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To make our submission self-contained, the supple-
mentary material provides additional details about: 1)
The Network and Modules; 2) Training; 3) Test & It-
erative Edge Weight Refinement, and lastly 4) additional
experiments on execution time and outlier impact. The
code demonstration and dataset (YFCC100) are available at
https://github.com/sfu-gruvi-3dv/msp_rot_avg.

1. Network Details

In this section, we provide additional details of the net-
work modules, as we mentioned in the main paper.
Feature Extraction Module: The Feature Extraction Mod-
ule extracts useful information for the graph nodes and
edges from images with matched correspondences. Re-
call that it employs cluster-based aggregation for obtaining
fixed-size node features and edge features regardless of ar-
bitrary input dimensions and the number of feature matches.

For constructing the node feature at a node 7, we first ex-
tract feature maps F? (512 channels) from VGG16 [14]’s
layer group 4. The VLAD pooling operation applies k-
means to cluster all the pixels from the feature maps F}
into P = 64 groups, resulting in a pooled VLAD feature
g;. We then finally reduce the channel size of g; with a
1 x 1 convolution, producing the node feature, g;, with a
size of 32 x 64. For constructing the edge feature for an
edge 1, j, we first reduce the channels of the feature maps
F* to 64 channels with another 1 x 1 convolution, resulting
in F4. Given that the edge connects node ¢ and j with n
pairs of matches, we gather the features from each pair of
correspondence:

(B} = (RERLE 8,

where 2 = F#(x¢) and f? = F4(x}) are the features of
points a, b in the feature map ]?‘;1, ]?‘;1 The x7, iz’- are 2D
positions of keypoints a, b on frames ¢, j, and normalized to
[-1, 1]; Next, a two-layer MLPs ¢(-) with {128, 64} hidden
units is used to generate a vector encoding the features, and
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Figure 1. Structure of Appearance-Geometry Fusion Network.
The size of input and output feature is listed in each Edge
Convolution layer.

yield a n x 64 feature: {f;;},, = {¢(fij)}n; Lastly, to re-
move any dependency on the number of matches, we apply
k-means clustering to the positions of keypoint {X; },, re-
sulting in K = 10 different groups. Then, for all features
that belongs to a cluster group m, {f;;}", we use Maxpool
to aggregate the feature set to a single vector feature and get
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our edge features e;; = {maxpool({fi;}™)lm < K}.
The aggregate function Maxpool is chosen as it is sym-
metric for all items regardless of ordering dependency [ 1].
This results in edge features with a fixed dimension of
10 x 64.

AGF Network Structure: The Appearance-Geometry Net-
work takes the node and edge feature, along with the mea-
sured relative geometry as input, and predicts a weight
for each edge, which indicates whether the edge is reli-
able or not; The Figure 1 shows the structure of AGF Net-
work. The AGF consists of 6 Edge Convolution layers[5],
each with 128 hidden units. Note that from layer #3 to
#6, the input node and edge features are concatenated out-
put node and edge features from the previous two Edge
Convolution layers, respectively. For example, the
output node features from Edge Conv.#1 and Edge
Conv . #2 are concatenated as the input node features for
Edge Conv.#3. Similarly, the input edge features for
Edge Conv.#3 is the concatenation of the edge features
Edge Conv.#1 and Edge Conv.#2. Lastly, a MLP
layer followed by a sigmoid activation is appended to the
output edge features from Edge Conv. #6, and generates
the normalized weight on each edge {w;;|(i,j) € E,0 <
w;; < 1}.

Self-loops in MSP: In MSP, we add a virtual self-loop for
each node in the view-graph with a preset weight 1.0. This
will fix the rotation at the node when it reaches a high confi-
dence score and will not propagate much information from
neighbors in the subsequent iterations.

FineNet Structure: With the initialized orientation as the
node input and relative rotation as the edge input, the
FineNet [10] is used to produce the refined orientation
for all nodes in a view-graph. FineNet consists of 4 lay-
ers of Edge Convolution. The input node features are the
initial camera orientations q;, and edge features are the
residual of the estimated and measured relative rotations:
fi; = qj_laijqi. With the input node and edge features,
the FineNet produces the residual orientation Aq; over the
initial orientation q; for each node ¢ € V. Later, its final re-
fined orientation is obtained by q{ = Aq; + q;, and further

) L s
normalized to unit with m.

2. Training Details

In this section, we introduce more details of training data
generation and training process.
Constructing View-Graph for YFCC100: We use the
YFCCI00’s reconstruction as the ground-truth camera ori-
entation for training. To build the missing view-graph for
every YFCCI00 scene, the COLMAP [13] is used to ex-
tract 2D key-point features in every image at beginning,
and the vocabulary tree is built to match each image against
its visual 20 nearest neighbours. Then, any two nodes are

connected by an edge if the five-points algorithm [8] yields
a valid relative orientation. Lastly, for all YFCCI00 and
1DSfM scenes, the view-graph is transformed from directed
to un-directed by adding reverse edges with the inverse rel-
ative orientation {qi_jl, (1,7) € E}.

Sampling Training Sub-graphs: Recall that we sample
multiple sub-graphs during training due to the limited GPU
memory. Given the full view-graph G = {V, E'}, we aim to
find a sub-graph G5 = {Vs, F} with maximum N, nodes.
Firstly, a node v, € V is randomly chosen as the root
node, then we start Breadth-first Search (BFS) from node
vy, and add all visited nodes into sampled node set {V;} un-
til |[V5| = Nj. Later, the sampled edge set E is formed by
adding all edges (u, v) that connects any two nodes u € Vj
and v € Vj in sampled node set {V;}. We randomly sam-
ple 10-200 sub-graphs from each view-graph of YFCC100
scene, depending on its total number of nodes. Typically,
this generates 3,000 — 4,000 sub-graphs for training. As
for the /1DSfM dataset, we randomly sample 250-300 sub-
graphs from each scene, and form a training set with a total
of 3000-3500 sub-graphs.

Implementation and Parameter Initialization: Our
model is implemented with the PyTorch [9] frame-
work. We use the pytorch-geometric [4]s
Edge Convolution implementation for constructing
the Appearance-Fusion Network while the Multi-Source
Propagator is implemented using the DGL library [15].

For training on the YFCCI00 dataset, the parameters

of VGGI16 [14] and VLAD layer in Feature Extractor
are copied from the trained NetVLADI[!] model, and the
FineNet is initialized with the model trained by NeuRoRA’s
synthetic data [10]. Edge Convolution layers in AGF
and other MLPs are randomly filled by PyTorch’s default ini-
tialization generator. Later, the model trained on YFCCI00
is used to initialize the parameters when fine-tuning the
1DSfM dataset.
Training: Recall that due to the memory limitation, our
model is trained in three stages, with each stage containing
30, 80 or 180 nodes in sampled sub-graphs. We first use
sub-graphs with 30 nodes to train our full model till it con-
verges. Then, we fix the parameters of Feature Extractor
for memory efficiency and train subsequent modules with
80 nodes. When training on sub-graphs with 180 nodes,
in order to get better generalization, a pair of FineNet that
shared the parameters are chained sequentially such that the
output of the first FineNet is fed into the second FineNet.
Thus, the total loss for the sub-graph with 180 nodes is:

L' = Le + Linit + Lopt + wWopt Laps M)

where the L, and L2, are the same loss function (Equa-
tion 13 in main paper) applied to the output of the first and
the second FineNet, while weight w,,; = 2.0 balances the
two term.
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Figure 2. Test pipeline, please refer to the main text for specific details.

Adam optimizer [7] is used to train our pipeline with dif-
ferent learning rates in various modules, as shown in Ta-
ble 1. It takes 36 hours (for 15 epochs) to train the first

Module ‘ Ir
Node and Edge Feature Extraction | 1.0 x 1073
AGF Network 1.0 x 1074
FineNet 1.0x 1074

Table 1. The learning rates used in training various modules.

stage with 30 nodes in each sub-graph. For the following
two stages, the training can be accelerated by caching the
node and edge features to disk during the first epoch. We
then train the model with another 39 epochs, with the two
stages costing 24 hours and 36 hours, respectively.

3. Test Details

In this section, we provide additional testing details. The
Fig. 2 shows the overview of the test procedure, including
1) sampling multiple sub-graphs from a full view-graph that
covers all edges; 2) generating edge weights for each sub-
graph using AGF and later aggregate into full view-graph;
3) iterative edge weight refinement with MSP and FineNet
in testing time. The following sections will detail the test
pipeline.

3.1. Sub-graph Sampling During Testing

Recall that limited GPU memory prevents us from load-
ing neither all images and correspondences nor all node
and edge features at once. Therefore, we also sample
sub-graphs from a view-graph to circumvent the limita-
tions. However, compared to the training, the sampled sub-
graphs set must cover all edges in the graph G during test-
ing. Therefore, we aim to sample a sub-graph set S =
{S1,...,Sk} from the original view-graph G = {V, E},
where each sub-graph has Ny = 80 nodes and all edges in
the original graph G are covered by any sub-graph in S¢.

The sub-graph set is constructed iteratively, we build a
residual graph G* = {V I RE} by duplicating G at begin-
ning; Next, we sample a sub-graph S, = {Vj, E}} from
G using BFS, and then delete the ), from residual graph

GT. Specifically, we delete edges e € ET that were previ-
ously sampled in Sy, and a node v € V# is removed if no
adjacent edge exists. Later, the remaining residual graph
G is used for sampling new sub-graphs in the following
iterations. The sampling stops when |E®| = 0, where
all edges in E are covered in the sub-graph set Si. Note
that the number of nodes |Vj| of the sampled sub-graph S
might be less than IV, after several iterations. Therefore,
another function ExpandSubGraph is called to apply BFS
on the original G to extend Vj, until |V| = N;. The steps
are summarized in Algorithm 1.

Algorithm 1: Sub-graph Sampling During Testing

Input : G ={V,E}
Output: Sub-graph sets S¢ = {S1, ..

.,Sk},Si = {‘/Z»EZ}

Initialization:
1 Sg+— 0;ER — E;VE VvV
2 k+1

while (|ET| # 0) do
3 vr 4 random(VE)
4 Sy < BFS(VE ER )
if |V| < N then
5 \ Sk + EzpandSubGraph(V, E, Sk)

> copy original view-graph G

> select a random node to BFS
> find sub-graph nodes

end
6 Sg « Sqg U {Sk}
7 ER « ER _E, > update residual graph GF
8 VE « {u,v|e = (u,v),e € ER}
9 k+—k+1
end

3.2. Building Complete Graph from Sub-graphs

Given a sampled sub-graphs set S as input, we first
construct the complete view-graph with weights on all
edges. Specifically, this is done by first feeding the sub-
graphs into the Feature Extractor and AGF modules, and
caching the output edge weights. Note that the input node
and edge features can be pre-computed and cached onto the
disk at the beginning. Computation of relative poses and
construction of the view-graph can similarly be done before
the feed-forward for efficiency. Next, a complete weighted
view-graph is aggregated where the edge’s weight is com-
puted by the average of its weights in all sub-graphs con-
taining it, resulting in w°. Later, the full view-graph with



initial edge-weights is then fed together into the MSP fol-
lowed by Finenet, and finally refined together using Itera-
tive Edge Weight Refinement.

3.3. Edge Weight Refinement

Recall that the edge weight w” might be imprecise. With
the fully-differentiable MSP and FineNet modules, we can
refine the edge weights by minimizing the discrepancy er-
ror towards relative orientation measurement. In practice,
to speed up the overall refining process, we first obtain an
approximate initial solution without involving the FineNet
and minimize the following energy term w.r.t initial candi-
dates (M = 15) produced by MSP

D D uwiheld

meM (i,j)eE

\M||E| Qi aif). (@)

Here, the dy(qq, gb) = min(||d.—as||, ||de+qs||) defines

the distance of two quaternions and p denotes smooth L4
costs:

x| —0.5a if x| > «a

(o) = {' | x ®

0.5x if x| <o’

where o« = 5 x 1072, The rotation q;; is computed using
absolute orientations generated by MSP. We use Adam op-
timizer and set the learning rate I = 1.0 to minimize the
E’ with 20 iterations, resulting in the approximate refined
weight w’. Note that the weight w is normalized at any it-
eration by a sigmoid function to clamp the range from O
to 1 before feeding into the MSP.

Later, the weight w’ is further refined by fixing the pa-
rameters of FineNet module, and use the same Adam op-
timizer (with [r = 1.0) to minimize the following energy
until convergence:

i X, 2,
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Similar to [6, 10], given the outputs from MSP, we empiri-
cally select the initial candidate that has the highest sum of
adjacent weights of the reference node, and then feed it into
FineNet to get refined absolute orientations {q/,i € V}.
Later, the relative rotation quj is computed using refined
absolute orientations.

4. Additional Experiments

Execution Time: Table 2 reports the execution times of
our method using the 1DSfM dataset. It includes the time

costs of both, AGF and Iterative Refinement steps. Note that
the features for nodes and edges can be extracted and pre-
cached when computing the relative poses between any two
images at initialization. The running time of NeuRoRA[10]
and Chatterjee[2] (IRLS) are also shown for comparison'.
NeuRoRA is regression-based and is the fastest since it
produces results with a single forward pass, while, as dis-
cussed in [12], pose regression is generally less accurate.
Our method is slower because of the iterative edge re-
weighting, which produces more accurate results. Com-
pared to IRLS[2], our method runs faster in larger scenes
(e.g. Piccadilly, 2152 nodes) while slower in smaller
scenes, as large scenes could benefit from massive GPU par-
allelization. Our overall running time is acceptable for the
current SfM pipeline, e.g. Global SfM [3] takes 578s for
Alamo and 1480s for Piccadilly.

Iter. Ours

AGF | Refine | Total || IRLS[2] | NeuRoRA[10]
Alamo 16s 65s 81s 20.5s 2.2s
Ellis Island 6s 38s 44s 2.5s 0.4s
GendrmMarket 4s 49s 53s 11.1s 0.5s
Madrid 6s 36s 42s 3.2s 0.2s
Montreal N. D. 13s 40s 53s 9.1s 1.0s
Piazza D. P. 8s 31s 39s 3.3s 0.4s
Roman F. 18s 97s 115s 20.2s 1.3s
T. London Ss 42s 47s 1.9s 0.3s
U. Square 7s 48s 55s 6.8s 0.6s
V. Cathedra 33s 114 147s 48.1s 2.1s
Yorkminster 6s T7s 83s 4.0s 0.4s
NYC Lib. 6s 43s 49s 4.8s 0.2s
Piccadilly 98s 262s | 360s 449s 6s

Table 2. Time costs (sec.) of each step (AGF, Iterative Refinement)
and the comparison with Chatterjee[2](IRLS) and NeuRoRA[10]
on IDSfM.

Outlier Impact: We follow NeuRoRA[10] and test our
pipeline w.r.t different levels of outliers in the louvre
scene (624 nodes, YFCCI100). In order to construct dif-
ferent outlier levels, similar to [10], for all edges in view-
graph, we first corrupt their ground-truth relative rotations
by a Gaussian noise with std =30 °. Then, we randomly
select edges by the percentage of v as outliers and replace
their orientations with random orientations. From Table 3,
when v=40% of edges are outliers, the performance drops
considerably.

¥=5% | v=10% | v=40% | =50 %
mean err. 2.1° 2.2° 3.3° 4.97°
median err. 3.13° 3.44° 4.83° 6.64°

Table 3. The rotation error in deg. w.r.t ratio of outliers (7).

IThe execution time is reported in [10].
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