Supplementary Document for
Deep Implicit Templates for 3D Shape Representation

A. Overview

This supplementary document provides more experi-
mental details. In Sec.B, we present the details about how
we implement our network, how we conduct the experi-
ments and the complexity of our method. In Sec.C we pro-
vide additional qualitative results on chairs, further showing
the representation power of our method in the cases of ex-
tremely challenging structural variations. Additional exper-
iments are also presented in Sec.C. More details about the
extensions (Sec.6 in the main paper) are provided in Sec.D.
Finally, we discuss the limitations and potential future work
in Sec.E. Please refer to the supplementary video for more
results and visualizations.

B. Experimental Details
B.1. Datasets and Preprocessing

Our experiments are conducted using the ShapeNet
Core V2 dataset[2]. For simplicity, we mainly focus on
five classes of shapes, i.e., sofas, cars, airplanes, chairs
and tables. We use the training and testing splits from
DeepSDF[12]. We also follow the practice of DeepSDF to
preprocess the shapes, split training/testing data, and extract
SDF samples for network training.

For the experiment on keypoint detection, we utilize key-
point annotations from KeypointNet[14]. We collect the
annotations for the airplanes and cars that are also in our
training/testing sets.

B.2. Architecture Details

Warping Function V. In all experiments, WV is imple-
mented as a vanilla LSTM network. Specifically, W is com-
posed of an LSTM cell and a linear layer. The LSTM cell
has a hidden state size of 512, and the linear layer is used to
convert the 512-dimensional output state to 6-dimensional
transformation parameters.

Implicit Template 7. Similar to DeepSDF, the
implicit template 7 is parameterized as a multi-layer
perceptron (MLP). The numbers of its neurons are
(3,256,256, 256, 256, 256, 1). We use weight normaliza-
tion, a dropout probability of 0.05 and ReLU activation in

Parameter Name Value
S (LSTM steps, Eqn.5) 8
o, (Eqn.9) 0.25
€ (Eqn.10) 0.5
Apw (Eqn.11) 0.005
App (Eqn.11) 1x104
1/02 (Eqn.11) 1x1074

N (Number of Samples per Shape, Eqn.7) 5000

SDF Truncation Band Width 0.1
Batch Size 24
Number of Epochs 2000
Learning Rate for Networks 5x 107
Learning Rate for Latent Codes 1x1073
Adam [ 0.9
Adam 5 0.999
Surface Isolevel 0.
Marching Cube Resolution 256

Table A: Hyperparameters for network training and evaluation.

our network except the last layer that uses a hyperbolic tan-
gent activation.

B.3. Training Details

We use PyTorch to implement our networks. The hyper-
parameters needed for network implementation and training
are reported in Tab.A. Note that during network training,
the learning rate of Adam is decayed by a factor of 0.5 ev-
ery 500 epochs. For all baseline methods in comparison, we
use their open-source code but replace their training/testing
splits with ours for fair comparison.

To clarify, in Table.2 (main paper) we train one single
network for each object category (airplanes, sofas, cars,
chairs) to calculate the results of our methods, while in Fig-
ure.4 (main paper) we train different networks for different
subclasses in order to better demonstrate the capability of
our method in terms of handling topological changes and
shape variations.
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Figure A: Our results for the full chair category. When training the networks on the full shape repository of chairs, our method can still
learn a plausible implicit template and represent various shape structures accurately.

B.4. Testing Details

Reconstruction. To test the reconstruction accu-
racy of our method and other DeepSDF variants (e.g.,
DeepSDF[12], C-DeepSDF[3], DualSDF[7]), we extract
SDF samples for the shapes in test set and estimate the latent
code to fit the shapes while keeping the network parameters
fixed. The latent code is obtained through:

¢ = arg min ﬁdata + )\Ecodea
c

where A = 1 x 1074, Lga1q is an £, loss measuring the re-
construction error, and AL .4, shares the same definition as
the main paper. The optimization is performed using Adam
optimizer with a learning rate of 5x 10~* and 800 iterations.

To evaluate the reconstruction performance of other
methods that use encoder-decoder architectures, we directly
feed the point samples on the test shapes into the network
to obtain the reconstruction results.

Correspondences. We use keypoint detection results
as a surrogate to evaluate the accuracy of correspondences
for the baselines and our method. Specifically, after train-
ing the network, we first estimate the latent code for each
test shape using the aforementioned approach, then search
its closest training shape according to the L2 similarity of
latent codes, and finally use the dense correspondences to
transfer the keypoint annotations from the training shape to
the test shape. We use the same training/testing splits as the
reconstruction evaluation and the whole training set is used
to push forward keypoints. Note that the correspondences in
our method are established using the canonical positions of
points. For SIF, the correspondences are obtained using the
matching method described in [5]. For PointFlow, we re-
gard the positions of the points at the distribution prior (i.e.,
the 3D Gaussian) as their “canonical positions”. For Atlas-
Net, we project surface points onto the their corresponding
square patches and use their coordinates on the atlas to es-
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Figure B: Results and reconstruction error at different LSTM
steps.

tablish correspondences. When calculating the PCK scores
in Tab.3, we simply ignore those keypoints that only appear
in either the detection results or the ground-truth annota-
tions.

B.5. Complexity

The parameter number of our network is 1.852M, only
slightly greater than that of DeepSDF (1.843M). This sug-
gests that our representation is as compact as DeepSDF.
Given a latent code, the inference time of our method
is 14.770 seconds when using the hierarchical extraction
method proposed in [10] and running on a single GPU of
NVIDIA TITAN X (Pascal). Compared to DeepSDF which
takes about 7 seconds per model, our network doubles the
inference time of DeepSDF due to the introduction of multi-
step transformations.

B.6. Visualization of Transformation Steps

In order to help readers better understand how the warp-
ing function works, we visualize one example of transfor-
mations outputted by each step of the warping LSTM, as
presented in Fig. B.



Method CD Mean of Sofas (10~3)
Ours using 4 small MLPs 0.157
Ours w/o scaling output 0.096
Ours (full) 0.093

Table B: Reconstruction accuracy of the baseline method and our
full network.

C. More Experiments
C.1. More Results

In Fig.A we demonstrate our results on chairs. Note that
unlike Fig.4 (main paper), we train the deep implicit tem-
plates for the full chair category. The results further proves
that our method can still generalize on the categories that
exhibit high structural variations, although it may suffer
from some reconstruction artifacts for extremely challeng-
ing cases.

Please refer to the supplementary video for more results
and visualizations.

C.2. More Experiments

Ablation on Network Design. In Tab. B, we conduct
an additional ablation study to evaluate our design of the
warping function.

To evaluate our choice of an MLP-based implementa-
tion, we conduct an experiment where we construct the
warping network using 4 two-layer MLPs and enable cur-
riculum supervision. Emperically, we find that although this
implementation is faster to train, its reconstruction results
are not as accurate as the results of our LSTM-based imple-
mentation; see the second and the last row of Tab. B. There-
fore, this MLP-based implementation can be an alternative
if fast training is desired over accuracy.

We also evaluate the impact of the scaling output in Eqn.
(4), and find that the model using scaling achieves slightly
better accuracy than the model without scaling (the last two
rows of Tab. B). Note that the scaling output is inspired
by [5, 8] and is introduced to boost the expression power. It
adds almost no complexity to the model and can be removed
if necessary.

Experiments on the Number of Meshes Used to Push
Forward Keypoints. We also evaluate the correspondence
accuracy when using different numbers of training meshes
to push forward keypoint labels. The numerical results for
airplanes are plotted in Fig.C. We find that our method is
able to achieve comparable correspondence accuracy even
only 20% of training meshes are used to push forward key-
points; we think this is because of the shape redundancy in
ShapeNet dataset.
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Figure C: Correspondence accuracy using different numbers of
training meshes. We plot the PCK scores with threshold of 0.01
(blue) and 0.02 (orange) for airplanes.

D. Extension Details

User-defined templates. To show that our method sup-
ports manually defined templates, we collect 1600 clothed
human models from Deep Fashion 3D dataset[15] and train
a network to model humans in different clothes. Note that
all human models are all in rest pose and wear different
types of garments, and we use the SMPL model[9] in its
mean shape (i.e., 3 = 0) as the template. After 1500
epochs of training, the network is able to deform the “im-
plicit” SMPL model to represent various clothed humans,
as shown in Fig.9 (main paper).

Correspondence annotations. To extend our method to
the scenarios where correspondence annotations are avail-
able, we collect three mesh sequences from D-FAUSE[1]
dataset, which records different human motions and pro-
vides ground-truth registration. We preprocess the se-
quences following the practice of O-Flow[11]. Then we
split each sequence into two subsequences with equal
lengths, and use the first half for network training while the
second half for testing. Note that unlike O-Flow, we train
one individual network for each sequence. We use the cor-
respondence error metric proposed in [11] to calculate the
numeric results and evaluate the effect of the additional cor-
respondence loss in Fig.11 (main paper).

E. Limitations & Future Work

Limitation. Our method has several limitations. Firstly,
unlike original SIF[5], DSIF[4] or AtlasNet[6], our rep-
resentation is class-specific in order to establish accurate
dense correspondences across a class of shapes. There-
fore, our method cannot generalize well to unseen classes.
In Fig.D, we demonstrate a failure case where the network
for sofas is forced to reconstruct a airplane. Secondly, our
method is based on the assumption that all shapes in the
same category share a common structure. Consequently,



Figure D: A failure case: The model trained on sofas fails to re-
construct a airplane.

our method is more suitable for object classes that are
amenable to being modeled as the deformation of a tem-
plate (e.g., cars, airplanes), but degenerates slightly for ob-
ject classes that exhibit too many structural variations, as
shown in the failure cases in Fig.A. Thirdly, initial exper-
iments show that our method does not work well on large
articulated movements such as human body motions.

Future work. To overcome the aforementioned lim-
itations, we can learn a set of fine-grained implicit tem-
plates for object parts, and then combine them adaptively
to describe different structures. Furthermore, our method
currently uses the auto-decoder architecture proposed in
DeepSDF[12]; we can introduce pixel-aligned feature as in
PIFu[13] to recover more geometric details from an input
image, which we leave for future research.
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