Supplementary Materials

Appendix A.

A. 1 Proof of Theorem 1

Theorem 1. Let $p_{\mathrm{d}}(x)$ and $p_{\mathrm{g}}(x)$ be the density functions for the data and model distributions, \mathbb{P}_{d} and \mathbb{P}_{g}, respectively. Consider $\mathcal{L}^{a w}\left(D, p_{\mathrm{g}}\right)=w_{r} \mathbb{E}_{x \sim p_{d}}[\log D(x)]+w_{f} \mathbb{E}_{x \sim p_{g}}[\log (1-D(x))]$ with fixed $w_{r}, w_{f}>0$.

1. Given a fixed $p_{\mathrm{g}}(x), \mathcal{L}^{a w}\left(D, p_{\mathrm{g}}\right)$ is maximized by $D^{*}(x)=\frac{w_{r} p_{\mathrm{d}}(x)}{w_{r} p_{\mathrm{d}}(x)+w_{f} p_{\mathrm{g}}(x)}$ for $x \in \operatorname{supp}\left(p_{\mathrm{d}}\right) \cup \operatorname{supp}\left(p_{\mathrm{g}}\right)$.
2. $\min _{p_{\mathrm{g}}} \max _{D} \mathcal{L}^{a w}\left(D, p_{\mathrm{g}}\right)=w_{r} \log \frac{w_{r}}{w_{r}+w_{f}}+w_{f} \log \frac{w_{f}}{w_{r}+w_{f}}$ with the minimum attained by $p_{\mathrm{g}}(x)=p_{\mathrm{d}}(x)$.

Proof.

1. First, the function $f(t)=a \log t+b \log (1-t)$ has its maximum in $[0,1]$ at $t=\frac{a}{a+b}$. Given a fixed $p_{\mathrm{g}}(x), w_{r}>0$ and $w_{f}>0$.

$$
\begin{align*}
\mathcal{L}^{a w}\left(D, p_{\mathrm{g}}\right) & =w_{r} \mathbb{E}_{x \sim p_{\mathrm{d}}}[\log (D(x))]+w_{f} \mathbb{E}_{x \sim p_{\mathrm{g}}}[\log (1-D(x))] \tag{8}\\
& =\int_{x} w_{r} p_{\mathrm{d}}(x) \log (D(x))+w_{f} p_{\mathrm{g}}(x) \log (1-D(x)) d x \tag{9}\\
& \leq \int_{x} w_{r} p_{\mathrm{d}}(x) \log \left(D^{*}(x)\right)+w_{f} p_{\mathrm{g}}(x) \log \left(1-D^{*}(x)\right) d x \tag{10}\\
& =w_{r} \mathbb{E}_{x \sim p_{\mathrm{d}}}\left[\log \left(\frac{w_{r} p_{\mathrm{d}}(x)}{w_{r} p_{\mathrm{d}}(x)+w_{f} p_{\mathrm{g}}(x)}\right)\right]+w_{f} \mathbb{E}_{x \sim p_{\mathrm{g}}}\left[\log \left(\frac{w_{f} p_{\mathrm{g}}(x)}{w_{r} p_{\mathrm{d}}(x)+w_{f} p_{\mathrm{g}}(x)}\right)\right] . \tag{11}
\end{align*}
$$

where the equality holds if $D(x)=D^{*}(x)$. Therefore, $\mathcal{L}^{a w}\left(D, p_{\mathrm{g}}\right)$ is maximum when $D=D^{*}$.
2. If $p_{\mathrm{g}}(x)=p_{\mathrm{d}}(x)$, then $D^{*}(x)=\frac{w_{r}}{w_{r}+w_{f}}$ and

$$
\begin{align*}
\max _{D} \mathcal{L}^{a w}\left(D, p_{\mathrm{g}}\right) & =w_{r} \mathbb{E}_{x \sim p_{\mathrm{d}}}\left[\log \left(\frac{w_{r}}{w_{r}+w_{f}}\right)\right]+w_{f} \mathbb{E}_{x \sim p_{\mathrm{g}}}\left[\log \left(\frac{w_{f}}{w_{r}+w_{f}}\right)\right] \tag{12}\\
& =w_{r} \log \left(\frac{w_{r}}{w_{r}+w_{f}}\right)+w_{f} \log \left(\frac{w_{f}}{w_{r}+w_{f}}\right) \tag{13}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\max _{D} \mathcal{L}^{a w}\left(D, p_{\mathrm{g}}\right)= & w_{r} \mathbb{E}_{x \sim p_{\mathrm{d}}}\left[\log \left(\frac{w_{r} p_{\mathrm{d}}(x)}{w_{r} p_{\mathrm{d}}(x)+w_{f} p_{\mathrm{g}}(x)}\right)\right]+w_{f} \mathbb{E}_{x \sim p_{\mathrm{g}}} \log \left[\left(\frac{w_{f} p_{\mathrm{g}}(x)}{w_{r} p_{\mathrm{d}}(x)+w_{f} p_{\mathrm{g}}(x)}\right)\right] \tag{14}\\
= & w_{r} \log \left(\frac{w_{r}}{w_{r}+w_{f}}\right)+w_{f} \log \left(\frac{w_{f}}{w_{r}+w_{f}}\right) \\
& +w_{r} K L\left(p_{\mathrm{d}} \left\lvert\, \frac{w_{r} p_{\mathrm{d}}+w_{f} p_{\mathrm{g}}}{w_{r}+w_{f}}\right.\right)+w_{f} K L\left(p_{\mathrm{g}} \left\lvert\, \frac{w_{r} p_{\mathrm{d}}+w_{f} p_{\mathrm{g}}}{w_{r}+w_{f}}\right.\right) \tag{15}\\
\geq & w_{r} \log \left(\frac{w_{r}}{w_{r}+w_{f}}\right)+w_{f} \log \left(\frac{w_{f}}{w_{r}+w_{f}}\right) \tag{16}
\end{align*}
$$

where KL is the Kullback-Leibler divergence and equality holds when $p_{\mathrm{d}}=\frac{w_{r} p_{\mathrm{d}}+w_{f} p_{\mathrm{g}}}{w_{r}+w_{f}}$ and $p_{\mathrm{g}}=\frac{w_{r} p_{\mathrm{d}}+w_{f} p_{\mathrm{g}}}{w_{r}+w_{f}}$. Thus we have shown that

$$
\begin{equation*}
\min _{p_{\mathrm{g}}} \max _{D} \mathcal{L}^{a w}\left(D, p_{\mathrm{g}}\right)=w_{r} \log \left(\frac{w_{r}}{w_{r}+w_{f}}\right)+w_{f} \log \left(\frac{w_{f}}{w_{r}+w_{f}}\right) \tag{17}
\end{equation*}
$$

and minimum is attained when $p_{\mathrm{g}}=p_{\mathrm{d}}$.

A. 2 Proof of Theorem 2

Theorem 2. Consider $\mathcal{L}_{D}^{a w}$ in (2) and the gradient $\nabla \mathcal{L}_{D}^{a w}$.

1. If $w_{r}=\frac{1}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}}$ and $w_{f}=\frac{1}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}}$, then $\nabla \mathcal{L}_{D}^{a w}$ is the angle bisector of $\nabla \mathcal{L}_{r}$ and $\nabla \mathcal{L}_{f}$, i.e.

$$
\begin{equation*}
\angle_{2}\left(\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{r}\right)=\angle_{2}\left(\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{f}\right)=\angle_{2}\left(\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right) / 2 . \tag{18}
\end{equation*}
$$

2. If $w_{r}=\frac{1}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}}$ and $w_{f}=-\frac{\left\langle\nabla \mathcal{L}_{r}, \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}^{2} \cdot\left\|\mathcal{V} \mathcal{L}_{r}\right\|_{2}}$, then

$$
\begin{equation*}
\angle_{2}\left(\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{f}\right)=90^{\circ}, \angle_{2}\left(\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{r}\right) \leq 90^{\circ} . \tag{19}
\end{equation*}
$$

3. If $w_{r}=-\frac{\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}^{2} \cdot\left\|\nabla \mathcal{L}_{f}\right\|_{2}}$ and $w_{f}=\frac{1}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}}$, then

$$
\begin{equation*}
\angle_{2}\left(\mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{r}\right)=90^{\circ}, \angle_{2}\left(\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{f}\right) \leq 90^{\circ} . \tag{20}
\end{equation*}
$$

Proof.

1. If $w_{r}=\frac{1}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}}$ and $w_{f}=\frac{1}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}}$, then

$$
\begin{equation*}
\mathcal{L}_{D}^{a w}=\frac{1}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}} \mathcal{L}_{r}+\frac{1}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}} \mathcal{L}_{f} . \tag{21}
\end{equation*}
$$

Using the definition of Euclidean inner product,

$$
\begin{align*}
\cos \left(\angle_{2}\left(\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{r}\right)\right) & =\frac{\left\langle\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{r}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{D}^{a w}\right\|_{2}\left\|\nabla \mathcal{L}_{r}\right\|_{2}} \tag{22}\\
& =\frac{\frac{1}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}}\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{r}\right\rangle_{2}+\frac{1}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}}\left\langle\nabla \mathcal{L}_{f}, \nabla \mathcal{L}_{r}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{D}^{a w}\right\|_{2}\left\|\nabla \mathcal{L}_{r}\right\|_{2}} \tag{23}\\
& =\frac{1}{\left\|\nabla \mathcal{L}_{D}^{a w}\right\|_{2}}+\frac{\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{D}^{a w}\right\|_{2}\left\|\nabla \mathcal{L}_{r}\right\|_{2}\left\|\nabla \mathcal{L}_{f}\right\|_{2}} \tag{24}\\
\cos \left(\angle_{2}\left(\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{f}\right)\right) & =\frac{\left\langle\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{D}^{a w}\right\|_{2}\left\|\nabla \mathcal{L}_{f}\right\|_{2}} \tag{25}\\
& =\frac{\frac{1}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}}\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}+\frac{1}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}}\left\langle\nabla \mathcal{L}_{f}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{D}^{a w}\right\|_{2}\left\|\nabla \mathcal{L}_{f}\right\|_{2}} \tag{26}\\
& =\frac{1}{\left\|\nabla \mathcal{L}_{D}^{a w}\right\|_{2}}+\frac{\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{D}^{a w}\right\|_{2}\left\|\nabla \mathcal{L}_{r}\right\|_{2}\left\|\nabla \mathcal{L}_{f}\right\|_{2}} \tag{27}
\end{align*}
$$

We can rewrite $\left\|\nabla \mathcal{L}_{D}^{a w}\right\|_{2}$ in term of $\angle_{2}\left(\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right)$, that is

$$
\begin{align*}
\left\|\nabla \mathcal{L}_{D}^{a w}\right\|_{2}^{2} & =\left\langle\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{D}^{a w}\right\rangle_{2} \\
& =\left\langle\frac{1}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}} \nabla \mathcal{L}_{r}+\frac{1}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}} \nabla \mathcal{L}_{f}, \frac{1}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}} \nabla \mathcal{L}_{r}+\frac{1}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}} \nabla \mathcal{L}_{f}\right\rangle_{2} \\
& =\frac{\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{r}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}^{2}}+\frac{\left\langle\nabla \mathcal{L}_{f}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}^{2}}+\frac{2\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}\left\|\nabla \mathcal{L}_{f}\right\|_{2}} \\
& =2\left(1+\cos \left(\angle_{2}\left(\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right)\right)\right) . \tag{28}
\end{align*}
$$

Notice that (24) can be rewritten using $\angle_{2}\left(\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right)$ as

$$
\begin{equation*}
\cos \left(\iota_{2}\left(\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{r}\right)\right)=\frac{1}{\left\|\nabla \mathcal{L}_{D}^{a w}\right\|_{2}}+\frac{\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{D}^{a w}\right\|_{2}\left\|\nabla \mathcal{L}_{r}\right\|_{2}\left\|\nabla \mathcal{L}_{f}\right\|_{2}} \tag{29}
\end{equation*}
$$

$$
\begin{align*}
& =\frac{1}{\left\|\nabla \mathcal{L}_{D}^{a w}\right\|_{2}}\left(1+\cos \left(\angle_{2}\left(\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right)\right)\right) \tag{30}\\
& =\sqrt{\frac{1+\cos \left(\angle_{2}\left(\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right)\right)}{2}} \tag{31}\\
& =\cos \left(\angle_{2}\left(\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right) / 2\right) \tag{32}
\end{align*}
$$

Thus, $\angle_{2}\left(\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{r}\right)=\angle_{2}\left(\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{f}\right)=\angle_{2}\left(\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right) / 2$.
2. If $w_{r}=\frac{1}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}}$ and $w_{f}=-\frac{\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}^{2}\left\|\nabla \mathcal{L}_{r}\right\|_{2}}$ then

$$
\begin{equation*}
\mathcal{L}_{D}^{a w}=\frac{1}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}} \mathcal{L}_{r}-\frac{\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}^{2}\left\|\nabla \mathcal{L}_{r}\right\|_{2}} \mathcal{L}_{f} \tag{33}
\end{equation*}
$$

Using this aw-loss function, we have

$$
\begin{align*}
\left\langle\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{f}\right\rangle_{2} & =\left\langle\frac{1}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}} \nabla \mathcal{L}_{r}-\frac{\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}^{2}\left\|\nabla \mathcal{L}_{r}\right\|_{2}} \nabla \mathcal{L}_{f}, \nabla \mathcal{L}_{f}\right\rangle_{2} \tag{34}\\
& =\frac{\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}}-\frac{\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}\left\langle\nabla \mathcal{L}_{f}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}^{2}\left\|\nabla \mathcal{L}_{r}\right\|_{2}} \tag{35}\\
& =\frac{\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}}-\frac{\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}}=0 \tag{36}
\end{align*}
$$

and

$$
\begin{align*}
\left\langle\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{r}\right\rangle_{2} & =\left\langle\frac{1}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}} \nabla \mathcal{L}_{r}-\frac{\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}^{2}\left\|\nabla \mathcal{L}_{r}\right\|_{2}} \nabla \mathcal{L}_{f}, \nabla \mathcal{L}_{r}\right\rangle_{2} \tag{37}\\
& =\frac{\left\|\nabla \mathcal{L}_{r}\right\|_{2}^{2}}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}}-\frac{\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}^{2}}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}^{2}\left\|\nabla \mathcal{L}_{r}\right\|_{2}} \tag{38}\\
& \geq\left\|\nabla \mathcal{L}_{r}\right\|_{2}-\frac{\left\|\nabla \mathcal{L}_{f}\right\|_{2}^{2}\left\|\nabla \mathcal{L}_{r}\right\|_{2}^{2}}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}^{2}\left\|\nabla \mathcal{L}_{r}\right\|_{2}} \tag{39}\\
& =\left\|\nabla \mathcal{L}_{r}\right\|_{2}-\left\|\nabla \mathcal{L}_{r}\right\|_{2}=0 . \tag{40}
\end{align*}
$$

Thus, $\angle_{2}\left(\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{f}\right)=90^{\circ}$ and $\angle_{2}\left(\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{r}\right) \leq 90^{\circ}$.
3. If $w_{r}=-\frac{\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}^{2} \cdot\left\|\nabla \mathcal{L}_{f}\right\|_{2}}$ and $w_{f}=\frac{1}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}}$ then

$$
\begin{equation*}
\mathcal{L}_{D}^{a w}=-\frac{\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}^{2} \cdot\left\|\nabla \mathcal{L}_{f}\right\|_{2}} \mathcal{L}_{r}+\frac{1}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}} \mathcal{L}_{f} \tag{41}
\end{equation*}
$$

and similar argument as above proves that $\angle_{2}\left(\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{r}\right)=90^{\circ}$ and $\angle_{2}\left(\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{f}\right) \leq 90^{\circ}$.

Appendix B.

B. 1 Ablation study of α_{1} and α_{2} parameters

Figure 7: Top-left: IS grid after the first epoch; Bottom-left: IS grid after the fifth epoch; Top-right: FID grid after the first epoch; Bottom-right: FID grid after the fifth epoch.

We have considered the choice of α_{1} and α_{2} by experimenting with aw-AutoGAN models on the CIFAR-10 dataset. We recorded IS and FID scores after the first and the fifth epochs where the models were trained with the parameters in the grids shown in Figure 7 with all other settings fixed. We present the IS and FID scores in heat map plots in Figure 7. The results show that neighbors around the point $(0.5,0.75)$ lead to good scores; the point $(0.5,0.75)$ itself produces one of the highest IS and one of the lowest FID. In particular, the performance is not too sensitive to the selections.

B. 2 Dataset and Implementation Details

We test our aw-method on the following datasets:

- The CIFAR-10 dataset [25] consists of 60,000 color images with 50,000 for training and 10,000 for testing. All images have resolution 32×32 pixels and are divided equally into 10 classes, with 6,000 images per class. No data augmentation;
- The $S T L-10$ is a dataset proposed in [10] and designed for image recognition and unsupervised learning. STL-10 consists of 100,000 unlabeled images with 96×96 pixels and split into 10 classes. All images are resized to 48×48 pixels, without any other data augmentation;
- The CIFAR-100 from [25] is a dataset similar to CIFAR-10 that consists of 60,000 color 32×32 pixel images that are divided into 100 classes. No data augmentation.

We follow the original implementations of SN-GAN, AutoGAN and BigGAN-PyTorch [4] that use the following hyperparameters:

- Generator: learning rate: 0.0002; batch size: 128 (SN-GAN, AutoGAN) and 50 (BigGAN); optimizer: Adam optimizer with $\beta_{1}=0$ and $\beta_{2}=0.999$ [24]; loss: hinge [28, 43]; spectral normalization: False; learning rate decay: linear; \# of training epochs: 320 (SN-GAN), 300 (AutoGAN) and 1000 (BigGAN);
- Discriminator: learning rate: 0.0002; batch size: 64 (SN-GAN, AutoGAN) and 50 (BigGAN); optimizer: Adam optimizer with $\beta_{1}=0$ and $\beta_{2}=0.999$; loss: hinge; spectral normalization: True; learning rate decay: linear; training iterations ratio: 3 (SN-GAN) and 2 (AutoGAN, BigGAN).

Experiments based on SN-GAN and AutoGAN models are performed on a single NVIDIA ${ }^{\circledR}$ QUADRO ${ }^{\circledR}$ P5000 GPU running Python 3.6 .9 with PyTorch v1.1.0 for AutoGAN based models and Chainner v4.5.0 for SN-GAN based models. Experiments based on BigGAN-Pytorch [4] model are performed on two NVIDIA ${ }^{\circledR}$ Tesla ${ }^{\circledR}$ V100 GPU running Python 3.6.12 with PyTorch v1.4.0.

B. 3 Aw-method with non-normalized gradients

In section 3, we introduced Algorithm 1 which was developed using Theorem 2 where the weights w_{r} and w_{f} include normalization of the gradients $\nabla \mathcal{L}_{r}$ and $\nabla \mathcal{L}_{f}$. This is not necessary and we can consider using non-normalized gradients directly where one of the weights is chosen as 1 . The corresponding results are stated as the following theorem.

Theorem 3. Consider $\mathcal{L}_{D}^{a w}$ in (2) and the gradient $\nabla \mathcal{L}_{D}^{a w}$.

1. If $w_{r}=1$ and $w_{f}=-\frac{\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}^{2}}$, then

$$
\begin{equation*}
\angle_{2}\left(\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{f}\right)=90^{\circ}, \angle_{2}\left(\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{r}\right) \leq 90^{\circ} \tag{42}
\end{equation*}
$$

2. If $w_{r}=-\frac{\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}^{2}}$ and $w_{f}=1$, then

$$
\begin{equation*}
\angle_{2}\left(\mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{r}\right)=90^{\circ}, \angle_{2}\left(\nabla \mathcal{L}_{D}^{a w}, \nabla \mathcal{L}_{f}\right) \leq 90^{\circ} \tag{43}
\end{equation*}
$$

Proof. Identical to the proof of Theorem 2.

Similar to section 3, we have developed Algorithm 2 using Theorem 3. The key difference between Algorithms 1 and 2 is normalization of the gradients; the rest of the algorithm is unchanged including the values for $\alpha_{1}=0.5, \alpha_{2}=0.75, \varepsilon=0.05$ and $\delta=0.05$.

Similar to Section 4, we tested Algorithm 2 on unconditional and conditional image generating tasks, with results provided in Tables 5 and 6, respectively. The implementation details are the same as in Section 4.

For the unconditional GAN, we tested our non-normalized aw-method on SN-GAN and AutoGAN baselines on three datasets: CIFAR-10, STL-10, and CIFAR-100. Our non-normalized methods also significantly improve SN-GAN baseline, in particular achieving the highest IS for the STL-10 dataset among comparisons in Table 2, and aw-AutoGAN non-normalized models improve the baseline AutoGAN models as well on all the datasets.

For the conditional GAN, we tested our non-normalized aw-method on SN-GAN and BigGAN models as baselines on CIFAR-10 and CIFAR-100 datasets. Both non-normalized aw-SN-GAN and aw-BigGAN significantly improve baseline models for both datasets.

On average, normalized weights achieve better results than non-normalized ones. We advocate the normalized version (Algorithm 1), but both produce quite competitive results and should be considered in implementations.

```
Algorithm 2: Adaptive weighted discriminator method w/o normalization for one step of discriminator training.
    Given: \(\mathbb{P}_{\mathrm{d}}\) and \(\mathbb{P}_{\mathrm{g}}\) - data and model distributions;
    Given: \(\alpha_{1}=0.5, \alpha_{2}=0.75, \varepsilon=0.05, \delta=0.05\);
    Sample: \(x_{1}, \ldots, x_{n} \sim \mathbb{P}_{\mathrm{d}}\) and \(y_{1}, \ldots, y_{n} \sim \mathbb{P}_{\mathrm{g}}\);
    Compute: \(\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}, s_{r}=\frac{1}{n} \sum_{i=1}^{n} \sigma\left(D\left(x_{i}\right)\right), s_{f}=\frac{1}{n} \sum_{j=1}^{n} \sigma\left(D\left(y_{j}\right)\right)\);
    if \(s_{r}<s_{f}-\delta\) or \(s_{r}<\alpha_{1}\) then
        if \(\angle_{2}\left(\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right)>90^{\circ}\) then
            \(w_{r}=1+\varepsilon ; w_{f}=-\frac{\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{f}\right\|_{2}^{2}}+\varepsilon ;\)
        else
            \(w_{r}=1+\varepsilon ; w_{f}=\varepsilon ;\)
        end
    else if \(s_{r}>s_{f}-\delta\) and \(s_{r}>\alpha_{2}\) then
        if \(\angle_{2}\left(\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right)>90^{\circ}\) then
            \(w_{r}=-\frac{\left\langle\nabla \mathcal{L}_{r}, \nabla \mathcal{L}_{f}\right\rangle_{2}}{\left\|\nabla \mathcal{L}_{r}\right\|_{2}^{2}}+\varepsilon ; w_{f}=1+\varepsilon ;\)
        else
            \(w_{r}=\varepsilon ; w_{f}=1+\varepsilon ;\)
        end
    else
        \(w_{r}=1+\varepsilon ; w_{f}=1+\varepsilon ;\)
    end
```

	CIFAR-10		STL-10		CIFAR-100	
Method	IS \uparrow	FID \downarrow	IS \uparrow	FID \downarrow	IS \uparrow	FID \downarrow
SN-GAN [34]	$8.22 \pm .05$	21.7	$9.10 \pm .04$	40.10	$8.18 \pm .12^{*}$	22.40^{*}
aw-SN-GAN (Ours)	$8.53 \pm .11$	12.32	$9.53 \pm .10$	36.41	$8.31 \pm .02$	19.08
aw-SN-GAN (non-norm.; Ours)	$8.43 \pm .07$	12.65	$9.61 \pm .12$	34.72	$8.30 \pm .11$	19.48
AutoGAN [14]	$8.55 \pm .10$	12.42	$9.16 \pm .12$	31.01	$8.54 \pm .10^{*}$	19.98^{*}
aw-AutoGAN (Ours)	$9.01 \pm .03$	11.82	$9.41 \pm .09$	26.32	$8.90 \pm .06$	19.00
aw-AutoGAN (non-norm.; Ours)	$8.98 \pm .06$	13.17	$9.59 \pm .14$	27.97	$8.72 \pm .05$	19.89

Table 5: Unconditional GAN: CIFAR-10, STL-10, and CIFAR-100 scores for the normalized (Algorithm 1) and nonnormalized (Algorithm 2) versions of aw-method; * - results from our test.

	CIFAR-10		CIFAR-100	
Method	IS \uparrow	FID \downarrow	IS \uparrow	FID \downarrow
SN-GAN (cond.) [34]	$8.60 \pm .08$	17.5	9.30^{\dagger}	15.6^{\dagger}
aw-SN-GAN (cond.; Ours)	$9.03 \pm .11$	8.11	$9.48 \pm .13$	14.42
aw-SN-GAN (non-norm.; cond.; Ours)	$9.00 \pm .12$	8.03	$9.44 \pm .16$	14.00
BigGAN [5]	9.22	14.73	$10.99 \pm .14^{*}$	11.73^{*}
aw-BigGAN (cond.; Ours)	$9.52 \pm .10$	7.03	$11.22 \pm .17$	10.23
aw-BigGAN (non-norm.; cond.; Ours)	$9.50 \pm .07$	6.89	$11.26 \pm .20$	10.25

Table 6: Conditional GAN: CIFAR-10 and CIFAR-100 scores for the normalized (Algorithm 1) and non-normalized (Algorithm 2) versions of aw-method; ${ }^{\dagger}$ - quoted from [41]; * - results from our tests based on [4].

