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1. Methodology
1.1. Shape Alignment Layer

The shape-alignment layer is in a multi-branch parallel form, which aims at transforming the semantic features (with
various shapes, including spatial resolutions and channel widths) to the target shape. In practice, we use bilinear-upsampling
or 3× 3 convolutional layer with proper stride to adjust the spatial resolution and insert 1× 1 convolutional layer to perform
channel alignment.

1.2. Stem and Head Module

In order to deliver end-to-end searching and training, we hand-craft a stem module that aims at extracting feature-pyramids
for DCNAS, and we also design a simple prediction head for aggregating all the feature-maps that from DCNAS to make the
final prediction. In brief, the stem block consists of a 7× 7 convolution and four 3× 3 convolutions with stride 2, the 7× 7
convolution has 32 filters, while the last four 3× 3 convolutions have F, 2F, 4F, 8F filters, respectively. Regarding the struc-
ture of the prediction head, we concatenate the (upsampled) semantic features from {O(1/4,L), O(1/8,L), O(1/16,L), O(1/32,L)}
then apply an extra 3× 3 convolution and a 1× 1 convolution to make the final prediction.

1.3. Decoding Algorithm

Once the searching procedure terminates, one may derive the suitable operator for each mixture layer and the optimal
architecture based on the architecture parameters α and β. For mixture layer `(s,l), we select the candidate operation that has
maximum operation weight, i.e., argmaxo∈O α

o
(s,l). Regrading the network architecture, we utilize a Breadth-First Search

algorithm to derive the network architecture in a back to front order, and the algorithm is listed as bellow:

Algorithm 1: Decoding Network Structure
Data: Architecture parameters β
Result: Derived optimal connections opt conns
opt conns := {};
int nodes := {(1/4,L), (1/8,L), (1/16,L), (1/32,L)};
while int nodes not empty do

let (s, l) = int nodes.pop();
foreach candidate connection (s′, l′)→ (s, l) do

if β(s′,l′)→(s,l)) ≥ 0 then
if l′> 0 then

int nodes.append((s′, l′));

if (s′, l′)→ (s, l) /∈ opt conns then
opt conns.append((s′, l′)→ (s, l))

return opt conns

1.4. Regularization Terms

In practice, to obtain a faster convergence, we introduce several instrumental regularization terms as bellow,
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1. Since we may select the optimal operator argmaxo∈O α
o
(s,l), we introduce the entropy regularization term

Lα = −
∑

s∈S,l≤L

∑
o∈O

wo(s,l) lnw
o
(s,l)︸ ︷︷ ︸

to derive a one-hot distribution overO

(1)

over architecture parameters α to derive a one-hot distribution of the operators in each mixture layer `(s,l).

2. The insignificant transmissions always affect the aggregating operation, which will affect the convergence. Thus we
introduce a regularization term as:

Lβ =
∑

s′∈S,s∈S,l≤L,l′<l
− 1

(1 + exp−β(s′,l′)→(s,l))︸ ︷︷ ︸
importance of connection(s′,l′)→(s,l)

· ln
1

(1 + exp−β(s′,l′)→(s,l))

=
∑

s′∈S,s∈S,l≤L,l′<l
ln(1 + exp−β(s′,l′)→(s,l))/(1 + exp−β(s′,l′)→(s,l))

(2)

to help solve this challenge.

3. We also want to constrain the minimum and maximum number of fusion modules that connect to it to be 1 and k, we
choose to apply the Lagrangian multiplier method to reformulate such constraints as one regularization term:

Lcon =
∑

s∈S,l≤L
max(1−

∑
s′∈S,l′< l

1

1 + exp−β(s′,l′)→(s,l)︸ ︷︷ ︸
in degree

, 0)

+
∑

s∈S,l≤L
max(

∑
s′∈S,l′< l

1

1 + exp−β(s′,l′)→(s,l)︸ ︷︷ ︸
in degree

−k, 0).
(3)

1.5. Searching Protocols

We conduct architecture search on the Cityscapes dataset [4], more specifically, we divide the training samples with fine
annotations into two parts, with 2, 000 and 975 samples respectively. The 2, 000 training samples are used for updating
convolutional weights w while the 975 samples are used for optimizing architecture parameters {α, β}. Besides we make
use of the 500 fine annotated validation samples for model selection. For searching configurations, we set the initial learning
rate as 0.01 and 0.0005 for w and {α, β} respectively, schedule the learning rate with polynomial policy with factor (1 −
( iter
itermax

)0.9), apply weight decay for w with coefficients 0.0001. Following conventional data augmentation paradigm,
we resize the image with random scale [0.5, 2.0], then random crop a patch with size 1024 × 512, apart from that, we do
not employ any augmentation tricks though which shall further improve the performance. Consider that the architecture
parameters are hard to optimize, we exploit the Adam optimizer to update {α, β}, while for convolutional weights w, we
adopt the general SGD for sake of better convergence. The searching procedure takes 1.4 days for 120 epochs on 4 GPUs.

1.6. Training Protocols

We evaluate our optimal model on Cityscapes [4], PASCAL VOC 2012 [6], ADE20K [25], and PASCAL-Context [17]
datasets. We share the same training protocols for all the datasets mentioned above, except for particular dataset-specific
configurations. Specifically, during training we set the initial learning rate to 0.01 and adopt the polynomial scheduler [16]
to drop the learning rate, we exploit the syncBN [19, 15] to synchronize the mean and variance across different GPUs, we
conduct the experiments with batch size 32 on 4 GPUs, and we use the SGD with momentum 0.7 to optimize the convolutional
weights. Data are augmented by random scaling in range of [0.5, 2.0], random horizontal flipping, and random cropping,
where we set the crop size 1024× 512 for Cityscapes and 513× 513 for others. Considering the complexity and scale of the
benchmarks, empirically, we train the model on tough Cityscape for 800 epochs, concerning other benchmarks, we set the
training epochs to 240.



Methods #Params FLOPs FPS
Auto-DeepLab 44.42M 695.03G -
DCNAS (Ours) 21.49M 294.57G 6.3

Table 1. Comparison with Auto-DeepLab. FPS is evaluated on 1080Ti GPU with CUDA8.0 (inputs with 2048 x 1024).

1.7. Correlation of Performance

We utilize the Pearson Correlation Coefficient (ρ) and Kendall Rank Correlation (τ ) Coefficient to quantify the correla-
tion of performance between searching and training situations. Denote (X,Y ) is a two dimension random variables, and
{xi, yi}ni=1 are n observations, the we may estimate the Pearson Correlation Coefficient (ρ) as,

ρ =
COV (X,Y )√
D(X)D(Y )

=
E(XY )− E(X)E(Y )√

D(X)D(Y )

(4)

and we may calculate the Kendall Rank Correlation (τ ) Coefficient with,

τ =

∑
i≤n,j<i 1{xi<xj}1{yi<yj} −

∑
i≤n,j<i 1{xi<xj}1{yi>yj}(

n
2

) (5)

2. Experiments
2.1. Model Efficiency

Since we do not guide the searching process to derive a sparse and compact model, therefore, the derived model tends
to uses all nodes, and searching for sparse while compact structures for realtime semantic image segmentation is indeed our
further work. We also compare our optimal model with contemporary work of [13, 3], as Table 1 presents the comparison
results, our method achieves better performance with lower FLOPs.

2.2. Qualitative Results

To better understand the capability of DCNAS, we drawn several examples from the validation set (Figure 1) and the
testing part (Figure 2). The DCNAS can produce precise predictions about small targets (e.g., tsign, pole) in the scene thanks
to the ability to capture subtle details in high-resolution imageries. Meanwhile, owing to the capacity to extract long-range
global information, DCNAS is good at estimating the segmentation mask of massive while complicated objects (e.g., bus,
truck, terrain, sidewalk, rider, building).

2.3. Ablation Study

To better understand the impact of different design choices, we evaluate our framework in various settings. Two main
design choices exist in this work, the impact of hyper-parameters L and k, and the effect of the novel regularization terms.
We still take the mIoU as the evaluation metric for searching (S-mIoU) and training (T-mIoU) periods on the validation
dataset of the Cityscapes.

Operator Space O. In our work, we use a totally different operator space compared with Auto-DeepLab [13]. To make
an apple to apple comparison, we evaluate the performance of DCNAS with the same operator space in [13], and Table 2
reveals that MobileNetV3 operator space do not substantially affect both the performances and the correlation coefficients.

Hyperparameter k. k is an important parameter in regularization term Lcon, as presents in In Table 6, as k increases, the
performance grows first and then decreases. Because, (1) small k will reduce the search space largely, which may miss the
optimal architecture and results in poor performance, (2) large k will lead a tremendous search space, from which explore
promising architecture is challenging. As a compromise, we choose k = 3 in our experiments.

Regularization Terms. Regarding the regularization terms, we observe that the Lβ is crucial to performance improve-
ment, and adding the regularization term Lcon can yield marginal performance improvement. We think there are two reasons:



Methods MobileNetV3 ρ τ S-mIoU T-mIoU
Auto-DeepLab 7 0.31 0.21 35.1 80.3
Auto-DeepLab 3 0.34 0.24 35.0 80.4
DCNAS (Ours) 7 0.74 0.53 69.7 81.0
DCNAS (Ours) 3 0.73 0.55 69.9 81.2

Table 2. Ablation Study. The table investigate the impact ofs MobileNetV3 operator space.

Budget Regularizers S-mIoU T-mIoU
1× 3 69.9 81.2
1× 7 48.1 76.5
2× 7 60.2 78.9
3× 7 67.5 80.7
4× 7 70.0 81.4

Table 3. Ablation Study. We explore the impact of regularizers over performance under several searching budgets (GPU Days).

Lcon Lβ Lα S-mIoU T-mIoU
7 7 7 48.1 76.5
7 7 3 51.3 77.1
7 3 7 63.9 79.4
7 3 3 65.3 79.9
3 7 7 55.2 78.3
3 7 3 58.7 78.4
3 3 7 69.6 80.9
3 3 3 69.9 81.2

Table 4. Ablation Study. We investigate the impact of different regularization terms by comparing the performance on Cityscapes valida-
tion set, in which L and k are set to be 14 and 3.

L r GPU Days S-mIoU T-mIoU
8 1 8.6 61.4 73.1
8 1/2 5.2 60.9 73.0
8 1/4 2.8 60.1 72.8
8 1/8 1.5 57.9 71.1
8 1/16 0.9 55.2 68.3
14 1 16.2 71.1 81.31
14 1/2 9.8 70.8 81.3
14 1/4 5.6 69.9 81.2
14 1/8 3.0 67.6 80.6
14 1/16 1.9 63.8 78.9

Table 5. Ablation of Sampling Ratio. The table presents the impact of sampling ratio r in mixture layer.

L k S-mIoU T-mIoU
14 1 59.4 76.2
14 2 66.8 79.5
14 3 69.7 81.2
14 4 69.6 81.0
14 5 69.3 80.9

Table 6. Ablation of k. We present the performance of our DCNAS on Cityscapes validation dataset with varying configurations of k.

(1) the regularization term Lβ forces the relaxed continuous representations of path connection to be 0 or 1, which stabilizes
the network architecture; (2) constraint Lcon helps prune insignificant path-level connections and derive a sparse model struc-



Methods higher is better lower is better
δ < 1.25 δ < 1.252 δ < 1.253 AbsRel RMSE log10

Make3D [21] 0.447 0.745 0.897 0.349 1.214 -
Joint HCRF [22] 0.605 0.890 0.970 0.220 0.824 -
Liu et al. [14] 0.650 0.906 0.976 0.213 0.759 0.087
Eigen et al. [5] 0.769 0.950 0.988 0.158 0.641 -
Li et al. [12] 0.789 0.955 0.988 0.152 0.611 0.064
Gur et al. [8] 0.797 0.951 0.987 0.149 0.546 0.063
Chakrabarti et al. [1] 0.806 0.958 0.987 0.149 0.620 -
Laina et al. [9] 0.811 0.953 0.988 0.127 0.573 0.055
Xu et al. [23] 0.811 0.954 0.987 0.121 0.586 0.052
Lee at al. [10] 0.815 0.963 0.991 0.139 0.572 -
DORN [7] 0.828 0.965 0.992 0.115 0.509 0.051
Geonet [20] 0.834 0.960 0.990 0.128 0.569 0.057
Lee et al. [11] 0.837 0.971 0.994 - 0.538 -
Yin et al. [24] 0.875 0.976 0.994 0.108 0.416 0.048
Freeform [2] 0.930 0.990 0.999 0.087 0.433 0.052
Ours (DCNAS) 0.836 0.968 0.994 0.113 0.497 0.052

Table 7. Quantitative performance on NYU Depth v2. Our method achieves competitive result against state-of-the-art approaches.
Though not state-of-the-art, we argue it is reasonable when considering the scale of NYU benchmark and the saturated performance.

ture, which further stabilizes the network architecture. Table 3 exhibits that those regularization terms is capable of reducing
the searching cost substantially.

Moreover, as presented in Table 4, adding the regularization term Lα can further improve the performance, since Lα leads
to a discrete distribution of operator space in each mixture-layer, which yields more stable and reliable training.

Sampling Ratio r in Mixture Layer. We also investigate the impact of the sampling ratio r in mixture layer. As Table 5
demonstrates that 1/4 is a good trade-off between search efficiency and model accuracy.

2.4. Generalization Capability

To evaluate the generalization performance of our approach, we evaluate the DCNAS on task of monocular depth estima-
tion on NYU Depth v2 [18], as Table 7 and Figure 3 present the quantitative and qualitative results. It is exciting that the
quantitative and qualitative experiment reveals our DCNAS can generalize well to other dense image prediction task.



Figure 1. Qualitatively results on cityscapes validation part. We present several prediction results on Cityscapes validation part. The
three columns represent the RGB input, prediction given by DCNAS, and the ground-truth, respectively.



Figure 2. Qualitatively results on Cityscapes test part. We present several prediction results on Cityscapes test part. In which each row
comprise two samples, each sample contains the RGB input and the result produced by DCNAS.



Figure 3. Qualitatively results on NYU Depth v2. We present several prediction results on NYU test part. In which each row comprise
two samples, each sample contains the RGB input, the mask result produced by DCNAS, and the ground truth, respectively.
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