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Implementation Details

Logistic Regression

• The objective function considered in this part is:

min
θ∈Rn

Ψ(θ) =
1

N

N∑
i=1

log(1 + exp(−yi〈xi, θ〉) + µ‖θ‖22,

where {xi, yi} ∈ Rn × {−1, 1}, i ∈ [1, 2, . . . , N ].

• A description of the datasets is shown in Table 1.

• We describe the implementation details of the algorithms used in this part.

– SGD: The batch size is set to be 1.

– L-BFGS: The source code is downloaded from the website 1 and the default parameters are used.

– SSN: The batch size SH for the subsampled Hessian matrix is min{2000, b0.01Nc}. The batch size of the sub-
sampled gradient |Sg| is changing as min{|Sg| · 1.1, N}.

– S4QN: The set up of the subsampled Hessian Hk is the same as SSN. The matrix Λk is generated by the stochastic
L-BFGS method and the memory size is 5.

Deep Learning

We now present the detailed implementation for the deep learning problems. The batch size for all methods is the same, i.e.,
512 for Autoencoders and 256 for CNNs (ConvNet and ResNet-18). The hyper-parameters of Adam for all three architectures
are tuned by using the grid search as follows.

• The initial learning rate is from {3e-2, 1e-2, 3e-3, 1e-3, 3e-4, 1e-4}.

• The parameters β1 and β2 are tuned in {0.9,0.99} and {0.99, 0.999}, respectively.

1https://www.cs.ubc.ca/˜schmidtm/Software/minFunc.html



Dataset # Data points N # Dimension n

rcv1 20, 242 47, 236
news20 19, 996 1, 355, 191

Table 1: A description of the datasets in logistic regression.

Dataset # Training # Testing Architecture Loss

MNIST 60,000 10,000 784-1000-500-250-30-250-500-1000-784 Cross-entropy
FACES 103,500 62,100 625-1000-500-250-30-250-500-1000-625 Mean squared error

CURVES 20,000 10,000 784-1000-500-250-30-250-500-1000-784 Cross-entropy

Table 2: The corresponding information in autoencoders.

• The perturbation value ε is 1e-8.

The hyper-parameters of other methods are tuned for their best numerical performance depending on the network architec-
tures. We list the experimental settings and tuning mechanisms into two parts, Autoencoders and CNNs (including ConvNet
and ResNet-18), respectively.

Autoencoders

• Autoencoders are fully-connected neural networks. We test autoencoders on three datasets. The corresponding infor-
mation is reported in Table 2.

• We describe the implementation details of the algorithms used in autoencoders.

– SGD: The stochastic gradient method with momentum 0.9. The weight decay is set to be 10−5 and the learning
rate is fixed to be the best one from η0 ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5}.

– KFAC: The learning rate is set to η = η0β̂
epoch. η0 and β̂ is determined through grid search from η0 ∈ {0.3, 0.5, 1}

and β̂ ∈ {0.99, 1}. The damping and the momentum parameter are set to be 0.2 and 0.9, respectively.

– SKQN-L: The learning rate is set to 1 in autoencoder for MNIST and FACES, 1.5 for CURVES. The parameter γk
is set to 0.2× (epoch)0.99. The momentum is set to be 0.9 and the memory size is 5.

– SKQN-B1/SKQN-B2: The learning rate is set to 0.7 in autoencoder for MNIST, 0.4 for FACES and 0.8 for
CURVES. The damping is γ0 × (epoch)0.99 with γ0 = 0.1 for MNIST and CURVES, 0.2 for FACES. The BFGS
damping is set to be 0.5 and the momentum is 0.9.

Deep CNNs

In this part, we describe the implementation details for ConvNet and ResNet-18. The loss function is cross-entropy in these
two problems. The hyper-parameters of each method are the same for both case unless otherwise specified.

• The network architectures used in ConvNet and ResNet-18 are presented in Figure 1. “conv” in the figure means a
sequence of convolutional kernel, Batch Normalization layer and Relu function. The numbers next to “conv” is the
number of the channels of the outputs.

• SGD: The momentum is set to be 0.9. The learning rate is is set to η = η0(1 − epoch/epoch end)β̂ . The parameters
are determined by grid searching for the best result from α0 ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5}, epoch end ∈
{80, 85, 90} and β̂ ∈ {4, 4.5, 5, 5.5, 6}.



(a) ConvNet

(b) ResNet-18

Figure 1: Network Architecture of ConvNet and ResNet-18.

• KFAC: The learning rate is η = η0(1 − epoch/epoch end)β̂ . The parameters are also determined from η0 ∈
{0.01, 0.05, 0.1, 0.2, 0.5}, epoch end ∈ {70, 75, 80, 85} and β̂ ∈ {4, 5, 6}. The damping parameter and the momen-
tum parameter are set to 0.7η0, 0.9, respectively. The curvature matrix is evaluated and inverted every 50 iterations.

• SKQN-L: The memory size is 1. The learning rate is set to be η = η0(1 − epoch/epoch end)β̂ . We set η0 = 0.1,
epoch end = 85, β̂ = 4 in the ConvNet and η0 = 0.15, epoch end = 80, β̂ = 6 in the ResNet-18, respectively. The
damping is 0.7× η0(η/η0)1/5.

• SKQN-B1: The learning rate for both cases is η = 0.1 · (1− epoch/80)5. The damping is 0.8× 0.1 · (η/0.1)1/5 in deep
CNN problems.

• SKQN-B2: The learning rate is set to be η = η0(1 − epoch/epoch end)β̂ where we set η0 = 0.12, epoch end = 85,
β̂ = 5 in the ConvNet and η0 = 0.1, epoch end = 85, β̂ = 5 in the ResNet-18. The damping is 0.8× η0(η/η0)1/5.

A. Proof of Theorem 1

Proof. It follows from Assumption 2.1) that the descent property holds:

Ψ(y) ≤ Ψ(x) + 〈∇Ψ(x), y − x〉+
LΨ

2
‖y − x‖2. (1)



Applying (1) and the Young inequality, we obtain:

Ψ(θk+1)−Ψ(θk)

≤〈∇Ψ(θk), θk+1 − θk〉+
LΨ

2
‖θk+1 − θk‖2

≤
〈
∇Skg Ψ(θk),−(λkI +Bk)−1∇Skg Ψ(θk)

〉
+
〈
∇Ψ(θk)−∇Skg Ψ(θk),−(λkI +Bk)−1∇Skg Ψ(θk)

〉
+
LΨ

2
‖(λkI +Bk)−1‖22‖∇Skg Ψ(θk)‖22

≤− (h+ λk)−1‖∇Skg Ψ(θk)‖22 + λ−1
k ‖∇Ψ(θk)−∇Skg Ψ(θk)‖22 +

λk
4
‖(λkI +Bk)−1‖22‖∇Skg Ψ(θk)‖22

+
LΨ

2
‖(λkI +Bk)−1‖22‖∇Skg Ψ(θk)‖22

≤−
[
(h+ λk)−1 − 1

4
λ−1
k −

LΨ

2
λ−2
k

]
‖∇Skg Ψ(θk)‖22 + λ−1

k ‖∇Ψ(θk)−∇Skg Ψ(θk)‖2.

(2)

Recalling that the parameter λk is adjusted by the norm of the stochastic gradient as follows for a given r1 < 1 < r2:

λk =


2r1

‖gk−1‖+r1α
−1
k ‖gk−1‖ < r1,

2‖gk−1‖
‖gk−1‖+r2α

−1
k ‖gk−1‖ > r2,

α−1
k otherwise,

(3)

we prove that (h+ λk)−1 − 1
4λ
−1
k −

LΨ

2 λ−2
k is positive and bounded in all three cases.

We first consider the case when ‖gk−1‖ ∈ [r1, r2]. Since λ−1
k = αk <

r1
4r2(LΨ+h) , we have LΨ

λk
< 1

4 , and hence

1

h+ λk
− 1

4λk
− LΨ

2λ2
k

>
1

h+ λk
− 3

8

1

λk
>

1

8
αk. (4)

The last inequality follows from λk = α−1
k > 4r2(LΨ+h)

r1
> h. As for the case when ‖gk−1‖ < r1, we have

λ−1
k = αk

‖gk−1‖+ r1

2r1
∈ [

1

2
αk, αk].

Then, we can still obtain
1

h+ λk
− 1

4λk
− LΨ

2λ2
k

>
1

h+ λk
− 3

8

1

λk
>

1

8

1

λk
≥ 1

16
αk. (5)

For the last case when ‖gk−1‖ > r2, it follows

λ−1
k = αk

‖gk−1‖+ r2

2‖gk−1‖
∈ [

1

2
αk, αk],

which implies the desired result as in (5).

Next, by using the Young inequality and taking conditional expectation based on Fk−1 together with E[∇SkgΨ(θk)|Fk−1] =

∇Ψ(θk) yields
E[‖∇Skg Ψ(θk)‖2|Fk−1] =E[‖∇Skg Ψ(θk)−∇Ψ(θk) +∇Ψ(θk)‖2|Fk−1]

=E[‖∇Skg Ψ(θk)−∇Ψ(θk)‖2|Fk−1] + ‖∇Ψ(θk)‖2.
(6)

Taking the expectation related to Skg of (2) on both sides conditioned on Fk−1 and combining (2)-(6), we obtain

E[Ψ(θk+1)−Ψ(θk)|Fk−1]

≤− 1

16
αk‖∇Ψ(θk)‖2 +

[
1

λk
− 1

16
αk

]
E[‖∇Skg Ψ(θk)−∇Ψ(θk)‖2|Fk−1]

≤− 1

16
αk‖∇Ψ(θk)‖2 + β̃kσ

2
k,

(7)



where β̃k = 1
λk
− 1

16αk ≤ (1 − 1
16 )αk. Taking expectation, summing over the inequality and using the assumptions that

there exists Ψinf such that Ψ(θ) ≥ Ψinf,∀θ ∈ domΨ , we obtain:

∞∑
k=1

1

16
αkE‖∇Ψ(θk)‖2 ≤ Ψ(θ1)−Ψ∗ +

∞∑
k=1

β̃kσ
2
k. (8)

Therefore, we have
∑∞
k=1 αkE‖∇Ψ(θk)‖2 < ∞, which implies that

∑∞
k=1 αk‖∇Ψ(θk)‖2 < ∞ almost surely. Conse-

quently, we can infer
lim
k→∞

inf∇Ψ(θk) = 0 almost surely .

Taking expectation, multiplying αk on both sides of inequality (6) and summing over all k yields

∞∑
k=1

αkE‖∇Skg Ψ(θk)‖2 =

∞∑
k=1

αkσ
2
k +

∞∑
k=1

αk‖∇Ψ(θk)‖2 <∞.

By the Young inequality, it implies

∞∑
k=1

α−1
k E‖θk+1 − θk‖2 =

∞∑
k=1

α−1
k E‖(Bk + λkI)−1∇Skg Ψ(θk)‖2

≤
∞∑
k=1

2
1

αk(λk)2
E‖∇Skg Ψ(θk)‖2

< ∞.

It follows that
∞∑
k=1

α−1
k E‖θk+1 − θk‖2 <∞ and

∞∑
k=1

α−1
k ‖θk+1 − θk‖2 <∞ almost surely.

On the events E = {‖∇Ψ(θk)‖ does not converge}, there exists ε > 0 and two increasing sequences {pi}i, {qi}i such that
pi < qi and

‖∇Ψ(θpi)‖ ≥ 2ε, ‖∇Ψ(θqi)‖ < ε, ‖∇Ψ(θk)‖ ≥ ε,

for k = pi + 1, . . . , qi − 1. Thus, it follows that

ε2
∞∑
i=0

qi−1∑
k=pi

αk ≤
∞∑
i=0

qi−1∑
k=pi

αk‖∇Ψ(θk)‖2 ≤
∞∑
k=0

αk‖∇Ψ(θk)‖2 <∞. (9)

Setting ζi =
∑qi−1
k=pi

αk, it follows ζi → 0. Then by the Hölder’s inequality, we obtain

‖θpi − θqi‖ ≤
√
ζi[

qi−1∑
k=pi

α−1
k ‖θk+1 − θk‖2]1/2 → 0.

Due to the Lipschitz property of∇Ψ, we have ‖∇Ψ(θpi)−∇Ψ(θqi)‖ → 0, which is a contradiction. This implies P(E) = 0.
Hence, ∇Ψ(θk) converges to zero almost surely.

�

B. Proof of Theorem 2

Proof. From the inequality (7) in the proof of Theorem 1, we have

E[Ψ(θk+1)−Ψ(θk)|Fk−1] ≤ − 1

16
αk‖∇Ψ(θk)‖2 +

15

16
αkσ

2
k. (10)



Combining the Assumption 3.1) and σ2
k ≤Mσζ

k−1, we have:

E[Ψ(θk+1)−Ψinf|Fk−1] ≤ (1− 1

8
cαk)E[Ψ(θk)−Ψinf|Fk−1] +

15

16
αkMσζ

k−1.

We prove Theorem 2 by induction. For k = 1, the inequality holds by the definition µ = max{Ψ(θ1)−Ψinf,
15Mσ

c }. Then,

we assume the inequality holds for k ∈ N. Combining αk ≡ α < min
{

r1
4r2(LΨ+h) ,

8
c

}
, µ = max{Ψ(θ1)−Ψinf,

15Mσ

c } and

ν = max{ζ, 1− 1
16cα}, we have

E[Ψ(θk+1)−Ψinf|Fk−1] ≤ (1− 1

8
cαk)µνk−1 +

15

16
αkMσζ

k−1

≤ µνk−1

(
1− 1

8
cαk +

15

16
Mσ

αk
µ

)
≤ µνk−1

(
1− 1

16
cαk

)
≤ µνk,

(11)

which proves the inequality for k + 1. This completes the proof of Theorem 2.

�

C. Proof of Theorem 3

We first state the settings of Theorem 3. Consider the case when ψi(θ) = `i(θ) = `(f(xi, θ), yi), where f(·, x) : Rn → Rm.
The Hessian matrix is∇2Ψ(θ) := H(θ) + Π(θ), where

H(θ) =
1

N

N∑
i=1

Hi(θ) =
1

N

N∑
i=1

J if (θ)∇2
f `i(θ)

(
J if (θ)

)>
, (12)

Π(θ) =
1

N

N∑
i=1

Πi(θ) =
1

N

N∑
i=1

m∑
j=1

∇fj `i(θ)∇2
θf
i
j(θ), (13)

where J if (θ) = ∇θf(xi, θ) ∈ Rn×m and f ij(θ) is the j-th component of fi(θ).

Consider the iteration in the neighborhood of θ∗ :

θk+1 = θk −B−1
k ∇Ψ(θk). (14)

Here we consider the true gradient for simplicity and the conclusion also holds for stochastic gradient by adjusting relative
assumptions.

The curvature matrix is
Bk = HSkH (θ) + Λk,

where HSkH (θ) is the base matrix and Λk is the refinement matrix. We formulate HSkH (θ) as

HSkH (θ) =
1

|SkH |
∑
i∈SkH

Hi(θ), (15)

and Λk is generated by the BFGS method. Suppose that Λk satisfies the following secant condition:

Λkuk−1 = vk−1, (16)

where uk−1 = θk − θk−1 and

vk−1 =
1

|Sk−1
H |

∑
i∈Sk−1

H

(
J if (θk)− J if (θk−1)

)
∇f `i(θk)

=
1

|Sk−1
H |

∑
i∈Sk−1

H

m∑
j=1

(
∇θf ij(θk)−∇θf ij(θk−1)

)
∇fj `i(θk).

(17)



We want to prove that if the sample size is sufficiently large, then the stochastic Dennis-More condition holds. Hence, the
local superlinear convergence speed can be guaranteed. A few assumptions are listed below.

Assumption 1 1.1) The sequence {θk} satisfies
∑
k ‖θk−θ∗‖ <∞ a.s. for an optimal point θ∗ where∇2Ψ(θ∗) are positive

definite and there exists λ̃ > 0 such that for i = 1, . . . , n, Πi(θ
∗) � λ̃I.

1.2) The gradient ∇f `i(θ) is bounded, the Hessian ∇2
f `i(θ) is bounded and Lipschitz continuous near θ∗ with Lipschitz

constant L`, ∀i = 1, . . . , N , i.e., ‖∇f `i(θ)‖2 ≤ κ`, ‖∇2
f `i(θ)‖2 ≤ κ̃` and ‖∇2

f `i(θ1) −∇2
f `i(θ1)‖2 ≤ L`‖θ1 − θ2‖,

for any θ1, θ2 near θ∗.

1.3) The gradient∇f ij(θ) is bounded, the Hessian∇2f ij(θ) is bounded and Lipschitz continuous near θ∗ with Lipschitz con-
stant Lf , ∀i = 1, . . . , N and ∀j = 1, . . . ,m, i.e., ‖∇f ij(θ)‖2 ≤ κf , ‖∇2f ij(θ)‖2 ≤ κ̃f and ‖∇2f ij(θ1)−∇2f ij(θ2)‖2 ≤
Lf‖θ1 − θ2‖2 for any θ1, θ2 near θ∗.

Lemma 1 Under Assumption 1, the following conclusions hold:

• The GGN matrix Hi(θ) and Πi(θ) are bounded for i = 1, . . . , n, i.e., there exists constants κH and κΠ such that for all
θ near θ∗,

‖Hi(θ)‖ ≤ κH and ‖Πi(θ)‖ ≤ κΠ.

• J if (θ) is Lipschitz continuous near θ∗ with Lipschitz constant LJ , ∀i = 1, . . . , N , i.e.,

‖J if (θ1)− J if (θ2)‖ ≤ LJ‖θ1 − θ2‖,

for any θ1, θ2 near θ∗.

• H(θ) is Lipschitz continuous near θ∗ with Lipschitz constant LH , ∀i = 1, . . . , N , i.e.,

‖H(θ1)−H(θ2)‖ ≤ LH‖θ1 − θ2‖,

for any θ1, θ2 near θ∗.

Proof. We first prove that Hi(θ) and Πi(θ) are bounded. Recalling Hi(θ) = J if (θ)∇2
f `i(θ)

(
J if (θ)

)>
, we have

‖J if (θ)∇2
f `i(θ)(J

i
f (θ))>‖2 ≤ ‖J if (θ)‖2‖∇2

f `i(θ)‖2‖
(
J if (θ)

)> ‖2
≤ ‖J if (θ)‖F ‖∇2

f `i(θ)‖2‖
(
J if (θ)

)> ‖F . (18)

Since J if (θ) = [∇f i1(θ), . . . ,∇f im(θ)] and ‖∇f ij(θ)‖2 ≤ κf , we have ‖J if (θ)‖F ≤
√
mκf which implies ‖Hi(θ)‖2 ≤

mκ2
f κ̃` := κH . Similarly, we have

‖Πi(θ)‖2 = ‖
m∑
j=1

∇fj `i(θ)∇2
θf
i
j(θ)‖2 ≤

m∑
j=1

‖∇fj `i(θ)∇2
θf
i
j(θ)‖2

≤
m∑
j=1

|∇fj `i(θ)|‖∇2
θf
i
j(θ)‖2 ≤ mκ`κ̃f := κΠ.

(19)

We next show that J if (θ) is Lipschitz continuous. For each row of J if (θ), we get:

∇f ij(θ2)−∇f ij(θ1) =

∫ 1

0

∇2f ij ((1− t)θ1 + t(θ2)) (θ2 − θ1) dt.

This implies ‖∇f ij(θ2)−∇f ij(θ1)‖2 ≤ 1
2 κ̃f‖θ2 − θ1‖2 and

‖J if (θ1)− J if (θ2)‖2 ≤ ‖J if (θ1)− J if (θ2)‖F

≤
√
m

2
κ̃f‖θ1 − θ2‖2

:= LJ‖θ1 − θ2‖2.

(20)



Finally, we show that Hi(θ) is Lipschitz continuous near θ∗ with Lipschitz constant LH :

‖Hi(θ1)−Hi(θ2)‖2
=‖J if (θ2)∇2

f `i(θ2)(J if (θ2))> − J if (θ1)∇2
f `i(θ2)(J if (θ2))>

+ J if (θ1)∇2
f `i(θ2)(J if (θ2))> − J if (θ1)∇2

f `i(θ1)(J if (θ1))>‖2
≤‖J if (θ2)− J if (θ1)‖2‖∇2

f `i(θ2)‖2‖(J if (θ2))>‖2
+ ‖J if (θ1)∇2

f `i(θ2)(J if (θ2))> − J if (θ1)∇2
f `i(θ1)(J if (θ1))>‖2

≤Lf‖θ2 − θ1‖2κ̃`
√
mκf +

√
mκf

(
‖∇2

f `i(θ2)(J if (θ2))> −∇2
f `i(θ1)(J if (θ1))>‖2

)
≤Lf‖θ2 − θ1‖2κ̃`

√
mκf +

√
mκf

(
κ̃`‖(J if (θ2))> − (J if (θ1))>‖2 +

√
mκf‖∇2

f `i(θ2)−∇2
f `i(θ1)‖2

)
≤Lf‖θ2 − θ1‖2κ̃`

√
mκf +

√
mκf

(
κ̃JL`‖θ1 − θ2‖2 +

√
mκfL`‖θ1 − θ2‖2

)
:=LH‖θ1 − θ2‖2.

(21)

�

Our local results are summarized in the following theorem.
Theorem. Suppose that Assumption 1 is satisfied. If the sample size |SkH | increases superlinearly, then the sequence {θk}
generated by (14) converges to θ∗ superlinearly almost surely.

Proof. The proof is divided into two parts. The first part is to show that the stochastic Dennis-Morë condition holds almost
surely, i.e.,

lim
k→∞

‖(Bk −∇2Ψ(θ∗)sk)‖2
‖sk‖2

= 0 a.s.. (22)

The second part is to show that we can obtain the superlinear convergence rate from (22).

(1.) By Lemma 1, we have ‖HSkH
(θ)−H(θ)‖ ≤ 2κH , ‖ΠSkH

(θ)−Π(θ)‖ ≤ 2κΠ. The matrix Bernstein’s inequality yields

P(‖HSkH
(θ)−H(θ)‖2 ≥ εk) ≤ 2n exp{−ε

2
k|SkH |
16κ2

1

} and P(‖ΠSkH
(θ)−Π(θ)‖2 ≥ εk) ≤ 2n exp{−ε

2
k|SkH |
16κ2

2

}.

By construction, let
∑∞
k=1 εk <∞ and the sample size grow so that

∑∞
k=1 2n exp{− ε

2
k|S

k
H |

16κ2 } <∞. This can be guaranteed,
for example, if we choose εk = O( 1

k1+δ1
) and |SkH | = O(k3+3δ1).

By Borel-Cantelli Lemma, there exists k0 such that ∀k > k0, ‖HSkH
(θ) −H(θ)‖2 ≤ εk a.s. and ‖ΠSkH

(θ) − Π(θ)‖2 ≤ εk
a.s.. Define the space where

∑
k ‖θk − θ∗‖ <∞, ‖HSkH

(θ)−H(θ)‖2 ≤ εk and ‖ΠSkH
(θ)−Π(θ)‖2 ≤ εk by Ξ. It is easy to

know that P(Ξ) = 1. Denote ek = max{‖θk+1 − θ∗‖, ‖θk − θ∗‖}, and
∑∞
i=1 ek <∞ in space Ξ.

Define two hypothetical sequences:

Λ̂k+1 = Λk −
Λkuku

>
k Λk

u>k Λkuk
+

ΠSkH
(θ∗)uku

>
k ΠSkH

(θ∗)

u>k ΠSkH
(θ∗)uk

,

Λ̃k+1 = Λk −
Λkuku

>
k Λk

u>k Λkuk
+

Π(θ∗)uku
>
k Π(θ∗)

u>k Π(θ∗)uk
.

From Lemma C.14 [2], we have:

‖Λ̃k+1 − I‖2F − ‖Λk − I‖2F = −

[(
1− u>k ΛkΛkuk

u>k Λkuk

)2

+ 2

(
u>k ΛkΛkΛkuk
u>k Λkuk

−
(
u>k ΛkΛkuk
u>k Λkuk

)2
)]

.

Without loss of generality, we assume that Π(θ∗) = I , otherwise do linear transformation for variables by θ̃ = Π(θ∗)1/2θ.
We next need to show that ‖Λk − I‖ − ‖Λ̃k+1 − I‖ → 0.

From section 4 in [1], this is required to prove that

‖Λk+1 − Λ̃k+1‖ ≤ O(εk + ek).

From Lemma C.15 in [2], this is required to prove that there exists constants c1, c2, c3, c4 such that:



a.1.1) c1u>k uk ≤ v>k uk ≤ c2u>k uk,

a.1.2) ‖δk‖ ≤ c3‖uk‖ek,

a.1.3) v>k δk
u>k vk

≤ c4ek,

where δk = ΠSkH
(θ∗)uk − vk.

From Assumption 1, we can obtain that when θk nears θ∗, there exists c1 < 1
2 λ̃ such that v>k uk ≥ c1u

>
k uk. By Lemma 1,

it is easy to know that v>k uk ≤ ‖uk‖‖vk‖ ≤ LJκ`‖uk‖2. Let c2 = LJκ` and we prove a.1.1). Note that each f ij is twice
continuously differentiable, we have

δk = ΠSkH
(θ∗)uk − vk

=
1

|SkH |
∑
i∈SkH

m∑
j=1

∫ 1

0

(
∇fj `i(θ∗)∇2

θf
i
j(θ
∗)−∇fj `i(θk+1)∇2f ij ((1− t)θk + t(θk+1))

)
ukdt.

(23)

Since ‖∇fj `i(θ)‖2 ≤ κ`, ‖∇2
fj
`i(θ)‖2 ≤ κ̃` and ‖∇2f ij(θ1)−∇2f ij(θ2))‖2 ≤ Lf‖θ1 − θ2‖2,∀i, j, we conclude that there

exists constant c3, such that a.1.2 holds. a.1.3 follows from a.1.1 and a.1.2 immediately by Cauchy–Schwarz inequality.

By a.1.1), a.1.2) and a.1.3), following from Lemma C.15 in [2], we can prove that

‖Λk+1 − Λ̂k+1‖ =

∥∥∥∥−vkδ> + δv>k + δδ>

u>k vk
+
v>k δ(vkv

>
k + vkδ

> + δv>k + δδ>)

u>k vk + v>k δ

∥∥∥∥ ≤ O(ek),

‖Λ̂k+1 − Λ̃k+1‖ =

∥∥∥∥∥− ṽk δ̂> + δ̂ṽ>k + δ̂δ̂>

u>k ṽk
+
ṽ>k δ̂(ṽkṽ

>
k + ṽk δ̂

> + δ̂ṽ>k + δ̂δ̂>)

u>k ṽk + v>k δ̂

∥∥∥∥∥ ≤ O(εk),

(24)

where v̂k = ΠSkH
(θ∗)uk, ṽk = Π(θ∗)uk and δ̂ = v̂k − ṽk. This shows that

‖Λk+1 − Λ̃k‖ ≤ O(ek + εk).

Following the same idea of section 4 in [1], we have

lim
k→∞

‖(Λk − I)uk‖
‖uk‖

= 0 a.s..

Our previous results yield that:

lim
k→∞

‖(Bk −∇2Ψ(θ∗)sk)‖
‖sk‖

= lim
k→∞

‖(HSkH
+ Λk −∇Ψ(θ∗))uk‖
‖uk‖

= lim
k→∞

‖(HSkH
(θk)−H(θk) +H(θk)−H(θ∗) + Λk −Π(θ∗))uk‖

‖uk‖

≤ lim
k→∞

‖(HSkH
(θk)−H(θk)‖‖uk‖+ ‖H(θk)−H(θ∗)‖‖uk‖+ ‖(Λk −Π(θ∗))uk‖

‖uk‖
= 0.

(25)

The result (25) is actually the stochastic Dennis-Möre condition.

(2.) The next step is to show that superlinear convergence results are guaranteed if (25) holds. For simplicity of notations,
we set

wk1 = (Bk −∇2Ψ(θ∗))(θk+1 − θk),

wk2 = ∇Ψ(θk+1)−∇Ψ(θk)−∇2Ψ(θ∗)(θk+1 − θk).



Then by (14), we have

Bk(θk+1 − θk)−∇2Ψ(θ∗)(θk+1 − θk) = −∇Ψ(θk)−∇2Ψ(θ∗)(θk+1 − θk).

It follows that
wk1 − wk2 = −∇Ψ(θk+1).

Due to Assumptions 1-2, we have that ‖wk1‖/‖θk+1 − θk‖ and ‖wk2‖/‖θk+1 − θk‖ converges to 0 almost surely. It follows
that

mk :=
‖ − ∇Ψ(θk+1)‖
‖θk+1 − θk‖

→ 0 almost surely. (26)

By the nonsingularity of∇2Ψ(x∗) and the convergence of {θk}, with probability 1, there exists a constant ξ such that

‖∇Ψ(θk+1)‖ ≥ ξ‖θk+1 − θ∗‖.

It implies that

mk ≥
ξ‖θk+1 − θ∗‖

‖θk+1 − θ∗‖+ ‖θk − θ∗‖
.

Hence, it follows that
‖θk+1 − θ∗‖
‖θk − θ∗‖

≤ mk

ξ −mk
→ 0.

This finishes the proof. �
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