
S3: Neural Shape, Skeleton, and Skinning Fields for 3D Human Modeling
(Supplementary Material)

Ze Yang1,2 Shenlong Wang1,2 Sivabalan Manivasagam1,2 Zeng Huang3

Wei-Chiu Ma1,4 Xinchen Yan1 Ersin Yumer1 Raquel Urtasun1,2

1Uber Advanced Technologies Group 2University of Toronto,
3University of Southern California 4Massachusetts Institute of Techonology

{zeyang, slwang, manivasagam, urtasun}@cs.toronto.edu,

zenghuan@usc.edu, weichium@mit.edu, {xcyan, yumer}@uber.com

In this supplementary material, we provide additional
details, analyses and qualitative results of our method. We
first describe the details about our network architecture and
dataset preprocessing in Section A. Then in Section B we
show the additional ablation study on the RenderPeople
dataset. Next, we present more details about our animation
formulation in Section C, including the Inverse Kinematics
(IK) solution that transfers the reconstructed skeleton to the
target skeleton, and the Linear Blend Skinning (LBS) for-
mulation used for mesh re-animation. Finally, we showcase
more qualitative results in Section D.

A. Additional Details
3D U-Net Architecture: We adopt the 3D U-Net architec-
ture from [3], where the encoder consists of 8 convolution
layers. We gather intermediate features and place a max-
pooling layer after every two conv layers with stride = 2.
The decoder consists of 6 convolution layers. We fuse the
intermediate features and place an upsampling layer after ev-
ery two conv layers with stride = 2. We pass the resulting
feature through one conv layer and obtain the final output.
It has the same spatial resolution as the input. Please see
Figure 1 for more details.

Dataset Pre-processing: We purchase 793 RenderPeople
rigged characters [2] and animate them with 39 different
animations downloaded from Mixamo [1]. See Table 1 for
a complete list of our selected animation. We randomly
select 3 frames per animation for each model, where the
sampled frames may be different across characters. To test
the generalization ability of our model, we use another 10
held out animations from Mixamo [1]. Please see Table 2
for more details. We randomly select one HDRI image and
rotate the light direction during the rendering.

There are three factors that will affect the size of a char-
acter in the rendered image: (1) the depth of the character,
(2) camera intrinsics, and (3) the size of the character. We

fix the character depth at 10 meters and randomly perturb
the camera’s position tangent to its viewing direction to push
characters away from the optical axis center. This simulates
the severe perspective distortion observed in real images,
reducing the sim-to-real gap. We also adjust the focal length
to make sure the height of the rendered character is roughly
equivalent to 90% of the image. The output image resolution
is 512× 512 pixels. To generate the corresponding LiDAR
points of a 64-beam LiDAR sensor, we ray-cast the posed
mesh at a 0.18◦ azimuth interval and about 0.4◦ elevation
interval from [2◦,−24◦] using Intel Embree [5] ray tracing
kernel. To simulate ray-drop effect and sensor noise, we
randomly drop 10% ray-casted points and perturb each ray-
casted points with a Gaussian noise along the ray direction
(σ = 1cm).

B. Additional Ablations
Ablation on point location encoding: We compare three
different point location features. (1) Compute the depth of
the query points in camera coordinate and then normalize
them to be zero centered. This can be viewed as the per-
spective version of PIFu [4]. (2) Compute the point location
of the query points in camera coordinate and then normal-
ize them to be zero centered. (3) Our proposed viewpoint
encoding (Equation 2 in the main paper). We note that in
this ablation we use the image only model where the point
location feature is more important. As shown in Table 3, our
proposed viewpoint encoding achieves the best performance.
This suggests the importance of the viewpoint encoding
φview(p) to disambiguate the query points lying on the same
camera ray.

Ablation on multi-task learning: Here, we examine
whether multi-task learning can improve individual tasks
through our unified neural fields. We train a single occu-
pancy head, a pose head, and a multi head network. As
shown in Table 4, multi-task learning benefits occupancy



3x
3x

3
co

nv
,1

6

3x
3x

3
co

nv
,3

2

2x
2x

2 
m

ax
 p

oo
l

3x
3x

3
co

nv
,3

2

3x
3x

3
co

nv
,6

4

2x
2x

2 
m

ax
 p

oo
l

3x
3x

3
co

nv
,6

4

3x
3x

3
co

nv
,1

28

2x
2x

2 
m

ax
 p

oo
l

3x
3x

3
co

nv
,1

28

3x
3x

3
co

nv
,2

56

2x
2x

2 
up

sa
m

pl
e

co
nc

at
en

at
e

3x
3x

3
co

nv
,1

28

3x
3x

3
co

nv
,1

28

2x
2x

2 
up

sa
m

pl
e

co
nc

at
en

at
e

3x
3x

3
co

nv
,6

4

3x
3x

3
co

nv
,6

4

2x
2x

2 
up

sa
m

pl
e

co
nc

at
en

at
e

3x
3x

3
co

nv
,3

2

3x
3x

3
co

nv
,3

2

1x
1x

1
co

nv
,2

56

In
pu

t

Ou
tp
ut

Encoder Decoder

Figure 1: Network architecture of the 3D U-Net.

Agreeing Bored
Breakdance Ready Defeat

Defeated Dwarf Idle
Female Tough Walk Hands Forward Gesture

Holding Idle Jogging
Look Over Shoulder Old Man Idle

Patting Pointing
Put Back Rifle Behind Shoulder Run Look Back

Running Right Turn Running
Searching Files High Shoulder Rubbing

Standing Clap Standing Greeting
Standing Torch Idle 02 Standing Turn 90 Right
Standing Turn Left 90 Stop Jumping Jacks

Strut Walking Talking On Phone
Talking Phone Pacing Talking
Texting And Walking Walking Backwards

Walking Left Turn Walking Turn 180
Walking While Texting Walking

Walking-2 Yawn
Yelling

Table 1: List of animations to generate training/test set.

Drunk Idle Variation Drunk Walk
Jog In Circle Pacing And Talking On A Phone

Picking Up Object Right Turn
Slow Run Taunt
Thankful Wheelbarrow Walk

Table 2: List of animations to generate unseen test set.

predictions, suggesting that skeleton prediction may help the
occupancy net through the unified neural field representation.

Ablation on sampling strategy: We show the effects of
different query points sampling strategy during training for
both human surface reconstruction and human pose estima-
tion in Table 5. A naive sampling strategy is to uniformly
sample the query points (or sample grid points) in the space.
Although this strategy can supervise the neural field in the
full 3D space, the query points will be sparse over the human

Geometry encoding Chamfer↓ P2S↓ Normal↑
depth 1.025 1.045 0.882

point location 0.935 0.952 0.886
ours 0.922 0.928 0.891

Table 3: Ablation on different point location encoding. Our
viewpoint encoding performs best.

(a) Uniform (b) Biased (c) Uniform + Biased

Figure 2: Qualitative comparison of models trained with
different sampling strategy. Using uniform sampling alone
tends to have coarse and inaccurate surface. Using biased
sampling alone tends to introduce artifacts outside the mesh.

Head Shape Pose

Chamfer↓ P2S↓ MPJPE↓
Occupancy 0.661 0.651 -

Pose - - 1.988
Occupancy + Pose 0.647 0.632 2.051

Table 4: Ablation on multi-task learning. Multi-task learning
is helpful for shape reconstruction.

surface or joints location under memory constraints, pre-
venting the network to learn fine-grained surface details and
key-points location. An alternative is to distribute the query
points around the object surface (for shape reconstruction)
and key-points location (for pose estimation). We observe
that combining the uniform sampling strategy and biased
sampling can achieve the best performance for both human
surface reconstruction and human pose estimation. See Fig-
ure 2 for a qualitative comparison. Visually we found that the
model trained with uniform sampling alone tends to predict



Strategy Shape Pose

Chamfer↓ P2S↓ MPJPE↓
Uniform 0.777 0.756 3.295
Biased 2.503 4.340 2.448

Uniform + Biased 0.647 0.632 2.051

Table 5: Ablation on sampling strategy. The combination of
uniform sampling and biased sampling performs best.

coarse mesh surface and ignore local details. In contrast, the
model trained with biased sampling alone tends to predict
artifacts outside the decision boundary, which significantly
hurts the Chamfer and P2S results. The observation is con-
sistent with [4] where training with hybrid sampling can
improve the 3D reconstruction.

C. Human Animation Details
We describe the state of the predicted human skeleton as

a set of joints J = {jk}Kk=1 and inter-connected bones. The
movement of human skeleton can be represented as a set of
relative rotations for the joints in the skeleton. Given a target
pose J̄ = {̄jk}Kk=1, we first calculate the Inverse Kinematics
(IK) that transforms our reconstructed skeleton to this target
skeleton. We denote the solution as Θk ∈ SO(3), where
each relative rotation Θk describes how the joint jk will
rotate with respect to its parent joint. Then we animate
the human mesh to new pose via the Linear Skinning Model
(LBS). Now we describe our IK solution and the LBS model.

Inverse Kinematics Solution: Given the predicted skele-
ton J = {jk}Kk=1 and target skeleton J̄ = {̄jk}Kk=1, we aim
to find the rotation matrix for each joint that can transform
the predicted skeleton to the target skeleton as close as possi-
ble. We solve the inverse kinematics analytically by rotating
each joint in the predicted skeleton so that its associated bone
(the line connecting the joint and its child joint) is parallel to
the corresponding bone in the target skeleton. Specifically,
we use bk to denote the bone direction of the k-th joint jk in
the predicted skeleton, and b̄k to denote the bone direction
of the k-th joint j̄k in the target skeleton. Then the solution
{Θk}Kk=1 can be found by solving:

b̄k =
∏

p∈A(k)

Θpbk, k = 1, 2, · · · ,K (1)

where A(k) is the set of joint ancestors of the k-th joint in
order. It is noted that there are infinitely many rotations
that map bk to b̄k. We choose the "shortest-arc" rotation
between bk and b̄k, i.e., rotate along the cross product of
bk and b̄k.

LBS model: Now we describe how we animate the human
mesh to new pose using the LBS model. Formally, we

denote the predicted human mesh as a set of N vertices V =
{vi}Ni=1, the predicted skeleton as K joints J = {jk}Kk=1,
and the predicted skinning weight as a matrix W ∈ RN×K .
We then traverse the kinematic tree and construct the rigid
transformation matrix Tk(Θk) for each joint using forward
kinematics:

Tk(Θk) =
∏

p∈A(k)

[
Θp (I−Θp)jp
0 1

]
(2)

where A(k) is the set of joint ancestors of the k-th joint in
order, Θp is the rotation matrix of the p-th joint w.r.t. its par-
ent, and jp is the coordinate of the p-th joint in the predicted
skeleton. The LBS model assumes the transformation for
each vertex vi in the human mesh as a linear combination of
the rigid transformation matrix Tk(Θk) and skinning weight
wi,k. The coordinate for the i-th vertex after transformation
can now be computed as:

v̄i =

K∑
k=1

wi,kTk(Θk)vi (3)

where wi,j is the skinning weight describing the influence
of the k-th joint on the i-th vertex in the predicted mesh.

D. Additional Results
We provide more results of our model on real data cap-

tured in urban scene with different viewpoints, LiDAR spar-
sity, lighting and clothes topology. The shape reconstruction
results are visualized in Figure 3, in each cell from left to
right: camera image overlaid with LiDAR points, foreground
image, shape reconstruction. The animation results are vi-
sualized in Figure 4, we sample frames from Mixamo [1]
animation as the target skeleton pose, in each cell from left
to right: foreground image, reconstructed skeleton, recon-
structed shape, target skeleton, re-animated shape.

References
[1] Mixamo, https://www.mixamo.com, 2020. 1, 3
[2] Renderpeople, https://renderpeople.com/3d-rigged-people,

2020. 1
[3] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp,

Thomas Brox, and Olaf Ronneberger. 3d u-net: learning
dense volumetric segmentation from sparse annotation. In
International conference on medical image computing and
computer-assisted intervention, 2016. 1

[4] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. In ICCV, 2019. 1, 3

[5] Ingo Wald, Sven Woop, Carsten Benthin, Gregory S Johnson,
and Manfred Ernst. Embree: a kernel framework for efficient
cpu ray tracing. ACM Transactions on Graphics (TOG), 2014.
1



Figure 3: Visualization of reconstruction on more urban scenes. From left to right in each cell: camera image overlaid with
LiDAR points, foreground image, shape reconstruction.



Figure 4: Visualization of animation on more urban scenes. From left to right in each cell: foreground image, reconstructed
skeleton, reconstructed shape, target skeleton, re-animated shape.


