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Implementation Details
Logistic Regression

e The objective function considered in this part is:
N

. 1 2
912]%11 U(h) = N ;bg(l + exp(—yi(z, 0)) + u0]l2,

where {z;,y;} € R" x {-1,1},i € [1,2,...,N].
e A description of the datasets is shown in Table 1.
e We describe the implementation details of the algorithms used in this part.

— SGD: The batch size is set to be 1.
L-BFGS: The source code is downloaded from the website ' and the default parameters are used.

SSN: The batch size Sy for the subsampled Hessian matrix is min{2000, |0.01N]}. The batch size of the sub-
sampled gradient |S,| is changing as min{|Sy| - 1.1, N'}.

S4QN: The set up of the subsampled Hessian Hy, is the same as SSN. The matrix Ay is generated by the stochastic
L-BFGS method and the memory size is 5.

Deep Learning

We now present the detailed implementation for the deep learning problems. The batch size for all methods is the same, i.e.,
512 for Autoencoders and 256 for CNNs (ConvNet and ResNet-18). The hyper-parameters of Adam for all three architectures
are tuned by using the grid search as follows.

e The initial learning rate is from {3e-2, le-2, 3e-3, le-3, 3e-4, le-4}.

e The parameters 31 and (35 are tuned in {0.9,0.99} and {0.99, 0.999}, respectively.

lhttps://www.cs.ubc.ca/“schmidtm/Software/minFunc.html



Dataset # Data points N # Dimension n

revl 20, 242 47, 236
news20 19, 996 1, 355, 191

Table 1: A description of the datasets in logistic regression.

Dataset  # Training # Testing Architecture Loss

MNIST 60,000 10,000  784-1000-500-250-30-250-500-1000-784 Cross-entropy
FACES 103,500 62,100  625-1000-500-250-30-250-500-1000-625 Mean squared error
CURVES 20,000 10,000  784-1000-500-250-30-250-500-1000-784 Cross-entropy

Table 2: The corresponding information in autoencoders.

e The perturbation value € is le-8.

The hyper-parameters of other methods are tuned for their best numerical performance depending on the network architec-
tures. We list the experimental settings and tuning mechanisms into two parts, Autoencoders and CNNs (including ConvNet
and ResNet-18), respectively.

Autoencoders

e Autoencoders are fully-connected neural networks. We test autoencoders on three datasets. The corresponding infor-
mation is reported in Table 2.

e We describe the implementation details of the algorithms used in autoencoders.

— SGD: The stochastic gradient method with momentum 0.9. The weight decay is set to be 10~° and the learning
rate is fixed to be the best one from 7 € {0.01,0.02,0.05,0.1,0.2,0.5,1,2, 5}

— KFAC: The learning rate is set to n = 1o Bep“h. Mo and 3 is determined through grid search from ny € {0.3,0.5,1}
and $ € {0.99,1}. The damping and the momentum parameter are set to be 0.2 and 0.9, respectively.

— SKQN-L: The learning rate is set to 1 in autoencoder for MNIST and FACES, 1.5 for CURVES. The parameter
is set t0 0.2 x (epoch)®?9. The momentum is set to be 0.9 and the memory size is 5.

— SKQN-B1/SKQN-B2: The learning rate is set to 0.7 in autoencoder for MNIST, 0.4 for FACES and 0.8 for
CURVES. The damping is 7o x (epoch)®9? with vy = 0.1 for MNIST and CURVES, 0.2 for FACES. The BFGS
damping is set to be 0.5 and the momentum is 0.9.

Deep CNNs

In this part, we describe the implementation details for ConvNet and ResNet-18. The loss function is cross-entropy in these
two problems. The hyper-parameters of each method are the same for both case unless otherwise specified.

e The network architectures used in ConvNet and ResNet-18 are presented in Figure 1. “conv” in the figure means a
sequence of convolutional kernel, Batch Normalization layer and Relu function. The numbers next to “conv” is the
number of the channels of the outputs.

e SGD: The momentum is set to be 0.9. The learning rate is is set to 7 = 1y(1 — epoch/ epoch,end)g . The parameters
are determined by grid searching for the best result from oy € {0.01,0.02,0.05,0.1,0.2,0.5,1,2,5}, epoch_end €
{80,85,90} and 8 € {4,4.5,5,5.5,6}.
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(b) ResNet-18

Figure 1: Network Architecture of ConvNet and ResNet-18.

e KFAC: The learning rate is n = 7o(1 — epoch/ epoch,end)g . The parameters are also determined from 79 €

{0.01,0.05,0.1,0.2,0.5}, epoch_end € {70,75,80,85} and B\ € {4,5,6}. The damping parameter and the momen-
tum parameter are set to 0.77, 0.9, respectively. The curvature matrix is evaluated and inverted every 50 iterations

e SKQN-L: The memory size is 1. The learning rate is set to be 7 = 79(1 — epoch/epoch end)ﬁ We set 9 = 0.1,

epoch_end = 85, 6 = 4 in the ConvNet and ny = 0.15, epoch_end = 80, 6 = 6 in the ResNet-18, respectively. The
damping is 0.7 x 1(n/m0)"/°.

e SKQN-BI: The learning rate for both cases is = 0.1 - (1 — epoch/80)°. The damping is 0.8 x 0.1 - (1/0.1)*/ in deep
CNN problems.

. SKQN B2: The learning rate is set to be n = ng(1 — epoch/epoch end)ﬁ where we set 9 = 0.12, epoch_end = 85,
5 = 5 in the ConvNet and g = 0.1, epoch_end = 85, 6 = 5 in the ResNet-18. The damping is 0.8 x 19 (n/n0) )1/5,

A. Proof of Theorem 1

Proof. Tt follows from Assumption 2.1) that the descent property holds:

W(y) < (o) + (V). y— ) + oy — o m



Applying (1) and the Young inequality, we obtain:
U(Or41) — W (0k)
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Recalling that the parameter )\, is adjusted by the norm of the stochastic gradient as follows for a given r; < 1 < 7a:
e gkl <71,
Ao = %0@1 lge—1ll > 72, 3)
oyt otherwise,
we prove that (h + \,) ™! — %)\;1 - %)\;2 is positive and bounded in all three cases.
We first consider the case when ||gi_1|| € [r1,72]. Since A\, ' = aj < Tl oy We have ’:‘\—: < 1, and hence
1 1 Ly 1 31 1
-2 = > o 4
Wt AN, 2027 hta, 8Sx o 8k @
The last inequality follows from A\, = a; ' > %frh) > h. As for the case when ||gi_1| < r1, we have
. lgr—all+71 _ 1
)\k = akT S [iak,ak].
Then, we can still obtain
1 1 Ly S 1 31 S 11 N 1 )
- ——— > —-— 2> —aq.
W+ 4 2027 h+ A, 8A, 8A, T 16 "
For the last case when ||gx—1]| > 7o, it follows
- —1)| + 1
)\kl = aki‘lgk 1” "2 S [*Otk,ak],

2(|gr—1ll 2

which implies the desired result as in (5).

Next, by using the Young inequality and taking conditional expectation based on J,_ together with E[V g» W (0%)|Fj_1] =

VU (6F) yields ’
E[[|Vsx W (0")|?|Fr—1] =E[|[Vs5 U (6*) — VU (6°) + VU (6")||*| Fi—1]

(6)
=E[[[ Vst W(6") = VE(6")|]*| Fr—a] + [V (6°)[|*.
Taking the expectation related to S, ,’; of (2) on both sides conditioned on Fj,_1 and combining (2)-(6), we obtain
E[W(Ok+1) — W (0k)|[Fr—1]
1 2 1 1 k kyy2
<- EOZkHV\I/(Gk)” + [)\k - 160[k:| E[||V5§\I!(0 ) — VU(O07)||*| Fr-1] (7

1 .
< = VU + Brot,



where ), = % — %ak < (1- 16)041C Taking expectation, summing over the inequality and using the assumptions that

there exists Wy, such that U (0) > Uinp, VO € dom¥ , we obtain:

o0 1 oo -
> e EIVEO)]* < w(01) = 0"+ Brog. ®)
k=1 k=1

Therefore, we have >~ axE[|V¥(6;)|> < oo, which implies that Y - | ax||[V¥(0))||? < oo almost surely. Conse-
quently, we can infer
lim inf V¥(6;) = 0 almost surely .

k—o0

Taking expectation, multiplying o on both sides of inequality (6) and summing over all & yields

ZakIEHVSk‘I/(Qk 12 = Zakak—i—ZakHV\P(Ok)HQ < 0.
k=1 k=1 k=1

By the Young inequality, it implies

Yl = 0ul> = > oy BB + M) Vi U (01)]
k=1 k=1
< Yo pEIvs el
§ k=1
It follows that . .
Za;lEHﬂkH — 0* < oo and Za;1|‘9k+1 — 0, ||* < oo almost surely.
k=1 k=1

On the events £ = {||V¥(6})|| does not converge}, there exists ¢ > 0 and two increasing sequences {p; }i, {¢;}; such that
pi < g; and
”v\ll(epz)” > 2, HV\I’(G%)H <§¢ ||v‘1/(9k)” 2 €

fork=p; +1,...,q; — 1. Thus, it follows that

oo qi—1 oo gqi—1
22;;%<Z;,;aknw (01) ||2<Zak||V\I/ (0p)]? < 0. )
1 =Di g Di

Setting (; = > k:_pll o, it follows ¢; — 0. Then by the Holder’s inequality, we obtain

qi—1
Hepi - 9!14,” < \@[Z Oz,;1||9k+1 — QkH?]l/Q 0.

k=p;

Due to the Lipschitz property of VW, we have ||V¥(6,,) — V¥ (8,,)|| — 0, which is a contradiction. This implies P(€) = 0.
Hence, V¥ (6},) converges to zero almost surely.

O

B. Proof of Theorem 2

Proof. From the inequality (7) in the proof of Theorem 1, we have

1 15
E[W(0k+1) = W (k)| Fr] < **akIIV‘I’(Qk)HQ ani (10)



Combining the Assumption 3.1) and o2 < M,¢*~1, we have:

1 15
E[U(0rr1) — Wit Fr_1] < (1 — gcak)E[\II(Gk) — Uit Fro1] + TG“’“M”CH'

We prove Theorem 2 by induction. For k = 1, the inequality holds by the definition ; = max{W(#;) — Wy, 1510\4” }. Then,
} and

we assume the inequality holds for k£ € N. Combining o = a < min{m, } p=max{V(0;) — Uiy, 15M,

v =max{(,1 — {sca}, we have

1
E[U(0ki1) — Wing| Fr1] < (1 — gcak),uuk_l + lﬁakM Skl
1 1
< ;wkfl (1 —cay + 5M )
8 p (11)
1
< ;wk 1 (1 — 166ak>

< ",
which proves the inequality for k + 1. This completes the proof of Theorem 2.

C. Proof of Theorem 3

We first state the settings of Theorem 3. Consider the case when ¢;(0) = £;(0) = £(f(x;,6),y;), where f(-,x) : R — R™.
The Hessian matrix is V2U(0) := H(0) + I1(6), where

N N
1 Ji( ; T
HO) = D Hi0)= Z H(O)VH0) (J70)) (12)
i=1 i=1
1 N N m
nE) = &> W)= ZZ (O)V3f;(0), (13)
i=1 i=1 j—1
where J}(0) = Vo f(2i,0) € R"*™ and f}(6) is the j-th component of f;(6).
Consider the iteration in the neighborhood of 6* :
Op+1 = O — B, 'VU(0y,). (14)

Here we consider the true gradient for simplicity and the conclusion also holds for stochastic gradient by adjusting relative
assumptions.

The curvature matrix is
B, = HS@(G) + Ak,

where Hgy. (0) is the base matrix and Ay, is the refinement matrix. We formulate Hg. (0) as

1
Hg. (0) = 1S5 ZHi(9)> 15)
ieSk

and Ay, is generated by the BFGS method. Suppose that Ay, satisfies the following secant condition:

Agup—1 = vg—1, (16)
where u,_1 = 0, — 0,1 and
1 . ,
veer == > (JH0k) = TH(0k-1)) V 1L (01)
| H | Sk 1
(17)
Sk T > Z Vofi(0r) — Vorfi(Or-1)) Vi, li(0r).

Esk 1] 1



We want to prove that if the sample size is sufficiently large, then the stochastic Dennis-More condition holds. Hence, the
local superlinear convergence speed can be guaranteed. A few assumptions are listed below.

Assumption 1 1.1) The sequence {0y} satisfies y_, |0 —0*|| < 0o a.s. for an optimal point 6* where V>V (6*) are positive
definite and there exists X > 0 such that fori =1,...,n,I1;(6%) = AL

1.2) The gradient V §£;(8) is bounded, the Hessian V?«Ei(ﬁ) is bounded and Lipschitz continuous near 0* with Lipschitz
constant Ly, Vi = 1,..., N, i.e, [[Vli(0)|2 < ke, [V3:(0)ll2 < Fe and |[V3£i(61) — V7£i(01)]]2 < Lel|6y — 62,
for any 01, 65 near 6*.

1.3) The gradient Vf;(@) is bounded, the Hessian V2f; (0) is bounded and Lipschitz continuous near 0* with Lipschitz con-
stant Ly, Vi=1,...,NandVj=1,...,m,ie., [[Vfj(0)|2 < ry, VQf;(H)”Q < Kyand ||V2f}(01)fv2f;(92)\\2 <
L||61 — 62]|2 for any 61,65 near 6*.

Lemma 1 Under Assumption 1, the following conclusions hold:

o The GGN matrix H;(0) and 11;(0) are bounded for i = 1, ... ,n, i.e., there exists constants kg and k1 such that for all
0 near 0%,
IH:(O)| < ke and [[TL(0)]] < rr.

. J} (0) is Lipschitz continuous near 0* with Lipschitz constant Ly, Vi = 1,... N, ie.,
175(61) = THO2) < Lul|61 — 2]
for any 01, 05 near 6*.
e H(0) is Lipschitz continuous near 0* with Lipschitz constant Ly, Vi =1,..., N, i.e.,
[H (01) — H(02)|| < L]0 — 62,

for any 01,05 near 6*.
4 , T
Proof. We first prove that H;(6) and T;(6) are bounded. Recalling H;(0) = J}(6)V34;(6) (J}(Q)) , we have

1750)V2£:(0) (J30) T [l2 < T3 O)I|2lV2:(0) ]l (J50) " Il2
< IO VO] (750)) e
Since J§(0) = [Vfi(0),...,Vf,(0)] and [|[Vf}(0)]2 < ks, we have || J4(0)r < /mk; which implies [|H;(0)[]2 <

(18)

mn?ﬁ;g := k. Similarly, we have

m m

I (O)ll2 = 1) Vi, t@VELO)l2 < Y IV GO)VF10)]2
Jj=1 j=1

m (19)
< DIV GOV O) 2 < meefis = b
j=1
We next show that J} (0) is Lipschitz continuous. For each row of J}(G), we get:
1
VI(62) = VA6 = [ V(1 - 06+ 862)) 62 - 60) e
0
This implies ||V f7(62) — V fi(61) ]2 < 57 ]162 — 61]]2 and
1T5(01) = T(02) |2 < [175(61) — T3(62)l| p
< VR0~ ol 0)

= LJHel — 92”2.



Finally, we show that H,(#) is Lipschitz continuous near §* with Lipschitz constant L:
[ H:(61) — Hi(62)]]2
=17} (62)V4i(62) (T} (62)) T = T} (01)V3Li(02) (T} (62))
+ J}(igl)v?&(%)(t]}(@z))T - J}(91)V?fi(91)(J}(91))TH2
<[[T5(02) = T5(01)][2/V3€:(82) |2l (T3(82)) " |2
+ 1500 VE(02) (T3 (02)) T — T3 (01)V3Ei(01) (T(601)) |2 @1
SLgl|02 — O1ll2fev/me g + kg ([VH(02)(J5(02)) T — V36(61)(J7(61)) " [l2)
<Lf||02 — 01]|2Rev/mEs + vVmkyg (/%ZH(J}(QQ))T - (J}(Ql))Tuz + Vmieg||[V3(02) — VHG(61)]]2)
<Lf|02 — 01 ||2Rev/misy + /misy (RyLel|01 — 2]l2 + vV/mus g Lel|61 — 62]]2)
:=Ly||0; — 62]2.
O

Our local results are summarized in the following theorem.
Theorem. Suppose that Assumption 1 is satisfied. If the sample size |S% | increases superlinearly, then the sequence {6}
generated by (14) converges to 6* superlinearly almost surely.

Proof. The proof is divided into two parts. The first part is to show that the stochastic Dennis-Moré condition holds almost
surely, i.e.,

By — V2 (9*
Jim (B O)si)llz _ . (22)
k— o0 HSng
The second part is to show that we can obtain the superlinear convergence rate from (22).
(1.) By Lemma 1, we have || Hgx. (0) — H(0)|| < 2kp, |[ILgx (6) — I1(0)|| < 2k11. The matrix Bernstein’s inequality yields
el SH|
16k2

&l 55|
163

P(|Hgy (0) — H(0)|2 = ex) < 2nexp{— }and P([[ILgx, (0) — II(0) |2 = ex) < 2nexp{—

1.

2ok
€xlSH|
16K2

By construction, let Y- ; €, < oo and the sample size grow so that >, 2n exp{—
for example, if we choose €5, = O(kl%dl) and |S¥| = O(K313%),

By Borel-Cantelli Lemma, there exists ko such that Vk > ko, |[Hgx (6) — H(0)2 < €k as. and [[ILgx (6) — I1(0)[|2 < ek
a.s.. Define the space where ), [|6x — 6" < oo, [[Hgx (0) — H(0)l|2 < €& and [[TLgx. () — IL(0)|[2 < € by E. Itis easy to
know that P(Z) = 1. Denote e;, = max{||05+1 — 0* ||, [|0x — 6|/}, and >, e, < oo in space E.

} < oo. This can be guaranteed,

Define two hypothetical sequences:

AkukukTAk HSQI (9*)%“;115;3 (9*)

Aps1 = Ap —
ko F UZAkuk ugnsg (9*)uk ’
Appr = A — == TT1(9*
uy, Apug wy, (0% )y,

From Lemma C.14 [2], we have:

1Ak = Il = 1Ak = 11l = —

2 2
(1 _ uZAkAkuk> 19 u;AkAkAkuk . <u;AkAkuk>

u,;rAkuk u;—Akuk 'LL;';Ak'LLk
Without loss of generality, we assume that I1(#*) = I, otherwise do linear transformation for variables by = I(6%)'/26.
We next need to show that || Ay, — I|| — ||Ak+1 — I|| — 0.

From section 4 in [ 1], this is required to prove that
[Aks1 — Mgl < O(er + ex).

From Lemma C.15 in [2], this is required to prove that there exists constants c;, ¢, c3, ¢4 such that:



a.l.1) clu,;'—uk < v,;ruk < czu,;'—uk,

a.1.2) ||0x|| < cslluklex,

T

v, O
a.1.3) u’j—v’; < cyey,

_ * _
where 5k = HS};{ (9 )uk V.
From Assumption 1, we can obtain that when 6, nears §*, there exists ¢; < £ such that v} uy > ciu) ux. By Lemma 1,

it is easy to know that v)] uy < |lug||||vk| < Lyke|lugl|?. Let c2 = Lk, and we prove a.1.1). Note that each [} is twice
continuously differentiable, we have

5k = HSIIfI (9*)uk — Vg

1 (23)

TSk Z Z/o (ij&(ﬁ*)vgf;(e*) - ijgi(9k+1)v2f; (1 =)0k + t(O41))) wrdt.

~ gk
1Sl iesk j=1

Since ||V, 4:(0) |2 < ke, V?j&(@)”g < R¢and ||V2f}(91) - V2f}(92))||2 < L¢||61 — 62]|2, Vi, j, we conclude that there
exists constant ¢z, such that a.1.2 holds. a.1.3 follows from a.1.1 and a.1.2 immediately by Cauchy—Schwarz inequality.

By a.1.1), a.1.2) and a.1.3), following from Lemma C.15 in [2], we can prove that

~ v T 0] +65T vl d(vvl +uRd T +dul + 86T
HAkJrl_AkJrl”:H_ : Tk + . (k . Tk T . )‘So(ek)7
Uy, Uk Uy, Uk + v, 0 o
~ ~ b 4+ 00] + 66T B 6(0R0 4+ k0T + 00 + 667
Rir — A = || - 2000+ 007 0T 2060 00 +00 )| ¢ gy,
Uy, Vk Uy, U + vy, 6
where v}, = Hsg (0% )ug, v = TI(0* )y, and & = U, — 0. This shows that
IAk1 — Akl < Olex + ex).
Following the same idea of section 4 in [ 1], we have
lim I(A% = Dux] =0 a.s
oo [l
Our previous results yield that:
_ 2 *
i 1B = V20 ()50)]
k=00 skl
 lI(Hsy, + Ax = V(0"))u|
= lim
k—o00 HukH (25)
i [(Hgx () — H(Ok) + H(0k) — H(0") + Ax — I1(07) )uy|
= lim
k—o0 [l ||
< i I(Hgy, (0x) — H(Ok)|[lurll + [ H (0x) — H(O)[lurll + [|(Ax — TLO))url| 0
~ koo ([ ul

The result (25) is actually the stochastic Dennis-Mére condition.

(2.) The next step is to show that superlinear convergence results are guaranteed if (25) holds. For simplicity of notations,
we set

wi = (Bp = V2U(0) (0" —0%),

wh = VO — VU (0F) — V() (05T — oF).



Then by (14), we have
Bk(ek—H _ 9’6) o V2\I/(0*)(9k+1 _ gk) _ —V\If(gk) o V2\II(0*)(0k+1 o ak)
It follows that
wy —wh = V().

Due to Assumptions 1-2, we have that ||w/|/||¢*+1 — 6% || and ||w5]|/||0*+! — 6% converges to 0 almost surely. It follows

that
I e G
CT e o]

— 0 almost surely. (26)
By the nonsingularity of V2 (z*) and the convergence of {#*}, with probability 1, there exists a constant ¢ such that
Ve @] = gllo+ — o%]l.

It implies that
Y i it N
G A

Hence, it follows that
||9k+1 _ 9*|| My
16% = 0| — & —nu,
This finishes the proof. (]
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