Supplementary Materials for:
CondenseNet V2 Sparse Feature Reactivation for Deep Networks

1. Network Structure

1.1. Implementation details of SFR-ShuffleNetV2
and SFR-ShuffleNetV2+

In this section, we provide more details for building
SFR-ShuffleNetV2 and SFR-ShuffleNetV2+ based on Shuf-
fleNetV2 [11] and ShuffleNetV2+!, respectively. The gen-
eral network architecture of SFR-ShuffleNetV2 and SFR-
ShuffleNetV2+ are shown in Table | and Table 3. The Shuf-
fleNet Unit with stride 2 in Table 1 is implemented following
[11]. The details of SFR-ShuffleNet Unit is illustrated in Fig-
ure 5 of main paper. For SFR-ShuffleNetV2+, we follow the
same principle to integrate the SFR modules into different
ShuffleNet Units. Moreover, different from CondenseNetV2,
the SFR procedure is conducted by 3x3 convolutions in
SFR-ShuffleNet. There are four type of ShuffleNet Units in
ShuffleNetV2+ (refer to the original implementation of Shuf-
fleNetV2+ for more details). Note that we do not conduct
the feature reactivation on the unit with stride equal to 2. Ad-
ditionally, the network configurations of SFR-ShuffleNetV2
and SFR-ShuffleNetV2+ are provided in Table 2 and 4.

Table 1. Network architecture of SFR-ShuffleNetV2. The number
of output channels and the sparse factor of i-th stage are ¢; and .S;,
respectively. The number of units is denoted by n.

Output size c Operator n S
224 %224 3 Input Image - -
112x 112 24 Conv2d 3 x 3 (stride 2) - -

56 X 56 24 MaxPool 3 x 3 (stride 2) - -
ShuffleNet Unit (stride 2) 1 -
2828 “ SFR-ShuffieNet Unit | 3 |
ShuffleNet Unit (stride 2) 1 -
lax1d | e SFR-ShuffleNet Unit | 7 | S»
7% e ShuffleNet Unit (stride 2) 1 -
SFR-ShuffleNet Unit 3 | S3
X7 1024 Conv2d 1x1 - -
1x1 - AvgPool 7x 7 - -
1x1 1000 FC - -

Ihttps://github . com/megvii-model /ShuffleNet —
Series/tree/master/ShuffleNetV2%2B

Table 2. Network configurations for SFR-ShuffleNetV2 models.

Network | {ar] {S}
SFR-ShuffleNetV2 0.5x | 48-96-192 | 24-48-96
SFR-ShuffleNetV2 1.0x | 116-232-464 | 58-116-232
SFR-ShuffleNetV2 1.5x | 176-352-704 | 88-176-352

Table 4. Network configurations for SFR-ShuffleNetV2+ models.
S. and M. represent Small and Medium, respectively.

Network ‘ {ci} ‘ {Si}

SFR-ShuffleNetV2+ S. | 36-104-208-416 | 18-52-104-213
SFR-ShuffleNetV2+ M. | 48-128-256-512 | 24-64-128-256

Table 5. Network architecture of CondenseNet. The number of
layers and the growth rate of ¢-th dense block are d; and k;, respec-
tively.

Input Operator d k
224 x 224 Conv2d 3 x 3 (stride 2) - -
112x112 DenseLayer d1 k1
112x112 AvgPool 2 x 2 (stide 2) - -

56 X 56 DenseLayer do ko
56 X 56 AvgPool 2 x 2 (stride 2) - -
28 x 28 DenseLayer ds | k3
28 x 28 AvgPool 2 x 2 (stride 2) - -
14x 14 DenseLayer dy ks
14x 14 AvgPool 2 x 2 (stride 2) - -

X7 DenseLayer ds ks

1x1 AvgPool 7x 7 - -

1x1 FC - -

1.2. Implementation details of CondenseNet

In CondenseNet [&], only the network architecture of
CondenseNet-C with 300M FLOPs is provided. In order
to conduct a more comprehensive comparison, we further
design CondenseNet-A/B which are under another two com-
putation levels(50M and 150M). The general network archi-
tecture and configurations of CondenseNet are provided in
Table 5 and Table 6, respectively. Here, the DenseLayers in
Table 5 are implemented with learned group convolutions.

https://github.com/megvii-model/ShuffleNet-Series/tree/master/ShuffleNetV2%2B
https://github.com/megvii-model/ShuffleNet-Series/tree/master/ShuffleNetV2%2B

Table 3. Network architecture of SFR-ShuffleNetV2+. The number of output channels and the sparse factor of i-th stage are ¢; and .S,
respectively. The number of units is denoted byn. SE and HS denote whether using Squeeze-Excitation [7] and Hard-Swish module in this

unit.

Output size c Operator n S SE HS

112x112 16 Conv2d 3 x 3 (stride 2) 1 - - 1

ShuffleNet 3 x 3 Unit (stride 2) 1 - - -

SFR-ShuffleNet 3 x 3 Unit 1 S1 - -

56%56 = SFR-ShuffleNet Xception Unit 1 S1 - -

SFR-ShuffleNet 5 x 5 Unit 1 S1 - -

ShuffleNet 5 x 5 Unit (stride 2) 1 - - 1

28 x 28 c2 SFR-ShuffleNet 5 x 5 Unit 1 Sa - 1

SFR-ShuffleNet 3 x 3 Unit 2 Sa - 1

ShuffleNet 7 x 7 Unit (stride 2) 1 - 1 1

SFR-ShuffleNet 3 x 3 Unit 1 S3 1 1

SFR-ShuffleNet 7 x 7 Unit 1 S3 1 1

14x14 c3 SFR-ShuffleNet 5 x 5 Unit 2 S3 1 1

SFR-ShuffleNet 3 x 3 Unit 1 S3 1 1

SFR-ShuffleNet 7 x 7 Unit 1 S3 1 1

SFR-ShuffleNet 3 x 3 Unit 1 S3 1 1

ShuffleNet 7 x 7 Unit (stride 2) 1 S4 1 1

%7 » SFR-ShuffleNet 5 x 5 Unit 1 S4 1 1

SFR-ShuffleNet Xception Unit 1 Sa 1 1

SFR-ShuffleNet 7 x 7 Unit 1 Sa 1 1

X7 1280 Conv2d 1x 1 - - - 1

1x1 - AvgPool 7x7 - - - -

1x1 1280 SE Module - - 1 -

1x1 1280 FC - - - 1

1x1 1000 FC - - - -

Table 6. Detailed network configurations for CondenseNet models.
C denotes the condense factor for learned group convolution.

Network | {di} | {k:} e
CondenseNet-A | 2-4-6-8-4 8-8-16-32-64 8
CondenseNet-B 2-4-6-8-6 6-12-24-48-96 6
CondenseNet-C | 4-6-8-10-8 | 8-16-32-64-128 | 8

2. A comperhensive study of efficient deep
learning models on ImageNet

In this section, we provide more comprehensive com-
parisons between the proposed network architectures and
other state-of-the-art efficient deep learning models. These
models are grouped into three levels of computational cost-
s, including 50M, 150M and 300M FLOPs. Our com-
parisons include the most efficient network architectures:
(1) Handcrafted Light-weighted CNN architectures, such
as CondenseNet [8], MobileNetV1 [6], MobileNetV2 [16],
ShuffleNetV1 [19], ShuffleNetV2 [1 1], IGCV3 [17], Xcep-
tion [3] and ESPNetV2 [12], are shown in Table 7. 2) NAS
based methods, such as NASNet [21], PNASNet [9], Mnas-
Net [18], ProxylessNas [1], AmoebaNet [5], GhostNet [4],
MobileNetV3 [5] and RegXNet [14], are shown in Table 8.

From the results in Table 7, we conclude that the pro-

posed CondenseNetV?2 are superior to many other handcraft-
designed efficient deep CNNs significantly. We also observe
that the proposed networks outperform the CondenseNets by
a large margin, which demonstrates that the effectiveness of
our SFR module.

As we can see, in Table 8, our CondenseNetV2-C
surpass most of the efficient models based on NAS un-
der the computational budget of ~300M. Note that our
CondenseNetV2-C’s FLOPs is only half of NASNet-A,
AmoebaNet-C and PNASNet-5, however, CondenseNetV2-
C still outperform these NAS based models. Although the
EfficientNetBO0 achieves the best performance when the com-
putational budget is ~300M, its FLOPs is much larger than
CondenseNetV2-C (390M vs 309M). The MobileNetV3 out-
performs our models with ~50M and ~150M FLOPs which
can be due to the effectiveness of NAS. Since our implement-
ed SFR-ShuffleNetV2+ Small can surpass the MobileNetV3
Large 0.75 x by 1.2 percent in terms of Top-1 Error, we
believe that CondenseNetV2’s performance can be further
boosted by NAS algorithms. Therefore, the future work will
mainly focus on applying NAS methods on the proposed
CondenseNetV2.

Table 7. Comparison of Top-1 and Top-5 classification error rate (%) with state-of-the-art handcraft-designed efficient models on the ILSVRC

validation set.

Model ‘ FLOPs Params Top-1 err. Top-5 err.
ShuffleNetV1 0.5 (g=3) [19] 38M 1.0M 41.2 19.0
MobileNetV1-0.25 [6] 41M - 494 -
ShuffleNetV2 0.5x [11] 41M 1.4M 38.9 17.4
MobileNetV2-0.40 [16] 43M - 434 -
CondenseNet-A [8] 56M 0.9M 43.5 20.2
SFR-ShuffleNetV2 0.5 x 43M 1.4M 38.3 17.0
CondenseNetV2-A 46M 2.0M 35.6 15.8
MobileNeXt-0.50 [20] 110M 2.1M 32.3 -
ShuffleNetV1 1.0x(g=3) [19] 138M 1.9M 32.2 12.3
MobileNetV1-0.50 [6] 149M - 36.3 -
ShuffleNetV2 1.0x [11] 146M 2.3M 30.6 11.1
MobileNetV2-0.75 [16] 145M - 32.1 -
IGCV3-D-0.70 [17] 210M 2.8M 31.5 -
CondenseNet-B [8] 132M 2.1M 33.9 13.1
SFR-ShuffleNetV2 1.0x 150M 2.3M 29.9 10.9
CondenseNetV2-B 146M 3.6M 28.1 9.7
Xception 1.5x [3] 305M - 29.4 -
ShuffleNetV1 1.5x [19] 292M - 28.5 -
MobileNetV1-0.75 [6] 325M - 31.6 -
ShuffleNetV2 1.5x [11] 299M - 27.4 -
MobileNetV2-1.00 [16] 300M 3.4M 28.0 -
MobileNeXt-1.00 [20] 300M 3.4M 26.0 -
IGCV3-D-1.00 [17] 318M 3.5M 27.8 -
FE-Net 1.0x [2] 301M 3.7M 27.1 -
ESPNetV2 [12] 284M 3.5M 27.9 -
CondenseNet-C [8] 274M 2.9M 29.0 10.0
SFR-ShuffleNetV2 1.5x 306M 3.5M 26.5 8.6
CondenseNetV2-C 309M 6.1M 24.1 7.3

3. Experimental Setup on ImageNet

In our experiments, all our models are conducted under
Pytorch Implementation [13]. Our training is based on the
open-source code” which successfully reproduces the report-
ed performance in MobileNetV3 [5]. We follow most of the
training settings used in MobileNetV3 [5], except that we
use the stochastic gradient descent (SGD) optimizer with an
initial learning rate of 0.4, the cosine learning rate [10], a
Nesterov momentum of weight 0.9 without dampening and
a weight decay of 4 x 10~° when batch size is 1024.

References

[1] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct
neural architecture search on target task and hardware. In
ICLR, 2019. 2, 4

2https :
models/

/ /github . com/ rwightman /pytorch- image -

2

3

[4

(5

[6

—

—

—

—

—_

Weijie Chen, Di Xie, Yuan Zhang, and Shiliang Pu. All you
need is a few shifts: Designing efficient convolutional neural
networks for image classification. In CVPR, 2019. 3

Francois Chollet. Xception: Deep learning with depthwise
separable convolutions. arXiv preprint arXiv:1610.02357,
2016. 2,3

Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, and Chang Xu.
Ghostnet: More features from cheap operations. In CVPR,
2020. 2, 4

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for mobilenetv3. In ICCV, 2019. 2, 3, 4

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreet-
to, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861,2017. 2,3

https://github.com/rwightman/pytorch-image-models/
https://github.com/rwightman/pytorch-image-models/

Table 8. Comparison of Top-1 and Top-5 classification error rate (%) with state-of-the-art NAS based efficient models on the ILSVRC
validation set.

(7]

(8]

(9]

[10]

[11]

(12]

[13]

(14]

[15]

[16]

Model ‘ FLOPs Params Top-1 err. Top-5 err.
MobileNetV3 Large 0.75x [5] 155M 4.0M 26.7 -
RegNetX [14] 200M 2. M 31.1 -
GhostNet 1.0x [4] 141M 5.2M 26.1 8.6
SFR-ShuffleNetV2+ Small ‘ 161M 52M 25.5 8.2
MobileNetV3 Large 1.00x [5] 219M 5.4M 24.8 -
GhostNet 1.3x [4] 226M 7.3M 243 7.3
MnasNet-A1 [18] 312M 3.9M 24.8 7.5
ProxylessNAS[1] 320M 4. 1M 25.4 7.8
RegNetX [14] 400M 5.2M 27.3 -
NASNet-A [21] 564M 52M 26.0 8.4
AmoebaNet-C [15] 570M 6.4M 24.3 7.6
PNASNet-5 [9] 588M 5.IM 25.8 8.1
SFR-ShuffleNetV2+ Medium 229M 5.M 23.9 7.3
Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation [17] Ke Sun, Mingjie Li, Dong Liu, and Jingdong Wang. Igcv3:

networks. In CVPR, 2018. 2

Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kil-
ian Q Weinberger. Condensenet: An efficient densenet using
learned group convolutions. In CVPR, 2018. 1,2, 3

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens,
Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang,
and Kevin Murphy. Progressive neural architecture search. In
ECCV,2018. 2,4

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. In /CLR, 2017. 3

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In ECCV, 2018. 1,2, 3

Sachin Mehta, Mohammad Rastegari, Linda Shapiro, and
Hannaneh Hajishirzi. Espnetv2: A light-weight, power effi-
cient, and general purpose convolutional neural network. In
CVPR, 2019. 2,3

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
NeurlIPS, pages 8026-8037, 2019. 3

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaim-
ing He, and Piotr Dollar. Designing network design spaces.
In CVPR, 2020. 2, 4

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In AAAI 2019. 2, 4

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Inverted residuals and linear
bottlenecks: Mobile networks for classification, detection and
segmentation. In CVPR, 2018. 2, 3

(18]

[19]

(20]

(21]

Interleaved low-rank group convolutions for efficient deep
neural networks. In BMVC, 2018. 2, 3

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V. Le. Mnasnet:
Platform-aware neural architecture search for mobile. In
CVPR, 2019. 2,4

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices. In CVPR, 2018. 2, 3

Daquan Zhou, Qibin Hou, Yunpeng Chen, Jiashi Feng, and
Shuicheng Yan. Rethinking bottleneck structure for efficient
mobile network design. In ECCV, 2020. 3

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In CVPR, 2018. 2, 4

