A. Algorithm Outline

Algorithm 1 presents an outline of our proposed Cross-
Iteration Batch Normalization (CBN).

Algorithm 1: Cross-Iteration Batch Normaliza-
tion(CBN)

Input: Feature responses of a network node of the
I-th layer at the ¢-th iteration {x} ;(6;)}™,.
network weights {#__}*Z1, statistics
{u94<@_»}iizmd{w,rwp¢>ﬁzh
and gradients {9y, (0;_,)/060'__}rZ
and {Ov;_,(0;_,)/00}__}F=1 from most
recent k — 1 iterations

Output: {y; ;(6;) = CBN(x},(6;))}
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B. Efficient Implementation of
alué—T(et—T>/agi—T and 8”1%—7(975—7')/861{—7'

Let C,,¢ and C;, denote the output and input channel
dimension of the [-th layer, respectively, and K denotes the
kernel size of #.__. u! _and v!__ are thus of C,,; dimen-
sions in channels, and 9§_T is a Cyy X Cy, X K dimensional
tensor. A naive implementation of dul__(6,—,)/00_.
and Ov}__(0;_,)/00.__ involves computational overhead
of O(Cout X Cour X Cin x K). Here we find that the
operations of x4 and v can be implemented efficiently in
O(Cin x K) and O(Clyt x Cip, X K), respectively, thanks
to the averaging of feature responses in p and v.

Here we derive the efficient implementation of
Oul__(0,—,)/06.__. That of Ov}__(6;_,)/00._ is about
the same. Let us first simplify the notations a bit. Let j!

and 0 denote p__(6;_,) and §.__ respectively, by remov-
ing the irrelevant notations for iterations. The element-wise
computation in the forward pass can be computed as
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where 41 denotes the j-th channel in 4!, and x} ; denotes

the j-th channel in the ¢-th example. mﬁ ; is computed as
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where n and k enumerate the input feature dimension and
the convolution kernel index, respectively, offset(k) denotes
the spatial offset in applying the k-th kernel, and '~ ! is the
output of the (I — 1)-th layer.

The element-wise calculation of du!/06 €
RCout XCoutxCinxK i a5 follows, taking Eq. (13) and
Eq. (14) into consideration:
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Thus, (2% ] j.q.p.n takes non-zero values only when j = g.
This operation can be implemented efficiently in O(Cj,, X
K). Similarly, the calculation of 9v!/96! can be obtained
in O(Cout X Cz’n X K)

C. Observation of the gradients diminishing

The key assumption in Eq. (7) and Eq. (8) is that for
a node at the [-th layer, the gradient of its statistics with
respect to the network weights at the [-th layer is larger than
that of weights from the prior layers, i.e.,
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Here, we examine this assumption empirically for net-

works trained on ImageNet image recognition. Both

7) denotes

notes ,and || - || 7 denotes the Frobenius norm.
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Figure 6. Comparison of gradients of statistics w.r.t. current layer
vs. that w.r.t. previous layers on ImageNet.

9 (r)]|7/119, (D] |7 and [|g, ()| £ /[lg. (D] ¢ for r € {1 -
1,1 — 2} are averaged over all CBN layers of the network

at different training epochs (Figure 6). The results suggest
that the key assumption holds well, thus validating the ap-
proximation in Eq. (7) and Eq. (8).

We also study the gradients of non-ResNet models. The
ratios of ||g,||r and ||g,||F are (0.20 and 0.41) for VGG-
16 and (0.15 and 0.37) for Inception-V3, which is similar
to ResNet (0.12 and 0.39), indicating that the assumption
should also hold for the VGG and Inception series.



