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1. In-House Motion Dataset and Kinematic Pose Estimator
In-House Dataset. Our in-house motion dataset uses a more complex skeleton model (with twice as many joints, including
fingers) than SMPL [7]. To recover the human skinning mesh model of each subject, we use an offline process that uses
multiview 3D reconstruction to produce a person-specific skinning template with 32 bone scaling parameters based on non-
rigid ICP deformation [1] and linear blend skinning [4]. For motion, we solve for 94 local joint angles (degrees of freedom)
and the global 3D position of 159 joints, including finger joints, for every frame.

Kinematic Pose Estimator. Since existing kinematic pose estimators, such as VIBE [6], cannot be directly applied to the
in-house dataset due to the dataset’s more complex skeletons and skinning models, we design a simple kinematic tracker
(“KinPose” in the main paper) that also uses monocular inputs to produce kinematic pose estimates. The model does not
have any temporal component, outputting both 2D keypoint heatmaps and joint angles frame-by-frame. These two outputs
are required by our approach (SimPoE) and NeurGD [10]. Below, we detail the network architecture and training procedure
of this model, which are typical for such models as the performance of SimPoE is not sensitive to these design choices.

Network Architecture. We use a 3-stage cascaded network [11] with a backbone based on ResNet-50 [2]. The output of
the network at each stage is a tensor of m + n channels with a spatial size that is 8x smaller than the input image, where
m = 77 is the number of heatmap channels for 2D keypoints (a subset of the 159 joints), and n = 94 + 6 is the number of
local joint angles and global pose dimensions. Each of the 94 angle channels is an “angle map” corresponding to a joint. The
final output angle (scalar) is calculated by summing the element-wise product between an angle map and its corresponding
keypoint heatmaps, where the correspondence is defined based on the skeleton. This design is a type of attention mechanism,
which encourages the model to predict the angle of a joint based only on relevant image regions.

Training. At each stage of the network, we apply L2 losses on heatmaps, 2D keypoints, 3D joint positions, and joint angles
to train the model, similar to VIBE [6].

2. Additional Implementation Details

Parameter Value

Num. of time steps 50000
Num. of epochs 2000
Num. of policy updates per epoch 10
Policy step size 5× 10−5

Value step size 3× 10−4

PPO clip ε 0.2
Discount factor γ 0.95
GAE coefficient λ 0.95
Reward weights (αp, αv, αj, αk) (Human3.6M) (30, 0.2, 100, 0.02)
Reward weights (αp, αv, αj, αk) (In-house) (60, 0.2, 300, 0.02)
Elements of diagonal covariance Σ (Human3.6M) 0.1
Elements of diagonal covariance Σ (In-house) 0.05
Residual force scale 500

Table 1. Hyperparameters for experiments on Human3.6M [3] and our in-house motion dataset.
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For both Human3.6M and our in-house motion dataset, our method uses the same hyperparameter settings unless stated
otherwise. Table 1 summarizes the hyperparameter setting.

Policy Network. The learnable parts in the policy network are the two MLPs, i.e., Uθ inside the kinematic refinement unit
and Vθ inside the control generation unit. We use ReLU activations for both Uθ and Vθ. The MLP Uθ consists of hidden
layers with size (256, 512, 256). The MLP Vθ contains hidden layers with size (2048, 1024).

Policy Training. For Human3.6M, we train a single policy using data from all the training subjects and directly transfer the
policy to test subjects, so it is a cross-subject experiment. For our in-house motion dataset, due to the large variation of body
proportion and shape, we train a model for each subject using subject-specific data and test on separate data. All baselines
are trained using the same data as our method. For learning the policy, each RL episode is constructed by randomly sampling
a video segment of 200 frames from all training data. For the initial pose q1 of the character, we initialize it to the refined

kinematic pose q̃(n)1 . For the initial velocity q̇1, we set it to the kinematic velocity ˜̇q(n)1 computed using finite differences.
The episode is terminated when the end frame is reached or the character’s root height is 0.5 below the root height of the
kinematic pose (i.e., to detect if the character has lost balance). We train the policy πθ for 2000 epochs. For each epoch,
we keep collecting data by sampling RL episodes until the total number of time steps reaches 50000. The reward weighting
factors (αp, αv, αj, αk) are set to (30, 0.2, 100, 0.02) for Human3.6M and (60, 0.2, 300, 0.02) for the in-house dataset. For
Human3.6M, we only have access to ground-truth 3D joint positions but not ground-truth joint angles, so we use the refined
kinematic pose as pseudo-ground truth (for regularization) when computing rewards that need ground-truth joint angles. The
elements of the policy’s diagonal covariance matrix Σ are set to 0.1 for Human3.6M and 0.05 for our in-house motion dataset.
The residual forces ηt output by the policy is scaled by 500 before being input to the physics simulator. We use the proximal
policy optimization (PPO [9]) to learn the policy πθ. The discount factor for the Markov decision process (MDP) is 0.95.
We use the generalized advantage estimator GAE(λ) [8] to compute the advantage estimate for policy gradient and the GAE
coefficient λ is 0.95. At each epoch, the policy is updated 10 times using Adam [5] with a step size 5× 10−5. The clipping
coefficient ε in PPO is set to 0.2. Since PPO is an actor-critic based method, it also learns a value function that mirrors the
design of the policy but outputs a single value estimate. The value function is updated using Adam with a step size 3× 10−4

whenever the policy is updated.
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