A. Additional Information about Experiment
Setup

This section provides additional information about the ex-
periment setup for image classification (Sec. 4.1) and depth
estimation (Sec. 4.2).

A.1. Image Classification

For the latency-guided experiment, we design the initial
network based on MobileNetV3 [25] with an input resolution
of 224 x 224, which is widely used to construct the search
space. Starting from MobileNetV3-Large, we round up all
layer widths to the power of 2 and add two MobileNetV3
blocks, each with the input resolution of 28 x 28 and 14 x 14.
The kernel sizes of depthwise layers are increased by 2.
For sampling sub-networks, we allow 9 uniformly-spaced
layer widths from O to the full layer width and different odd
kernel sizes from 3 to the full kernel size for each layer. We
use the initial network of Once-for-All [1 1] for knowledge
distillation when training the discovered network for a fair
comparison with Once-for-All [1 1] and BigNAS [12].

For the MAC-guided experiment, following the practice
of Once-for-All [11] and NSGANetV2 [38], we increase
layer widths of the initial network used in the latency-guided
experiment by 1.25x and add one MobileNetV3 block with
an input resolution of 7 X 7 to support a large-MAC op-
erating condition. For sampling sub-networks, we allow
11 uniformly-spaced layer widths from O to the full layer
width and different odd kernel sizes from 3 to the full kernel
size for each layer. When training the discovered DNN, we
use the initial network of Once-for-All [1 1] for knowledge
distillation for a fair comparison with NSGANetV2 [38].

A.2. Depth Estimation

The initial network is FastDepth [42]. FastDepth con-
sists of an encoder and a decoder. The encoder uses Mo-
bileNetV1 [40] as a feature extractor, and the decoder uses
depthwise separable convolution and nearest neighbor up-
sampling. Please refer to FastDepth [42] for more details.
For sampling sub-networks, we allow 9 uniformly-spaced
layer widths from O to the full layer width and different odd
kernel sizes from 3 to the full kernel size for each layer.

Following a common practice of training DNNs on the
NYU Depth V2 dataset, we pre-train the encoder of the
initial network on ImageNet. However, as shown in Table 7,
this step is relatively expensive and takes 96 GPU-hours.
To avoid pre-training the encoder of the discovered DNN
on ImageNet again, we transfer the knowledge learned by
the encoder of the initial network to that of the discovered
DNN, which is achieved by the following method. We log
the architecture of the best sample in each iteration of the
MCD optimizer, which forms an architecture trajectory. The
starting point of this trajectory is the initial DNN architecture,
and the end point is the discovered DNN architecture. For

training the discovered network, we start from the starting
point of the trajectory with the pre-trained weights of the
initial DNN and follow this trajectory to gradually shrink the
architecture. In each step of shrinking the architecture, we
reuse the overlapped weights from the previous architecture
and train the new architecture for two epochs. This process
continues until we get to the end point of the trajectory,
which is the discovered DNN architecture. Then, we train it
until convergence. This knowledge transfer method enables
high accuracy of the discovered DNN without pre-training
its encoder on ImageNet.

B. Discovered DNN Architectures

For the latency-guided experiment on ImageNet (Table 1),
Table 8 shows the discovered 51ms DNN architecture of
NetAdaptV2. To make the numbers of MACs of all layers
as similar as possible, modern DNN design usually doubles
the number of filters and channels when the resolution of
activations is reduced by 2x. Similarly, to fix the ratio of
T (Sec. 2.2) to the number of input channels, we use one
value of T for each resolution of input activations and set 7'
inversely proportional to the resolution. T's of all depthwise
layers are set to infinity to allow bypassing all the input
channels. We observe that channel-level bypass connections
(CBCs) are widely used in the discovered DNN. Moreover,
block 12 is removed, which demonstrates the ability of CBCs
to remove a layer.

For the MAC-guided experiment on ImageNet (Table 2),
Table 9 shows the discovered 314M-MAC DNN architecture.
We apply the same rule for setting 7's as in the latency-
guided experiment. We observe that CBCs are widely used
in the discovered DNN. Moreover, MobileNetV3 block 7, 8,
12, 15 are removed.

For the depth estimation experiment on the NYU Depth
V2 dataset (Table 7), Table 10 shows the discovered 87ms
DNN architecture of NetAdaptV2. We apply the same rule
for setting T's as in the image classification experiments. We
observe that NetAdaptV2 reduces the kernel sizes of the
37-th and 40-th depthwise convolutional layers from 5 to 3,
which demonstrates that the ability to search kernel sizes
may improve the performance of the discovered DNN.

C. Formulation of Channel-Level Bypass Con-
nections

The formulation of channel-level bypass connections
(CBCs), Z = max(min(C,T), M), can be derived by con-
sidering the case 1 to 3 in Sec. 2.2 and Fig. 3. For the case |
(C=T)and 2 (C < T, CBCs start bypassing input chan-
nels when M becomes smaller than C' (M < C) to maintain
the number of output channels Z = max(C, M) = C. For
the case 3 (C' > T'), CBCs start bypassing input channels
when M becomes smaller than T (M < T) instead of C,



Index Type | T | Kernel Size | Stride | BN | Act | Exp | DW | PW | SE
1 conv 8 3 2 v | HS 16 - - -
2 mnv3 block 8 3 1 v | RE 8 8 16 -
3 mnv3 block 16 5 2 v | RE 48 48 20 16
4 mnv3 block 16 3 1 v | RE 48 48 32 -
5 mnv3 block 32 7 2 v | RE 80 80 32 | 32
6 mnv3 block 32 3 1 v | RE | 112 80 | 40 | 32
7 mnv3 block 32 3 1 v | RE 64 32 16 | 32
8 mnv3 block 32 3 1 v | RE 96 96 8 32
9 mnv3 block 64 5 2 v | HS | 192 | 192 | 128 | 64
10 mnv3 block 64 5 1 v | HS | 224 | 192 | 128 -
11 mnv3 block 64 3 1 v | HS | 128 32 | 48 | 64
12 mnv3 block 64 0 1 v' | HS 0 0 0 0
13 mnv3 block 64 3 1 v | HS | 512 | 256 | 80 | 256
14 mnv3 block 64 3 1 v | HS | 256 | 256 | 112 | 256
15 mnv3 block 64 5 1 v | HS | 512 | 512 | 64 | 256
16 mnv3 block 128 7 2 v | HS | 640 | 640 | 224 | 256
17 mnv3 block 128 7 1 v | HS | 640 | 384 | 224 | 256
18 mnv3 block 128 5 1 v | HS | 896 | 512 | 224 | 256
19 conv 128 1 1 v' | HS | 1024 - - -
20 global avg pool - - - - - - - - -
21 conv 1024 1 1 HS | 1792 - - -
22 fc - 1 1 - - 1000 - - -

Table 8: The discovered 51ms DNN architecture of NetAdaptV2 on ImageNet presented in Table 1. Type: type of the layer
or block. BN: using batch normalization. Act: activation type (HS: Hard-Swish, RE: ReLU). Exp: number of filters in the
expansion layer or number of filters in the conv layer. DW: number of filters in the depthwise layer. PW: number of filters in
the pointwise layer. SE: number of filters in the squeeze-and-excitation operation. All MobileNetV3 blocks (mnv3 block) with

a stride of 1 have residual connections.

which requires replacing the C' in Z = maxz(C, M) with
min(C,T) and gives the formulation of CBCs.

D. Ablation Study on MobileNetV1

This section provides the ablation study on Mo-
bileNetV1 [40]. This ablation study employs the experiment
setup outlined in Sec. 4.1.1 unless otherwise stated. The
initial network is the largest MobileNetV1 (1.0 MobileNet-
224 [40]).

D.1. Impact of Channel-Level Bypass Connections

The proposed channel-level bypass connections (CBCs)
enable NetAdaptV2 to search for different network depths
with marginal overhead. Table 11 shows that supporting
CBCs only increases the training time of the super-network
by 1.2x. Moreover, the ability to search network depth al-
lows discovering DNNs with better performance. As shown
in Table 11, CBCs improve the accuracy of the discovered
DNN by 6.5% with the same latency.

D.2. Impact of Multi-Layer Coordinate Descent
Optimizer

The proposed multi-layer coordinate descent (MCD) op-
timizer improves the performance of the discovered DNN
while reducing the number of samples and hence the search
time. In this experiment, the MCD optimizer generates 27
samples (J = 27) in each iteration, where J is equal to the
number of layers, and each sample is obtained by randomly
shrinking 4 layers (L = 4). Table 11 shows that the MCD
optimizer reduces the time for evaluating samples by 1.9x
and improves the accuracy by 2.8%.

E. Estimation of C'O, Emission

We estimate C'O5 emission based on Strubell et al. [34].
According to Table 3 in this paper, when BERT s is trained
on 64 V100 GPUs for 79 hours, the C'O5 emission is 1438
Ibs. Therefore, the ratio of C'Oy emission to GPU-hours is
611‘5’?9 = 0.2844. For each NAS method, we multiply its
search time by this ratio to estimate its corresponding C'O4

emission.




Index | Type | T | Kernel Size | Stride | BN | Act | Exp | DW | PW | SE
1 conv 8 3 2 v | HS 24 - - -
2 mnv3 block 8 3 1 v RE - 24 24 -
3 mnv3 block 16 5 2 v RE 64 48 32 24
4 mnv3 block 16 3 1 v RE 128 64 32 -
5 mnv3 block 32 5 2 v | RE 96 96 48 | 40
6 mnv3 block 32 3 1 v | RE | 128 80 56 | 40
7 mnv3 block 32 0 1 v | RE 0 0 0 0
8 mnv3 block 32 0 1 v | RE 0 0 0 0
9 mnv3 block 64 5 2 v HS 224 224 96 80
10 mnv3 block 64 3 1 v HS 224 96 96 -
11 mnv3 block 64 3 1 v HS 256 256 96 80
12 mnv3 block 64 0 1 v | HS 0 0 0 0
13 mnv3 block 64 5 1 v HS 640 640 | 144 | 320
14 mnv3 block 64 3 1 v HS 640 512 | 144 | 320
15 mnv3 block 64 0 1 v | HS 0 0 0 0
16 mnv3 block 128 5 2 v | HS | 768 | 640 | 192 | 320
17 mnv3 block 128 5 1 v | HS | 768 | 256 | 192 | 320
18 mnv3 block 128 7 1 v | HS | 896 | 768 | 192 | 320
19 mnv3 block 128 7 1 v HS | 1152 | 1152 | 192 | 320
20 conv 128 1 1 v HS | 1152 - - -
21 global avg pool - - - - - - - - -
22 conv 1024 1 1 HS | 2048 - - -
23 fc - 1 1 - - 1000 - - -

Table 9: The discovered 314M-MAC DNN architecture of NetAdaptV2 on ImageNet presented in Table 2. Type: type of the
layer or block. BN: using batch normalization. Act: activation type (HS: Hard-Swish, RE: ReLLU). Exp: number of filters in
the expansion layer or number of filters in the conv layer. DW: number of filters in the depthwise layer. PW: number of filters
in the pointwise layer. SE: number of filters in the squeeze-and-excitation operation. All MobileNetV3 blocks (mnv3 block)

with a stride of 1 have residual connections.



Index ‘ Type ‘ T ‘ Kernel Size ‘ Stride ‘ Filter

1 conv 16 3 2 24
2 dw 00 3 1 20
3 pw 16 1 1 48
4 dw 00 3 2 48
5 pw 32 1 1 96
6 dw 00 3 1 96
7 pw 32 1 1 112
8 dw 00 3 2 112
9 pw 64 1 1 256
10 dw 00 3 1 256
11 pw 64 1 1 192
12 dw 00 3 2 192
13 pw 128 1 1 448
14 dw 00 3 1 448
15 pw 128 1 1 448
16 dw 00 3 1 448
17 pw 128 1 1 384
18 dw 00 3 1 384
19 pw 128 1 1 512
20 dw 00 3 1 512
21 pw 128 1 1 384
22 dw 00 3 1 384
23 pw 128 1 1 448
24 dw 00 3 2 448
25 pw 256 1 1 384
26 dw 00 3 1 384
27 pw 256 1 1 768
28 dw 00 5 1 768
29 pw 256 1 1 384
30 upsample - - - -
31 dw 00 5 1 320
32 pw 128 1 1 192
33 upsample - - - -
34 dw 00 5 1 160
35 pw 64 1 1 112
36 upsample - - - -
37 dw 00 3 1 112
38 pw 32 1 1 48
39 upsample - - -
40 dw 00 3 1 28
41 pw 16 1 1 24
42 upsample - - - -
43 pw 0 1 1 1

Table 10: The discovered 87ms DNN architecture of NetAdaptV2 on NYU Depth V2 presented in Table 7. Type: type of
the layer, which can be standard convolution (conv), depthwise convolution (dw), pointwise convolution (pw), or nearest
neighbor upsampling (upsample). Filter: number of filters. All layers except for upsampling layers are followed by a batch
normalization layer and a ReLU activation layer.



Methods

Top-1

# of

Super-Network Training

CBC \ MCD || Accuracy (%) | Layers Speed (min/epoch) # of Samples

40.0 (+0) 28 (-0) 3.2 (100%) 1064 (100%)

v 46.5 (+6.5) 19 (-9) 3.8 (119%) 1092 (103%)
v v 49.3 (+9.3) 17 (-11) 3.8 (119%) 567 (53%)

Table 11: The ablation study of the channel-level bypass connections (CBCs) and the multi-layer coordinate descent (MCD)
optimizer on ImageNet and MobileNetV 1. The latency of the discovered networks is around 6.5ms.



