
A. Additional Information about Experiment

Setup

This section provides additional information about the ex-

periment setup for image classification (Sec. 4.1) and depth

estimation (Sec. 4.2).

A.1. Image Classification

For the latency-guided experiment, we design the initial

network based on MobileNetV3 [25] with an input resolution

of 224× 224, which is widely used to construct the search

space. Starting from MobileNetV3-Large, we round up all

layer widths to the power of 2 and add two MobileNetV3

blocks, each with the input resolution of 28×28 and 14×14.

The kernel sizes of depthwise layers are increased by 2.

For sampling sub-networks, we allow 9 uniformly-spaced

layer widths from 0 to the full layer width and different odd

kernel sizes from 3 to the full kernel size for each layer. We

use the initial network of Once-for-All [11] for knowledge

distillation when training the discovered network for a fair

comparison with Once-for-All [11] and BigNAS [12].

For the MAC-guided experiment, following the practice

of Once-for-All [11] and NSGANetV2 [38], we increase

layer widths of the initial network used in the latency-guided

experiment by 1.25× and add one MobileNetV3 block with

an input resolution of 7 × 7 to support a large-MAC op-

erating condition. For sampling sub-networks, we allow

11 uniformly-spaced layer widths from 0 to the full layer

width and different odd kernel sizes from 3 to the full kernel

size for each layer. When training the discovered DNN, we

use the initial network of Once-for-All [11] for knowledge

distillation for a fair comparison with NSGANetV2 [38].

A.2. Depth Estimation

The initial network is FastDepth [42]. FastDepth con-

sists of an encoder and a decoder. The encoder uses Mo-

bileNetV1 [40] as a feature extractor, and the decoder uses

depthwise separable convolution and nearest neighbor up-

sampling. Please refer to FastDepth [42] for more details.

For sampling sub-networks, we allow 9 uniformly-spaced

layer widths from 0 to the full layer width and different odd

kernel sizes from 3 to the full kernel size for each layer.

Following a common practice of training DNNs on the

NYU Depth V2 dataset, we pre-train the encoder of the

initial network on ImageNet. However, as shown in Table 7,

this step is relatively expensive and takes 96 GPU-hours.

To avoid pre-training the encoder of the discovered DNN

on ImageNet again, we transfer the knowledge learned by

the encoder of the initial network to that of the discovered

DNN, which is achieved by the following method. We log

the architecture of the best sample in each iteration of the

MCD optimizer, which forms an architecture trajectory. The

starting point of this trajectory is the initial DNN architecture,

and the end point is the discovered DNN architecture. For

training the discovered network, we start from the starting

point of the trajectory with the pre-trained weights of the

initial DNN and follow this trajectory to gradually shrink the

architecture. In each step of shrinking the architecture, we

reuse the overlapped weights from the previous architecture

and train the new architecture for two epochs. This process

continues until we get to the end point of the trajectory,

which is the discovered DNN architecture. Then, we train it

until convergence. This knowledge transfer method enables

high accuracy of the discovered DNN without pre-training

its encoder on ImageNet.

B. Discovered DNN Architectures

For the latency-guided experiment on ImageNet (Table 1),

Table 8 shows the discovered 51ms DNN architecture of

NetAdaptV2. To make the numbers of MACs of all layers

as similar as possible, modern DNN design usually doubles

the number of filters and channels when the resolution of

activations is reduced by 2×. Similarly, to fix the ratio of

T (Sec. 2.2) to the number of input channels, we use one

value of T for each resolution of input activations and set T

inversely proportional to the resolution. T s of all depthwise

layers are set to infinity to allow bypassing all the input

channels. We observe that channel-level bypass connections

(CBCs) are widely used in the discovered DNN. Moreover,

block 12 is removed, which demonstrates the ability of CBCs

to remove a layer.

For the MAC-guided experiment on ImageNet (Table 2),

Table 9 shows the discovered 314M-MAC DNN architecture.

We apply the same rule for setting T s as in the latency-

guided experiment. We observe that CBCs are widely used

in the discovered DNN. Moreover, MobileNetV3 block 7, 8,

12, 15 are removed.

For the depth estimation experiment on the NYU Depth

V2 dataset (Table 7), Table 10 shows the discovered 87ms

DNN architecture of NetAdaptV2. We apply the same rule

for setting T s as in the image classification experiments. We

observe that NetAdaptV2 reduces the kernel sizes of the

37-th and 40-th depthwise convolutional layers from 5 to 3,

which demonstrates that the ability to search kernel sizes

may improve the performance of the discovered DNN.

C. Formulation of Channel-Level Bypass Con-

nections

The formulation of channel-level bypass connections

(CBCs), Z = max(min(C, T ),M), can be derived by con-

sidering the case 1 to 3 in Sec. 2.2 and Fig. 3. For the case 1

(C = T ) and 2 (C < T ), CBCs start bypassing input chan-

nels when M becomes smaller than C (M < C) to maintain

the number of output channels Z = max(C,M) = C. For

the case 3 (C > T ), CBCs start bypassing input channels

when M becomes smaller than T (M < T ) instead of C,



Index Type T Kernel Size Stride BN Act Exp DW PW SE

1 conv 8 3 2 X HS 16 - - -

2 mnv3 block 8 3 1 X RE 8 8 16 -

3 mnv3 block 16 5 2 X RE 48 48 20 16

4 mnv3 block 16 3 1 X RE 48 48 32 -

5 mnv3 block 32 7 2 X RE 80 80 32 32

6 mnv3 block 32 3 1 X RE 112 80 40 32

7 mnv3 block 32 3 1 X RE 64 32 16 32

8 mnv3 block 32 3 1 X RE 96 96 8 32

9 mnv3 block 64 5 2 X HS 192 192 128 64

10 mnv3 block 64 5 1 X HS 224 192 128 -

11 mnv3 block 64 3 1 X HS 128 32 48 64

12 mnv3 block 64 0 1 X HS 0 0 0 0

13 mnv3 block 64 3 1 X HS 512 256 80 256

14 mnv3 block 64 3 1 X HS 256 256 112 256

15 mnv3 block 64 5 1 X HS 512 512 64 256

16 mnv3 block 128 7 2 X HS 640 640 224 256

17 mnv3 block 128 7 1 X HS 640 384 224 256

18 mnv3 block 128 5 1 X HS 896 512 224 256

19 conv 128 1 1 X HS 1024 - - -

20 global avg pool - - - - - - - - -

21 conv 1024 1 1 HS 1792 - - -

22 fc - 1 1 - - 1000 - - -

Table 8: The discovered 51ms DNN architecture of NetAdaptV2 on ImageNet presented in Table 1. Type: type of the layer

or block. BN: using batch normalization. Act: activation type (HS: Hard-Swish, RE: ReLU). Exp: number of filters in the

expansion layer or number of filters in the conv layer. DW: number of filters in the depthwise layer. PW: number of filters in

the pointwise layer. SE: number of filters in the squeeze-and-excitation operation. All MobileNetV3 blocks (mnv3 block) with

a stride of 1 have residual connections.

which requires replacing the C in Z = max(C,M) with

min(C, T ) and gives the formulation of CBCs.

D. Ablation Study on MobileNetV1

This section provides the ablation study on Mo-

bileNetV1 [40]. This ablation study employs the experiment

setup outlined in Sec. 4.1.1 unless otherwise stated. The

initial network is the largest MobileNetV1 (1.0 MobileNet-

224 [40]).

D.1. Impact of Channel­Level Bypass Connections

The proposed channel-level bypass connections (CBCs)

enable NetAdaptV2 to search for different network depths

with marginal overhead. Table 11 shows that supporting

CBCs only increases the training time of the super-network

by 1.2×. Moreover, the ability to search network depth al-

lows discovering DNNs with better performance. As shown

in Table 11, CBCs improve the accuracy of the discovered

DNN by 6.5% with the same latency.

D.2. Impact of Multi­Layer Coordinate Descent
Optimizer

The proposed multi-layer coordinate descent (MCD) op-

timizer improves the performance of the discovered DNN

while reducing the number of samples and hence the search

time. In this experiment, the MCD optimizer generates 27

samples (J = 27) in each iteration, where J is equal to the

number of layers, and each sample is obtained by randomly

shrinking 4 layers (L = 4). Table 11 shows that the MCD

optimizer reduces the time for evaluating samples by 1.9×
and improves the accuracy by 2.8%.

E. Estimation of CO2 Emission

We estimate CO2 emission based on Strubell et al. [34].

According to Table 3 in this paper, when BERTbase is trained

on 64 V100 GPUs for 79 hours, the CO2 emission is 1438

lbs. Therefore, the ratio of CO2 emission to GPU-hours is
1438

64×79
= 0.2844. For each NAS method, we multiply its

search time by this ratio to estimate its corresponding CO2

emission.



Index Type T Kernel Size Stride BN Act Exp DW PW SE

1 conv 8 3 2 X HS 24 - - -

2 mnv3 block 8 3 1 X RE - 24 24 -

3 mnv3 block 16 5 2 X RE 64 48 32 24

4 mnv3 block 16 3 1 X RE 128 64 32 -

5 mnv3 block 32 5 2 X RE 96 96 48 40

6 mnv3 block 32 3 1 X RE 128 80 56 40

7 mnv3 block 32 0 1 X RE 0 0 0 0

8 mnv3 block 32 0 1 X RE 0 0 0 0

9 mnv3 block 64 5 2 X HS 224 224 96 80

10 mnv3 block 64 3 1 X HS 224 96 96 -

11 mnv3 block 64 3 1 X HS 256 256 96 80

12 mnv3 block 64 0 1 X HS 0 0 0 0

13 mnv3 block 64 5 1 X HS 640 640 144 320

14 mnv3 block 64 3 1 X HS 640 512 144 320

15 mnv3 block 64 0 1 X HS 0 0 0 0

16 mnv3 block 128 5 2 X HS 768 640 192 320

17 mnv3 block 128 5 1 X HS 768 256 192 320

18 mnv3 block 128 7 1 X HS 896 768 192 320

19 mnv3 block 128 7 1 X HS 1152 1152 192 320

20 conv 128 1 1 X HS 1152 - - -

21 global avg pool - - - - - - - - -

22 conv 1024 1 1 HS 2048 - - -

23 fc - 1 1 - - 1000 - - -

Table 9: The discovered 314M-MAC DNN architecture of NetAdaptV2 on ImageNet presented in Table 2. Type: type of the

layer or block. BN: using batch normalization. Act: activation type (HS: Hard-Swish, RE: ReLU). Exp: number of filters in

the expansion layer or number of filters in the conv layer. DW: number of filters in the depthwise layer. PW: number of filters

in the pointwise layer. SE: number of filters in the squeeze-and-excitation operation. All MobileNetV3 blocks (mnv3 block)

with a stride of 1 have residual connections.



Index Type T Kernel Size Stride Filter

1 conv 16 3 2 24

2 dw ∞ 3 1 20

3 pw 16 1 1 48

4 dw ∞ 3 2 48

5 pw 32 1 1 96

6 dw ∞ 3 1 96

7 pw 32 1 1 112

8 dw ∞ 3 2 112

9 pw 64 1 1 256

10 dw ∞ 3 1 256

11 pw 64 1 1 192

12 dw ∞ 3 2 192

13 pw 128 1 1 448

14 dw ∞ 3 1 448

15 pw 128 1 1 448

16 dw ∞ 3 1 448

17 pw 128 1 1 384

18 dw ∞ 3 1 384

19 pw 128 1 1 512

20 dw ∞ 3 1 512

21 pw 128 1 1 384

22 dw ∞ 3 1 384

23 pw 128 1 1 448

24 dw ∞ 3 2 448

25 pw 256 1 1 384

26 dw ∞ 3 1 384

27 pw 256 1 1 768

28 dw ∞ 5 1 768

29 pw 256 1 1 384

30 upsample - - - -

31 dw ∞ 5 1 320

32 pw 128 1 1 192

33 upsample - - - -

34 dw ∞ 5 1 160

35 pw 64 1 1 112

36 upsample - - - -

37 dw ∞ 3 1 112

38 pw 32 1 1 48

39 upsample - - - -

40 dw ∞ 3 1 28

41 pw 16 1 1 24

42 upsample - - - -

43 pw 0 1 1 1

Table 10: The discovered 87ms DNN architecture of NetAdaptV2 on NYU Depth V2 presented in Table 7. Type: type of

the layer, which can be standard convolution (conv), depthwise convolution (dw), pointwise convolution (pw), or nearest

neighbor upsampling (upsample). Filter: number of filters. All layers except for upsampling layers are followed by a batch

normalization layer and a ReLU activation layer.



Methods Top-1

Accuracy (%)

# of

Layers

Super-Network Training

Speed (min/epoch)
# of Samples

CBC MCD

40.0 (+0) 28 (-0) 3.2 (100%) 1064 (100%)

X 46.5 (+6.5) 19 (-9) 3.8 (119%) 1092 (103%)

X X 49.3 (+9.3) 17 (-11) 3.8 (119%) 567 (53%)

Table 11: The ablation study of the channel-level bypass connections (CBCs) and the multi-layer coordinate descent (MCD)

optimizer on ImageNet and MobileNetV1. The latency of the discovered networks is around 6.5ms.


