
End-to-End Rotation Averaging with Multi-Source Propagation
Supplementary Material

Luwei Yang1 Heng Li1 Jamal Ahmed Rahim1 Zhaopeng Cui2* Ping Tan1∗

1 Simon Fraser University 2 State Key Lab of CAD & CG, Zhejiang University
{luweiy, lihengl, jrahim, pingtan}@sfu.ca, zhpcui@zju.edu.cn

To make our submission self-contained, the supple-
mentary material provides additional details about: 1)
The Network and Modules; 2) Training; 3) Test & It-
erative Edge Weight Refinement, and lastly 4) additional
experiments on execution time and outlier impact. The
code demonstration and dataset (YFCC100) are available at
https://github.com/sfu-gruvi-3dv/msp rot avg.

1. Network Details
In this section, we provide additional details of the net-

work modules, as we mentioned in the main paper.
Feature Extraction Module: The Feature Extraction Mod-
ule extracts useful information for the graph nodes and
edges from images with matched correspondences. Re-
call that it employs cluster-based aggregation for obtaining
fixed-size node features and edge features regardless of ar-
bitrary input dimensions and the number of feature matches.

For constructing the node feature at a node i, we first ex-
tract feature maps F4

i (512 channels) from VGG16 [14]’s
layer group 4. The VLAD pooling operation applies k-
means to cluster all the pixels from the feature maps F4

i

into P = 64 groups, resulting in a pooled VLAD feature
gi. We then finally reduce the channel size of gi with a
1 × 1 convolution, producing the node feature, ĝi, with a
size of 32 × 64. For constructing the edge feature for an
edge i, j, we first reduce the channels of the feature maps
F4 to 64 channels with another 1× 1 convolution, resulting
in F̂4. Given that the edge connects node i and j with n
pairs of matches, we gather the features from each pair of
correspondence:

{fij}n = {[x̃ai , x̃bj , fai , f bj]}n

where fai = F̂4
i (x

a
i) and f bj = F̂4

j (x
b
j) are the features of

points a, b in the feature map F̂4
i , F̂

4
j . The x̃ai , x̃

b
j are 2D

positions of keypoints a, b on frames i, j, and normalized to
[-1, 1]; Next, a two-layer MLPs φ(·) with {128, 64} hidden
units is used to generate a vector encoding the features, and

*Corresponding authors.

Edge Conv. #1
Input: Node(32x64), Edge(10x64)

Ouptut: Node(128), Edge(128)

Edge Conv. #2
Input: Node(128), Edge(128)

Ouptut: Node(128), Edge(128)

Edge Conv. #4
Input: Node(256), Edge(256)

Ouptut: Node(128), Edge(128)

Edge Conv. #5
Input: Node(256), Edge(256)

Ouptut: Node(128), Edge(128)

Edge Conv. #6
Input: Node(256), Edge(256)

Ouptut: Node(128), Edge(128)

MLP
Sigmoid

Edge Conv. #3
Input: Node(256), Edge(256)

Ouptut: Node(128), Edge(128)

+ +

+ +

+ +

+ +

concatenate
node & edge feat.

edge weight.

Figure 1. Structure of Appearance-Geometry Fusion Network.
The size of input and output feature is listed in each Edge
Convolution layer.

yield a n × 64 feature: {f̂ij}n = {φ(fij)}n; Lastly, to re-
move any dependency on the number of matches, we apply
k-means clustering to the positions of keypoint {x̃i}n, re-
sulting in K = 10 different groups. Then, for all features
that belongs to a cluster groupm, {f̂ij}mn , we use Maxpool
to aggregate the feature set to a single vector feature and get

https://github.com/sfu-gruvi-3dv/msp_rot_avg

our edge features eij = {maxpool({f̂ij}mn)|m < K}.
The aggregate function Maxpool is chosen as it is sym-
metric for all items regardless of ordering dependency [11].
This results in edge features with a fixed dimension of
10× 64.
AGF Network Structure: The Appearance-Geometry Net-
work takes the node and edge feature, along with the mea-
sured relative geometry as input, and predicts a weight
for each edge, which indicates whether the edge is reli-
able or not; The Figure 1 shows the structure of AGF Net-
work. The AGF consists of 6 Edge Convolution layers[5],
each with 128 hidden units. Note that from layer #3 to
#6, the input node and edge features are concatenated out-
put node and edge features from the previous two Edge
Convolution layers, respectively. For example, the
output node features from Edge Conv.#1 and Edge
Conv.#2 are concatenated as the input node features for
Edge Conv.#3. Similarly, the input edge features for
Edge Conv.#3 is the concatenation of the edge features
Edge Conv.#1 and Edge Conv.#2. Lastly, a MLP
layer followed by a sigmoid activation is appended to the
output edge features from Edge Conv.#6, and generates
the normalized weight on each edge {wij |(i, j) ∈ E, 0 <
wij < 1}.
Self-loops in MSP: In MSP, we add a virtual self-loop for
each node in the view-graph with a preset weight 1.0. This
will fix the rotation at the node when it reaches a high confi-
dence score and will not propagate much information from
neighbors in the subsequent iterations.
FineNet Structure: With the initialized orientation as the
node input and relative rotation as the edge input, the
FineNet [10] is used to produce the refined orientation
for all nodes in a view-graph. FineNet consists of 4 lay-
ers of Edge Convolution. The input node features are the
initial camera orientations qi, and edge features are the
residual of the estimated and measured relative rotations:
fij = q−1j q̃ijqi. With the input node and edge features,
the FineNet produces the residual orientation ∆qi over the
initial orientation qi for each node i ∈ V . Later, its final re-
fined orientation is obtained by qfi = ∆qi+qi, and further
normalized to unit with qf

||qf || .

2. Training Details

In this section, we introduce more details of training data
generation and training process.
Constructing View-Graph for YFCC100: We use the
YFCC100’s reconstruction as the ground-truth camera ori-
entation for training. To build the missing view-graph for
every YFCC100 scene, the COLMAP [13] is used to ex-
tract 2D key-point features in every image at beginning,
and the vocabulary tree is built to match each image against
its visual 20 nearest neighbours. Then, any two nodes are

connected by an edge if the five-points algorithm [8] yields
a valid relative orientation. Lastly, for all YFCC100 and
1DSfM scenes, the view-graph is transformed from directed
to un-directed by adding reverse edges with the inverse rel-
ative orientation {q−1ij , (i, j) ∈ E}.
Sampling Training Sub-graphs: Recall that we sample
multiple sub-graphs during training due to the limited GPU
memory. Given the full view-graph G = {V,E}, we aim to
find a sub-graph Gs = {Vs, Es} with maximum Ns nodes.
Firstly, a node vr ∈ V is randomly chosen as the root
node, then we start Breadth-first Search (BFS) from node
vr, and add all visited nodes into sampled node set {Vs} un-
til |Vs| = Ns. Later, the sampled edge set Es is formed by
adding all edges (u, v) that connects any two nodes u ∈ Vs
and v ∈ Vs in sampled node set {Vs}. We randomly sam-
ple 10-200 sub-graphs from each view-graph of YFCC100
scene, depending on its total number of nodes. Typically,
this generates 3,000 – 4,000 sub-graphs for training. As
for the 1DSfM dataset, we randomly sample 250-300 sub-
graphs from each scene, and form a training set with a total
of 3000-3500 sub-graphs.
Implementation and Parameter Initialization: Our
model is implemented with the PyTorch [9] frame-
work. We use the pytorch-geometric [4]’s
Edge Convolution implementation for constructing
the Appearance-Fusion Network while the Multi-Source
Propagator is implemented using the DGL library [15].

For training on the YFCC100 dataset, the parameters
of VGG16 [14] and VLAD layer in Feature Extractor
are copied from the trained NetVLAD[1] model, and the
FineNet is initialized with the model trained by NeuRoRA’s
synthetic data [10]. Edge Convolution layers in AGF
and other MLPs are randomly filled by PyTorch’s default ini-
tialization generator. Later, the model trained on YFCC100
is used to initialize the parameters when fine-tuning the
1DSfM dataset.
Training: Recall that due to the memory limitation, our
model is trained in three stages, with each stage containing
30, 80 or 180 nodes in sampled sub-graphs. We first use
sub-graphs with 30 nodes to train our full model till it con-
verges. Then, we fix the parameters of Feature Extractor
for memory efficiency and train subsequent modules with
80 nodes. When training on sub-graphs with 180 nodes,
in order to get better generalization, a pair of FineNet that
shared the parameters are chained sequentially such that the
output of the first FineNet is fed into the second FineNet.
Thus, the total loss for the sub-graph with 180 nodes is:

L180 = Le + Linit + L1
opt + ωoptL

2
opt, (1)

where the L1
opt and L2

opt are the same loss function (Equa-
tion 13 in main paper) applied to the output of the first and
the second FineNet, while weight ωopt = 2.0 balances the
two term.

sa
m
pl
in
g

A
gg
re
ga
te

(m
ea

n)

Full View Graph Full View Graph
(with edge weights)

Iterative Weight Refining
with MSP

Iterative Weight Refining
with MSP + FineNetSampled Subgraphs

A
G

F
N

et
A

G
F

N
et

A
G

F
N

et
A

G
F

N
et

A
G

F
N

et
A

G
F

N
et

Sub. B

Sub. A

Sub. C

Pre-computed
Node and Edge Feat.

Pre-computed
Node and Edge Feat.

Pre-computed
Node and Edge Feat.

Multi-Source
Propagation.

…

Multi-Source
Propagation.

…

Fi
ne

N
et

Fi
ne

N
et

loss loss

Figure 2. Test pipeline, please refer to the main text for specific details.

Adam optimizer [7] is used to train our pipeline with dif-
ferent learning rates in various modules, as shown in Ta-
ble 1. It takes 36 hours (for 15 epochs) to train the first

Module lr
Node and Edge Feature Extraction 1.0× 10−3

AGF Network 1.0× 10−4

FineNet 1.0× 10−4

Table 1. The learning rates used in training various modules.

stage with 30 nodes in each sub-graph. For the following
two stages, the training can be accelerated by caching the
node and edge features to disk during the first epoch. We
then train the model with another 39 epochs, with the two
stages costing 24 hours and 36 hours, respectively.

3. Test Details
In this section, we provide additional testing details. The

Fig. 2 shows the overview of the test procedure, including
1) sampling multiple sub-graphs from a full view-graph that
covers all edges; 2) generating edge weights for each sub-
graph using AGF and later aggregate into full view-graph;
3) iterative edge weight refinement with MSP and FineNet
in testing time. The following sections will detail the test
pipeline.

3.1. Sub-graph Sampling During Testing

Recall that limited GPU memory prevents us from load-
ing neither all images and correspondences nor all node
and edge features at once. Therefore, we also sample
sub-graphs from a view-graph to circumvent the limita-
tions. However, compared to the training, the sampled sub-
graphs set must cover all edges in the graph G during test-
ing. Therefore, we aim to sample a sub-graph set SG =
{S1, . . . , Sk} from the original view-graph G = {V,E},
where each sub-graph has Ns = 80 nodes and all edges in
the original graph G are covered by any sub-graph in SG.

The sub-graph set is constructed iteratively, we build a
residual graph GR = {V R, RR} by duplicating G at begin-
ning; Next, we sample a sub-graph Sk = {Vk, Ek} from
GR using BFS, and then delete the Sk from residual graph

GR. Specifically, we delete edges e ∈ ER that were previ-
ously sampled in Sk, and a node v ∈ V R is removed if no
adjacent edge exists. Later, the remaining residual graph
GR is used for sampling new sub-graphs in the following
iterations. The sampling stops when |ER| = 0, where
all edges in E are covered in the sub-graph set SG. Note
that the number of nodes |Vk| of the sampled sub-graph Sk
might be less than Ns after several iterations. Therefore,
another function ExpandSubGraph is called to apply BFS
on the original G to extend Vk until |Vk| = Ns. The steps
are summarized in Algorithm 1.

Algorithm 1: Sub-graph Sampling During Testing
Input : G = {V,E}
Output: Sub-graph sets SG = {S1, . . . , Sk}, Si = {Vi, Ei}
Initialization:

1 SG ← ∅;ER ← E;V R ← V . copy original view-graph G
2 k ← 1

while (|ER| 6= 0) do
3 vr ← random(V R) . select a random node to BFS
4 Sk ← BFS(V R, ER, vr) . find sub-graph nodes

if |Vk| < Ns then
5 Sk ← ExpandSubGraph(V,E, Sk)

end
6 SG ← SG ∪ {Sk}
7 ER ← ER − Ek . update residual graph GR

8 V R ← {u, v|e = (u, v), e ∈ ER}
9 k ← k + 1

end

3.2. Building Complete Graph from Sub-graphs

Given a sampled sub-graphs set SG as input, we first
construct the complete view-graph with weights on all
edges. Specifically, this is done by first feeding the sub-
graphs into the Feature Extractor and AGF modules, and
caching the output edge weights. Note that the input node
and edge features can be pre-computed and cached onto the
disk at the beginning. Computation of relative poses and
construction of the view-graph can similarly be done before
the feed-forward for efficiency. Next, a complete weighted
view-graph is aggregated where the edge’s weight is com-
puted by the average of its weights in all sub-graphs con-
taining it, resulting in w0. Later, the full view-graph with

initial edge-weights is then fed together into the MSP fol-
lowed by Finenet, and finally refined together using Itera-
tive Edge Weight Refinement.

3.3. Edge Weight Refinement

Recall that the edge weight w0 might be imprecise. With
the fully-differentiable MSP and FineNet modules, we can
refine the edge weights by minimizing the discrepancy er-
ror towards relative orientation measurement. In practice,
to speed up the overall refining process, we first obtain an
approximate initial solution without involving the FineNet
and minimize the following energy term w.r.t initial candi-
dates (M = 15) produced by MSP

E′ =
1

|M ||E|
∑
m∈M

∑
(i,j)∈E

w0
ijρ(dq(q̃ij ,q

m
ij)). (2)

Here, the dq(qa,qb) = min(||qa−qb||, ||qa+qb||) defines
the distance of two quaternions and ρ denotes smooth L1

costs:

ρ(x) =

{
|x| − 0.5α if |x| > α
0.5x2

α if |x| ≤ α
, (3)

where α = 5 × 10−2. The rotation qmij is computed using
absolute orientations generated by MSP. We use Adam op-
timizer and set the learning rate lr = 1.0 to minimize the
E′ with 20 iterations, resulting in the approximate refined
weight w′. Note that the weight w is normalized at any it-
eration by a sigmoid function to clamp the range from 0
to 1 before feeding into the MSP.

Later, the weight w′ is further refined by fixing the pa-
rameters of FineNet module, and use the same Adam op-
timizer (with lr = 1.0) to minimize the following energy
until convergence:

E =
1

|M ||E|
∑
m∈M

∑
(i,j)∈E

w′ijρ(dq(q̃ij ,q
m
ij))

+
1

|E|
∑

(i,j)∈E

w′ijρ(dq(q̃ij ,q
f
ij)). (4)

Similar to [6, 10], given the outputs from MSP, we empiri-
cally select the initial candidate that has the highest sum of
adjacent weights of the reference node, and then feed it into
FineNet to get refined absolute orientations {qfi , i ∈ V }.
Later, the relative rotation qfij is computed using refined
absolute orientations.

4. Additional Experiments
Execution Time: Table 2 reports the execution times of
our method using the 1DSfM dataset. It includes the time

costs of both, AGF and Iterative Refinement steps. Note that
the features for nodes and edges can be extracted and pre-
cached when computing the relative poses between any two
images at initialization. The running time of NeuRoRA[10]
and Chatterjee[2] (IRLS) are also shown for comparison1.
NeuRoRA is regression-based and is the fastest since it
produces results with a single forward pass, while, as dis-
cussed in [12], pose regression is generally less accurate.
Our method is slower because of the iterative edge re-
weighting, which produces more accurate results. Com-
pared to IRLS[2], our method runs faster in larger scenes
(e.g. Piccadilly, 2152 nodes) while slower in smaller
scenes, as large scenes could benefit from massive GPU par-
allelization. Our overall running time is acceptable for the
current SfM pipeline, e.g. Global SfM [3] takes 578s for
Alamo and 1480s for Piccadilly.

Iter. Ours
AGF Refine Total IRLS[2] NeuRoRA[10]

Alamo 16s 65s 81s 20.5s 2.2s
Ellis Island 6s 38s 44s 2.5s 0.4s

GendrmMarket 4s 49s 53s 11.1s 0.5s
Madrid 6s 36s 42s 3.2s 0.2s

Montreal N. D. 13s 40s 53s 9.1s 1.0s
Piazza D. P. 8s 31s 39s 3.3s 0.4s
Roman F. 18s 97s 115s 20.2s 1.3s
T. London 5s 42s 47s 1.9s 0.3s
U. Square 7s 48s 55s 6.8s 0.6s

V. Cathedra 33s 114 147s 48.1s 2.1s
Yorkminster 6s 77s 83s 4.0s 0.4s
NYC Lib. 6s 43s 49s 4.8s 0.2s
Piccadilly 98s 262s 360s 449s 6s

Table 2. Time costs (sec.) of each step (AGF, Iterative Refinement)
and the comparison with Chatterjee[2](IRLS) and NeuRoRA[10]
on 1DSfM.

Outlier Impact: We follow NeuRoRA[10] and test our
pipeline w.r.t different levels of outliers in the louvre
scene (624 nodes, YFCC100). In order to construct dif-
ferent outlier levels, similar to [10], for all edges in view-
graph, we first corrupt their ground-truth relative rotations
by a Gaussian noise with std σ=30 °. Then, we randomly
select edges by the percentage of γ as outliers and replace
their orientations with random orientations. From Table 3,
when γ=40% of edges are outliers, the performance drops
considerably.

γ=5% γ=10% γ=40 % γ=50 %
mean err. 2.1° 2.2° 3.3° 4.97°

median err. 3.13° 3.44° 4.83° 6.64°

Table 3. The rotation error in deg. w.r.t ratio of outliers (γ).

1The execution time is reported in [10].

References
[1] Relja Arandjelović, Petr Gronat, Akihiko Torii, Tomas Pa-

jdla, and Josef Sivic. Netvlad: Cnn architecture for weakly
supervised place recognition. IEEE Conf. Comput. Vis. Pat-
tern Recog., 2016. 2

[2] Avishek Chatterjee and Venu Madhav Govindu. Efficient and
robust large-scale rotation averaging. Int. Conf. Comput. Vis.,
2013. 4

[3] Zhaopeng Cui and Ping Tan. Global structure-from-motion
by similarity averaging. Int. Conf. Comput. Vis., 2015. 4

[4] Matthias Fey and Jan E. Lenssen. Fast graph representa-
tion learning with PyTorch Geometric. In ICLR Workshop on
Representation Learning on Graphs and Manifolds, 2019. 2

[5] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol
Vinyals, and George E. Dahl. Neural message passing for
quantum chemistry. 2017. 2

[6] Richard Hartley, Khurrum Aftab, and Jochen Trumpf. L1
rotation averaging using the weiszfeld algorithm. IEEE Conf.
Comput. Vis. Pattern Recog., 2011. 4

[7] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 3

[8] David Nistér. An efficient solution to the five-point rela-
tive pose problem. IEEE Trans. Pattern Anal. Mach. Intell.,
26(6):756–770, 2004. 2

[9] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019. 2

[10] Pulak Purkait, Tat-Jun Chin, and Ian Reid. Neurora: Neural
robust rotation averaging. Eur. Conf. Comput. Vis., 2020. 2,
4

[11] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. IEEE Conf. Comput. Vis. Pattern Recog.,
2017. 2

[12] Torsten Sattler, Qunjie Zhou, Marc Pollefeys, and Laura
Leal-Taixe. Understanding the limitations of cnn-based ab-
solute camera pose regression. IEEE Conf. Comput. Vis. Pat-
tern Recog., 2019. 4

[13] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise View Selection for Un-
structured Multi-View Stereo. Eur. Conf. Comput. Vis., 2016.
2

[14] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 1, 2

[15] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei
Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu, Yu

Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li,
and Zheng Zhang. Deep graph library: A graph-centric,
highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2019. 2

