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Table 1: The architecture of generator. The image size and channel in Initialization indicate the size and number of channel
of input images respectively.

Initialization init = image size // 4, channel.

Layer 1: Linear
Input: 256
Weight shape: (256, 128×init×init)
Output: 128×init×init

Layer 2: Reshape Input: 128×init×init
Output: (128, init, init)

Layer 3: Instance Norm Affine=True
Layer 4: Interpolate scale=2, mode=nearest

Layer 5: Convolution
Input: (128, init×2, init×2)
Kernel Size: 128×128×3×3, stride=1, padding=1
Output:(128, init×2, init×2)

Layer 6: Instance Norm Eps=0.8, Affine=True
Layer 7: Activation LeakyReLU, negative slope=0.2
Layer 8: Interpolate scale=2, mode=nearest

Layer 9: Convolution
Input: (128, image size, image size)
Kernel Size: 128×64×3×3, stride=1, padding=1
Output:(64, image size, image size)

Layer 10: Instance Norm Eps=0.8, Affine=True
Layer 11: Activation LeakyReLU, negative slope=0.2

Layer 12: Convolution
Input: (64, image size, image size)
Kernel Size: 64×channel×3×3, stride=1, padding=1
Output:(channel, image size, image size)

Layer 13: Activation Tanh

1. The Architecture of Generator
Table 1 shows the details of generator used in our exper-

iments. Considering that the data formats of VDSR [1] and
EDSR [2] are different, we set image size and channel as
variables. For EDSR, image size is set to 48 and channel is
set to 3. And for VDSR, channel is set to 1 and image size
is calculated by 48//scale, while scale is in 2, 3, 4.

2. More Visualization Results on EDSR
In Figure 1 and 2 we show more visualization results of

EDSR. Our distillation method obtains better super resolu-
tion results than bicubic and distillation with noise images.
It’s worth mentioning that Teacher performs worse for the

image 202003 in B100, while performing better than Stu-
dent on whole dataset. Our proposed method even obtains
a better visual result than Teacher for this special case.
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Figure 1: ×4 super resolution results of 202003 from B100 and img021 from Urban100 on EDSR.
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Figure 2: ×4 super resolution results of 37073 from B100 on EDSR.


