
A. Algorithm Outline
Algorithm 1 presents an outline of our proposed Cross-

Iteration Batch Normalization (CBN).

Algorithm 1: Cross-Iteration Batch Normaliza-
tion(CBN)

Input: Feature responses of a network node of the
l-th layer at the t-th iteration {xlt,i(θt)}mi=1,
network weights {θlt−τ}k−1

τ=0, statistics
{µlt−τ (θt−τ )}k−1

τ=1 and {νlt−τ (θt−τ )}k−1
τ=1,

and gradients {∂µt−τ (θt−τ )/∂θlt−τ}k−1
τ=1

and {∂νt−τ (θt−τ )/∂θlt−τ}k−1
τ=1 from most

recent k − 1 iterations
Output: {ylt,i(θt) = CBN(xlt,i(θt))}

1 µt(θt)← 1
m

∑m
i=1 xt,i(θt),

νt(θt)← 1
m

∑m
i=1 x

2
t,i(θt) //statistics on the

current iteration
2 for τ ∈ {1, . . . , k} do
3 µlt−τ (θt)←

µlt−τ (θt−τ ) +
∂µlt−τ (θt−τ )

∂θlt−τ
(θlt − θlt−τ )

//approximation from recent iterations

4 νlt−τ (θt)← νlt−τ (θt−τ )+
∂νlt−τ (θt−τ )

∂θlt−τ
(θlt−θlt−τ )

//approximation from recent iterations
5 end
6 µ̄lt,k(θt)← 1

k

∑k−1
τ=0 µ

l
t−τ (θt) //averaging over

recent iterations
7 ν̄lt,k(θt)← 1

k

∑k−1
τ=0 max

[
νlt−τ (θt), µ

l
t−τ (θt)

2
]

//validation and averaging over recent iterations
8 σ̄lt,k(θt)

2 ← ν̄lt,k(θt)− µ̄lt,k(θt)
2

9 x̂lt,i(θt) =
xlt,i(θt)−µ̄

l
t,k(θt)√

σ̄lt,k(θt)2+ε
//normalize

10 ylt,i(θt)← γx̂lt,i(θt) + β //scale and shift

B. Efficient Implementation of
∂µlt−τ (θt−τ )/∂θ

l
t−τ and ∂ν lt−τ (θt−τ )/∂θlt−τ

Let Cout and Cin denote the output and input channel
dimension of the l-th layer, respectively, and K denotes the
kernel size of θlt−τ . µlt−τ and νlt−τ are thus of Cout dimen-
sions in channels, and θlt−τ is aCout×Cin×K dimensional
tensor. A naive implementation of ∂µlt−τ (θt−τ )/∂θlt−τ
and ∂νlt−τ (θt−τ )/∂θlt−τ involves computational overhead
of O(Cout × Cout × Cin × K). Here we find that the
operations of µ and ν can be implemented efficiently in
O(Cin ×K) and O(Cout ×Cin ×K), respectively, thanks
to the averaging of feature responses in µ and ν.

Here we derive the efficient implementation of
∂µlt−τ (θt−τ )/∂θlt−τ . That of ∂νlt−τ (θt−τ )/∂θlt−τ is about
the same. Let us first simplify the notations a bit. Let µl

and θl denote µlt−τ (θt−τ ) and θlt−τ respectively, by remov-
ing the irrelevant notations for iterations. The element-wise
computation in the forward pass can be computed as

µlj =
1

m

m∑
i=1

xli,j , (13)

where µlj denotes the j-th channel in µl, and xli,j denotes
the j-th channel in the i-th example. xli,j is computed as

xli,j =

Cin∑
n=1

K∑
k=1

θlj,n,k · yl−1
i+offset(k),n, (14)

where n and k enumerate the input feature dimension and
the convolution kernel index, respectively, offset(k) denotes
the spatial offset in applying the k-th kernel, and yl−1 is the
output of the (l − 1)-th layer.

The element-wise calculation of ∂µl/∂θl ∈
RCout×Cout×Cin×K is as follows, taking Eq. (13) and
Eq. (14) into consideration:

[
∂µl

∂θl
]j,q,p,η =

∂µlj
∂θlq,p,η

=
∂ 1
m

∑m
i=1 x

l
i,j

∂θlq,p,η

=
∂ 1
m

∑m
i=1

∑Cin
n=1

∑K
k=1 θ

l
j,n,k · y

l−1
i+offset(k),n

∂θlq,p,η

=

{
1
m

∑m
i=1 y

l−1
i+offset(η),p , j = q

0 , j 6= q
.

(15)

Thus, [∂µ
l

∂θl
]j,q,p,η takes non-zero values only when j = q.

This operation can be implemented efficiently in O(Cin ×
K). Similarly, the calculation of ∂νl/∂θl can be obtained
in O(Cout × Cin ×K).

C. Observation of the gradients diminishing
The key assumption in Eq. (7) and Eq. (8) is that for

a node at the l-th layer, the gradient of its statistics with
respect to the network weights at the l-th layer is larger than
that of weights from the prior layers, i.e.,

||gµ(l|l, t, τ)||F � ||gµ(r|l, t, τ)||F
||gν(l|l, t, τ)||F � ||gν(r|l, t, τ)||F , r < l

where gµ(r|l, t, τ) denotes ∂µlt−τ (θt−τ )

∂θrt−τ
, gν(r|l, t, τ) de-

notes ∂νlt−τ (θt−τ )

∂θrt−τ
, and || · ||F denotes the Frobenius norm.

Here, we examine this assumption empirically for net-
works trained on ImageNet image recognition. Both



(a) The gradients of µ (b) The gradients of ν

Figure 6. Comparison of gradients of statistics w.r.t. current layer
vs. that w.r.t. previous layers on ImageNet.

||gµ(r)||F /||gµ(l)||F and ||gν(r)||F /||gν(l)||F for r ∈ {l−
1, l − 2} are averaged over all CBN layers of the network
at different training epochs (Figure 6). The results suggest
that the key assumption holds well, thus validating the ap-
proximation in Eq. (7) and Eq. (8).

We also study the gradients of non-ResNet models. The
ratios of ||gµ||F and ||gν ||F are (0.20 and 0.41) for VGG-
16 and (0.15 and 0.37) for Inception-V3, which is similar
to ResNet (0.12 and 0.39), indicating that the assumption
should also hold for the VGG and Inception series.


