
Pushing it out of the Way: Interactive Visual Navigation
–Supplementary Material–

Kuo-Hao Zeng1 Luca Weihs2 Ali Farhadi1 Roozbeh Mottaghi1,2
1Paul G. Allen School of Computer Science & Engineering, University of Washington

2PRIOR @ Allen Institute for AI

A. Heuristic corner detector

Fig. 2 (a) shows our heuristic keypoints detector
pipeline. More specifically, we first use an object segmen-
tation model to obtain the segmentation M corresponding
to object o = GarbageCan. Then, we apply a heuristic
corner detector to detect 8 corner points. Note that we use
the ground truth segmentation of each object in the train-
ing stage, while in the testing stage, we utilize a pretrained
MaskRCNN (Sec. C) to obtain the object segmentation.
Further we present the details of our heuristic corner de-
tector in Fig. 2 (b), where the 8 corner points are obtained
by 8 different criteria and each of the points has to be inside
the segmentation M :

p1 = max
x, px,y∈M

px,y

p2 = max
y, px,y∈M

px,y

p3 = min
x, px,y∈M

px,y

p4 = min
y, px,y∈M

px,y

p5 = max
x+y, px,y∈M

px,y

p6 = min
x+y, px,y∈M

px,y

p7 = max
x−y, px,y∈M

px,y

p8 = min
x−y, px,y∈M

px,y,

where (x, y) is an image coordinate, and M denotes the
object segmentation. Based on this heuristic corner detec-
tor, we are able to get reliable keypoints from object seg-
mentation. More keypoint examples obtained by our heuris-
tic keypoints detector are shown in Fig. 1.

Figure 1: Keypoints examples. Examples keypoints ob-
tained by our keypoint detector.

(a) Heuristic keypoints detector pipeline

Seg(image)
Heuristic
Corner

Detector

image object segmentation keypoints

2

13

4

5

6

8

7

1 p1 = max
x, px,y∈M

px,y

2 p2 = max
y, px,y∈M

px,y

3 p3 = min
x, px,y∈M

px,y

4 p4 = min
y, px,y∈M

px,y

5 p5 = max
x+y, px,y∈M

px,y

6 p6 = min
x+y, px,y∈M

px,y

7 p7 = max
x−y, px,y∈M

px,y

8 p8 = min
x−y, px,y∈M

px,y

(b) Heuristic corner detector

(M)

Figure 2: Keypoint detector details. (a) Heuristic keypoint
detector pipeline. (b) Heurisitc corner detector.

B. Complete list of objects
We use 20 objects for the experiments: alarm clock, ap-

ple, armchair, box, bread, chair, desk, dining table, dog
bed, garbage can, laptop, lettuce, microwave, pillow, pot,
side table, sofa, stool, television and tomato.

C. MaskRCNN results
We evaluate our pretrained MaskRCNN (ResNet-50 with

FPN) on our testing scenes with ≈ 2k images. The check-
point at the 10th epoch achieves 47.4AP and 64.3AP50.
Fig. 5 shows qualitative results on 20 used objects in one
of the testing scenes LivingRoom227.

1 → Embedding-64

Mask R-CNN
(ResNet50 w/ FPN)

704 → Linear-64 → Tanh

 → Linear-64 → Tanh

 → Linear-16

3 → Linear-32 → Tanh

 → Linear-64

192 → Linear-64 → Tanh

 → Linear-1 → Softmax

 → WeightedSum

256 → Linear-192 → Tanh

 → Linear-128 → Tanh

 → Linear-64

o

M
LP

m pa

M
LP

Average

M
LP

p
c

ca

C
oncatenate

r S
elf-A

ttention

s

sa

a

C
oncatenate

ra

i

Average

Affine Transformation

R
epeat

S
egm

enter
E

ncode
E

ncode

Encode Attention

R
epeat

v

M
LP

share weights

M
LP

Avg. P
ooling

24 → Linear-32 → Tanh

 → Linear-64

Figure 3: Detailed architecture of the NIE model.

D. Details of the model architecture
Fig.3 and Fig. 4 summarize the details of the architec-

ture for visual encoder, goal embedding, policy network,
and NIE model.

Task Goal
Representation

Neural Interaction
Engine

Policy
Network

g

v

ra
a

Visual Encoder

Embedding

fi

224x224x3 → CNN-512

224x224x1 → CNN-512 → 1024 → Linear-512

1160 → GRU-512 (hidden: 512)

512 → Linear-1 512 → Linear-10
(Critic) (Actor)

2 (coordinate of target position or target place)
1 → Embedding-8 (*ObjPlace only)

(See NIP details’ figure)

Figure 4: Detailed architecture of the visual encoder,
goal embedding, and policy network.

E. Action-conditioned keypoints pa results
We evaluate our action-conditioned keypoints pa predic-

tion on the testing set. Our model achieves 0.148 and 0.114
L1 loss estimation over 8 keypoints on the ObsNav and Ob-
jPlace, respectively. We found the model performs worse
in the ObsNav because there are more objects (e.g., obsta-
cles) in this task. Fig. 6 shows the qualitative results of our
action-conditioned keypoint prediction.

Alarm Clock Apple Arm Chair Box

Bread Chair Desk Dining Table

Dog Bed Garbage Can

Laptop Lettuce Microwave Pillow

Pot Side Table

Sofa Stool Television Tomato

Figure 5: MaskRCNN’s qualitative results on 20 used objects. We randomly spawn 20 objects in the testing scene
LivingRoom227 and apply the pretrained MaskRCNN to obtain the segmentation results. The object prediction score is
set to 0.5 and the segmentation probability is set to 0.1.

Push Pull Right Push Left Push
Al

ar
m

 C
lo

ck
La

pt
op

St
oo

l
G

ar
ba

ge
 C

an
Pi

llo
w

Figure 6: Qualitative results of action-conditioned keypoints pa prediction. We show our action-conditioned keypoints pa

prediction results over 4 actions on 5 objects in 4 different testing scene (from top to bottom: Kitchen27, Bathroom430,
Bedroom328, and LivingRoom227). The predicted keypoints are shown in red color.

