
example, in the left example of the first row, after incor-
porating the CATT module, BUTD [1] generates correctly

gender of the person without using the spurious correlation
between “woman” with “kitchen” in the dataset.

C.3. Failure Case

Our model may fail in some cases where the correct an-
swer can be hardly inferred from the image but bias, just
as the case in Figure C, where the hair dryer may infer the
person as female due to their frequent co-occurrence in the
training dataset. In this way, exploiting the co-occurrence
will help the model to answer the question with the smaller
risk. However, since these cases are rare in the whole test
set, our CATT based architectures may still achieve better
performances.

D. Implementation Details

BUTD + CATT. We deployed this architecture for address-
ing IC and VQA. In the original BUTD architecture, they
only used one attention module and thus we also used one
causal attention module as in Figure 4. In this architecture,
we set IS-ATT the same as the attention module in BUTD
where the probability in Eq. (6) is calculated as:

an = wT (Wkkn +Wqq),

α = Softmax({a1, ..., aN}),
(O)

where w is a trainable vector and Wk, Wq are two trainable
matrices. VI , KI were both set to the RoI feature set of the
current image and qI was the embedding of the sentence
context, e.g., the partially generated caption or the question
for IC or VQA, respectively. CS-ATT was set to Eq. (7), qC
was the same as in IS-ATT and VC , KC were both set to the
visual global dictionary. This dictionary was initialized by
applying K-means over all the RoI features in the training
set to get 1000 cluster centres and was updated during the
end-to-end training. The RoI object features were extracted
by a Faster-RCNN [9] pre-trained on VG as in [1]. The
hidden size of the LSTM layers was set to 1024.

For the IC model, the cross-entropy loss and the self-
critical reward [10] were used to train it 35 and 65 epochs,
respectively. We used the Adam optimizer [4] and initial-
ized the learning rate as 5e−4 and decayed it by 0.8 every 5
epochs. The batch size was set to 100. For the VQA model,
we followed [12, 1] to use the binary cross-entropy loss and
applied the AdaDelta optimizer [18], which does not require
to fix the learning rate, to train it 30 epochs. The batch size
was set to 512.

Transformer + CATT. We deployed the architecture in
Figure 5 for solving IC and VQA. In this architecture, the
Q-K-V operations of all IS-ATT and CS-ATT were imple-



BUTD: a woman and a dog in a kitchen
CATT: a man standing next to a dog in a 
kitchen

BUTD: a herd of sheep in a field
CATT: a herd of sheep walking down a road

BUTD:  a blue and red fire hydrant on a 
sidewalk
CATT: a blue and yellow fire hydrant on the 
side of a street

TF: a group of people riding a horse
CATT: a horse drawn carriage on a field with 
people

BUTD: a desk with four laptops
CATT: two computer monitors and two 
laptops on a desk

TF:  a man feeding a cow
CATT: a man milking a cow with a bottle

What gender is the person holding the 
frisbee?
TF: male                               CATT: female

What does it look like the skier is doing?

TF: snowboarding                    CATT: falling

How many people are shown??

TF: 2                                             CATT: 3

What sport is being shown on the screen?

LXMERT: dancing                    CATT: bowling

What the color of the building in the 
background?
LXMERT: blue                               CATT: brown

How many elephants are shown?

LXMERT: 2                               CATT: 4

Figure B. More examples demonstrate that our CATT helps various models confront dataset biases. Red and blue index the incorrect and
correct generated captions and answers, respectively.



Q: What is the gender of the person?
LXMERT+CATT: MaleGT: Female

Figure C. The failure case of our LXMERT+CATT.

mented by 8-head scaled dot product [13]:

Input: Q,K,V

Prob: Ai = Softmax(
QWQ

i (KWK
i )T√

d
)

Single-Head : Hi = AiVW
V
i ,

Ouput: V̂ = Embed([H1, ...,H8]W
H),

(P)

where W ∗
i and WH are all trainable matrices; Ai is the

soft attention matrix for the i-th head; [·] denotes the con-
catenation operation, and Embed(·) means the feed-forward
network and the residual operation as in [13]. We shared the
parameters between IS-ATT and CS-ATT in each CATT to
keep the outputs staying in the same feature space. Then
compared with the original Transformer, the increments of
the trainable parameters only come from the global image
and word embedding dictionaries, which were initialized by
applying K-means over the RoI and word embeddings of the
training set. We set the sizes of both dictionaries to 500 and
the hidden size of all the attention modules to 512. The RoI
object features were the same as in BUTD+CATT.

For IC, the training included two processes: we first used
the cross-entropy loss and then the self-critical reward to
train the captioner 15 and 35 epochs, respectively. The
learning rates of two processes were initialized as 5e−4 and
5e−5 and both of them decayed by 0.8 every 5 epochs. The
Adam optimizer was used and the batch size was set to 10.
For VQA, we applied the binary cross-entropy loss and the
Adam optimizer to train it 13 epochs. We followed [17]
to set the learning rate to min(2.5te−5, 1e−4), where t is
the training epoch and after 10 epochs, the learning rate de-
cayed by 0.2 every 2 epochs. The batch size was set to 64.
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