

Supplementary Material for "Towards Efficient Tensor Decomposition-Based DNN Model Compression with Optimization Framework"

Miao Yin¹, Yang Sui¹, Siyu Liao^{2†} and Bo Yuan¹

¹Department of ECE, Rutgers University, ²Amazon

{miao.yin, yang.sui}@rutgers.edu, liasiyu@amazon.com, bo.yuan@soe.rutgers.edu

Implementation Details

All TT operations are implemented by reshape, transpose and matrix multiplication offered by PyTorch.

For ResNet-18 on ImageNet, the original weight tensor of size $O \times I \times K \times K$ is reshaped and transposed to size $O \times K^2 \times I$. The TT-ranks for FLOPs reduction $2.47 \times$ are summarized in Table 1.

Layer	TT-ranks
layer1.0.conv1	[1, 64, 64, 1]
layer1.0.conv2	[1, 64, 64, 1]
layer1.1.conv1	[1, 64, 64, 1]
layer1.1.conv2	[1, 64, 64, 1]
layer2.0.conv1	[1, 120, 60, 1]
layer2.0.conv2	[1, 100, 100, 1]
layer2.1.conv1	[1, 100, 100, 1]
layer2.1.conv2	[1, 100, 100, 1]
layer3.0.conv1	[1, 200, 150, 1]
layer3.0.conv2	[1, 135, 135, 1]
layer3.1.conv1	[1, 135, 135, 1]
layer3.1.conv2	[1, 135, 135, 1]
layer4.0.conv1	[1, 320, 200, 1]
layer4.0.conv2	[1, 170, 170, 1]
layer4.1.conv1	[1, 170, 170, 1]
layer4.1.conv2	[1, 170, 170, 1]

Table 1: TT-ranks for ResNet-18.

For other DNN models, the settings keep similar to prior works.

[†]This work was done when the author was with Rutgers University.