
Supplementary Materials for:
CondenseNet V2 Sparse Feature Reactivation for Deep Networks

1. Network Structure

1.1. Implementation details of SFR-ShuffleNetV2
and SFR-ShuffleNetV2+

In this section, we provide more details for building
SFR-ShuffleNetV2 and SFR-ShuffleNetV2+ based on Shuf-
fleNetV2 [11] and ShuffleNetV2+1, respectively. The gen-
eral network architecture of SFR-ShuffleNetV2 and SFR-
ShuffleNetV2+ are shown in Table 1 and Table 3. The Shuf-
fleNet Unit with stride 2 in Table 1 is implemented following
[11]. The details of SFR-ShuffleNet Unit is illustrated in Fig-
ure 5 of main paper. For SFR-ShuffleNetV2+, we follow the
same principle to integrate the SFR modules into different
ShuffleNet Units. Moreover, different from CondenseNetV2,
the SFR procedure is conducted by 3×3 convolutions in
SFR-ShuffleNet. There are four type of ShuffleNet Units in
ShuffleNetV2+ (refer to the original implementation of Shuf-
fleNetV2+ for more details). Note that we do not conduct
the feature reactivation on the unit with stride equal to 2. Ad-
ditionally, the network configurations of SFR-ShuffleNetV2
and SFR-ShuffleNetV2+ are provided in Table 2 and 4.

Table 1. Network architecture of SFR-ShuffleNetV2. The number
of output channels and the sparse factor of i-th stage are ci and Si,
respectively. The number of units is denoted by n.

Output size c Operator n S

224×224 3 Input Image - -
112×112 24 Conv2d 3×3 (stride 2) - -
56×56 24 MaxPool 3×3 (stride 2) - -

28×28 c1
ShuffleNet Unit (stride 2) 1 -

SFR-ShuffleNet Unit 3 S1

14×14 c2
ShuffleNet Unit (stride 2) 1 -

SFR-ShuffleNet Unit 7 S2

7×7 c3
ShuffleNet Unit (stride 2) 1 -

SFR-ShuffleNet Unit 3 S3

7×7 1024 Conv2d 1×1 - -
1×1 - AvgPool 7×7 - -
1×1 1000 FC - -

1https://github.com/megvii- model/ShuffleNet-
Series/tree/master/ShuffleNetV2%2B

Table 2. Network configurations for SFR-ShuffleNetV2 models.

Network {ci} {Si}

SFR-ShuffleNetV2 0.5x 48-96-192 24-48-96
SFR-ShuffleNetV2 1.0x 116-232-464 58-116-232
SFR-ShuffleNetV2 1.5x 176-352-704 88-176-352

Table 4. Network configurations for SFR-ShuffleNetV2+ models.
S. and M. represent Small and Medium, respectively.

Network {ci} {Si}

SFR-ShuffleNetV2+ S. 36-104-208-416 18-52-104-213
SFR-ShuffleNetV2+ M. 48-128-256-512 24-64-128-256

Table 5. Network architecture of CondenseNet. The number of
layers and the growth rate of i-th dense block are di and ki, respec-
tively.

Input Operator d k

224×224 Conv2d 3×3 (stride 2) - -
112×112 DenseLayer d1 k1
112×112 AvgPool 2×2 (stide 2) - -
56×56 DenseLayer d2 k2
56×56 AvgPool 2×2 (stride 2) - -
28×28 DenseLayer d3 k3
28×28 AvgPool 2×2 (stride 2) - -
14×14 DenseLayer d4 k4
14×14 AvgPool 2×2 (stride 2) - -
7×7 DenseLayer d5 k5
1×1 AvgPool 7×7 - -
1×1 FC - -

1.2. Implementation details of CondenseNet

In CondenseNet [8], only the network architecture of
CondenseNet-C with 300M FLOPs is provided. In order
to conduct a more comprehensive comparison, we further
design CondenseNet-A/B which are under another two com-
putation levels(50M and 150M). The general network archi-
tecture and configurations of CondenseNet are provided in
Table 5 and Table 6, respectively. Here, the DenseLayers in
Table 5 are implemented with learned group convolutions.

1

https://github.com/megvii-model/ShuffleNet-Series/tree/master/ShuffleNetV2%2B
https://github.com/megvii-model/ShuffleNet-Series/tree/master/ShuffleNetV2%2B


Table 3. Network architecture of SFR-ShuffleNetV2+. The number of output channels and the sparse factor of i-th stage are ci and Si,
respectively. The number of units is denoted byn. SE and HS denote whether using Squeeze-Excitation [7] and Hard-Swish module in this
unit.

Output size c Operator n S SE HS
112×112 16 Conv2d 3×3 (stride 2) 1 - - 1

56×56 c1

ShuffleNet 3×3 Unit (stride 2) 1 - - -
SFR-ShuffleNet 3×3 Unit 1 S1 - -

SFR-ShuffleNet Xception Unit 1 S1 - -
SFR-ShuffleNet 5×5 Unit 1 S1 - -

28×28 c2

ShuffleNet 5×5 Unit (stride 2) 1 - - 1
SFR-ShuffleNet 5×5 Unit 1 S2 - 1
SFR-ShuffleNet 3×3 Unit 2 S2 - 1

14×14 c3

ShuffleNet 7×7 Unit (stride 2) 1 - 1 1
SFR-ShuffleNet 3×3 Unit 1 S3 1 1
SFR-ShuffleNet 7×7 Unit 1 S3 1 1
SFR-ShuffleNet 5×5 Unit 2 S3 1 1
SFR-ShuffleNet 3×3 Unit 1 S3 1 1
SFR-ShuffleNet 7×7 Unit 1 S3 1 1
SFR-ShuffleNet 3×3 Unit 1 S3 1 1

7×7 c4

ShuffleNet 7×7 Unit (stride 2) 1 S4 1 1
SFR-ShuffleNet 5×5 Unit 1 S4 1 1

SFR-ShuffleNet Xception Unit 1 S4 1 1
SFR-ShuffleNet 7×7 Unit 1 S4 1 1

7×7 1280 Conv2d 1×1 - - - 1
1×1 - AvgPool 7×7 - - - -
1×1 1280 SE Module - - 1 -
1×1 1280 FC - - - 1
1×1 1000 FC - - - -

Table 6. Detailed network configurations for CondenseNet models.
C denotes the condense factor for learned group convolution.

Network {di} {ki} C

CondenseNet-A 2-4-6-8-4 8-8-16-32-64 8
CondenseNet-B 2-4-6-8-6 6-12-24-48-96 6
CondenseNet-C 4-6-8-10-8 8-16-32-64-128 8

2. A comperhensive study of efficient deep
learning models on ImageNet

In this section, we provide more comprehensive com-
parisons between the proposed network architectures and
other state-of-the-art efficient deep learning models. These
models are grouped into three levels of computational cost-
s, including 50M, 150M and 300M FLOPs. Our com-
parisons include the most efficient network architectures:
(1) Handcrafted Light-weighted CNN architectures, such
as CondenseNet [8], MobileNetV1 [6], MobileNetV2 [16],
ShuffleNetV1 [19], ShuffleNetV2 [11], IGCV3 [17], Xcep-
tion [3] and ESPNetV2 [12], are shown in Table 7. 2) NAS
based methods, such as NASNet [21], PNASNet [9], Mnas-
Net [18], ProxylessNas [1], AmoebaNet [15], GhostNet [4],
MobileNetV3 [5] and RegXNet [14], are shown in Table 8.

From the results in Table 7, we conclude that the pro-

posed CondenseNetV2 are superior to many other handcraft-
designed efficient deep CNNs significantly. We also observe
that the proposed networks outperform the CondenseNets by
a large margin, which demonstrates that the effectiveness of
our SFR module.

As we can see, in Table 8, our CondenseNetV2-C
surpass most of the efficient models based on NAS un-
der the computational budget of ∼300M. Note that our
CondenseNetV2-C’s FLOPs is only half of NASNet-A,
AmoebaNet-C and PNASNet-5, however, CondenseNetV2-
C still outperform these NAS based models. Although the
EfficientNetB0 achieves the best performance when the com-
putational budget is ∼300M, its FLOPs is much larger than
CondenseNetV2-C (390M vs 309M). The MobileNetV3 out-
performs our models with ∼50M and ∼150M FLOPs which
can be due to the effectiveness of NAS. Since our implement-
ed SFR-ShuffleNetV2+ Small can surpass the MobileNetV3
Large 0.75 × by 1.2 percent in terms of Top-1 Error, we
believe that CondenseNetV2’s performance can be further
boosted by NAS algorithms. Therefore, the future work will
mainly focus on applying NAS methods on the proposed
CondenseNetV2.

2



Table 7. Comparison of Top-1 and Top-5 classification error rate (%) with state-of-the-art handcraft-designed efficient models on the ILSVRC
validation set.

Model FLOPs Params Top-1 err. Top-5 err.

ShuffleNetV1 0.5×(g=3) [19] 38M 1.0M 41.2 19.0
MobileNetV1-0.25 [6] 41M – 49.4 –
ShuffleNetV2 0.5× [11] 41M 1.4M 38.9 17.4
MobileNetV2-0.40 [16] 43M – 43.4 –
CondenseNet-A [8] 56M 0.9M 43.5 20.2

SFR-ShuffleNetV2 0.5× 43M 1.4M 38.3 17.0
CondenseNetV2-A 46M 2.0M 35.6 15.8

MobileNeXt-0.50 [20] 110M 2.1M 32.3 –
ShuffleNetV1 1.0×(g=3) [19] 138M 1.9M 32.2 12.3
MobileNetV1-0.50 [6] 149M – 36.3 –
ShuffleNetV2 1.0× [11] 146M 2.3M 30.6 11.1
MobileNetV2-0.75 [16] 145M – 32.1 –
IGCV3-D-0.70 [17] 210M 2.8M 31.5 –
CondenseNet-B [8] 132M 2.1M 33.9 13.1

SFR-ShuffleNetV2 1.0× 150M 2.3M 29.9 10.9
CondenseNetV2-B 146M 3.6M 28.1 9.7

Xception 1.5× [3] 305M – 29.4 –
ShuffleNetV1 1.5× [19] 292M – 28.5 –
MobileNetV1-0.75 [6] 325M – 31.6 –
ShuffleNetV2 1.5× [11] 299M – 27.4 –
MobileNetV2-1.00 [16] 300M 3.4M 28.0 –
MobileNeXt-1.00 [20] 300M 3.4M 26.0 –
IGCV3-D-1.00 [17] 318M 3.5M 27.8 –
FE-Net 1.0× [2] 301M 3.7M 27.1 –
ESPNetV2 [12] 284M 3.5M 27.9 –
CondenseNet-C [8] 274M 2.9M 29.0 10.0

SFR-ShuffleNetV2 1.5× 306M 3.5M 26.5 8.6
CondenseNetV2-C 309M 6.1M 24.1 7.3

3. Experimental Setup on ImageNet

In our experiments, all our models are conducted under
Pytorch Implementation [13]. Our training is based on the
open-source code2 which successfully reproduces the report-
ed performance in MobileNetV3 [5]. We follow most of the
training settings used in MobileNetV3 [5], except that we
use the stochastic gradient descent (SGD) optimizer with an
initial learning rate of 0.4, the cosine learning rate [10], a
Nesterov momentum of weight 0.9 without dampening and
a weight decay of 4×10−5 when batch size is 1024.

References
[1] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct

neural architecture search on target task and hardware. In
ICLR, 2019. 2, 4

2https://github.com/rwightman/pytorch- image-
models/

[2] Weijie Chen, Di Xie, Yuan Zhang, and Shiliang Pu. All you
need is a few shifts: Designing efficient convolutional neural
networks for image classification. In CVPR, 2019. 3

[3] François Chollet. Xception: Deep learning with depthwise
separable convolutions. arXiv preprint arXiv:1610.02357,
2016. 2, 3

[4] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, and Chang Xu.
Ghostnet: More features from cheap operations. In CVPR,
2020. 2, 4

[5] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for mobilenetv3. In ICCV, 2019. 2, 3, 4

[6] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreet-
to, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017. 2, 3

3

https://github.com/rwightman/pytorch-image-models/
https://github.com/rwightman/pytorch-image-models/


Table 8. Comparison of Top-1 and Top-5 classification error rate (%) with state-of-the-art NAS based efficient models on the ILSVRC
validation set.

Model FLOPs Params Top-1 err. Top-5 err.

MobileNetV3 Large 0.75× [5] 155M 4.0M 26.7 –
RegNetX [14] 200M 2.7M 31.1 –
GhostNet 1.0× [4] 141M 5.2M 26.1 8.6

SFR-ShuffleNetV2+ Small 161M 5.2M 25.5 8.2

MobileNetV3 Large 1.00× [5] 219M 5.4M 24.8 –
GhostNet 1.3× [4] 226M 7.3M 24.3 7.3
MnasNet-A1 [18] 312M 3.9M 24.8 7.5
ProxylessNAS[1] 320M 4.1M 25.4 7.8
RegNetX [14] 400M 5.2M 27.3 –
NASNet-A [21] 564M 5.2M 26.0 8.4
AmoebaNet-C [15] 570M 6.4M 24.3 7.6
PNASNet-5 [9] 588M 5.1M 25.8 8.1

SFR-ShuffleNetV2+ Medium 229M 5.7M 23.9 7.3

[7] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation
networks. In CVPR, 2018. 2

[8] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kil-
ian Q Weinberger. Condensenet: An efficient densenet using
learned group convolutions. In CVPR, 2018. 1, 2, 3

[9] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens,
Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang,
and Kevin Murphy. Progressive neural architecture search. In
ECCV, 2018. 2, 4

[10] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. In ICLR, 2017. 3

[11] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In ECCV, 2018. 1, 2, 3

[12] Sachin Mehta, Mohammad Rastegari, Linda Shapiro, and
Hannaneh Hajishirzi. Espnetv2: A light-weight, power effi-
cient, and general purpose convolutional neural network. In
CVPR, 2019. 2, 3

[13] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS, pages 8026–8037, 2019. 3

[14] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaim-
ing He, and Piotr Dollár. Designing network design spaces.
In CVPR, 2020. 2, 4

[15] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In AAAI, 2019. 2, 4

[16] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Inverted residuals and linear
bottlenecks: Mobile networks for classification, detection and
segmentation. In CVPR, 2018. 2, 3

[17] Ke Sun, Mingjie Li, Dong Liu, and Jingdong Wang. Igcv3:
Interleaved low-rank group convolutions for efficient deep
neural networks. In BMVC, 2018. 2, 3

[18] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V. Le. Mnasnet:
Platform-aware neural architecture search for mobile. In
CVPR, 2019. 2, 4

[19] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices. In CVPR, 2018. 2, 3

[20] Daquan Zhou, Qibin Hou, Yunpeng Chen, Jiashi Feng, and
Shuicheng Yan. Rethinking bottleneck structure for efficient
mobile network design. In ECCV, 2020. 3

[21] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In CVPR, 2018. 2, 4

4


