
Neighborhood Contrastive Learning for Novel Class Discovery
(Supplementary Material)

Zhun Zhong1*, Enrico Fini1∗, Subhankar Roy1,3, Zhiming Luo2†, Elisa Ricci1,3, Nicu Sebe1
1University of Trento 2Xiamen University 3Fondazione Bruno Kessler

In this supplementary material, we provide more imple-
mentation detail, experimental results and discussion. In
detail, we provide more dataset detail in Sec. A. Sec. B
shows parameter analysis of the proposed Neighborhood
Contrastive Learning (NCL) and Hard Negative Generation
(HNG). We provide discussion on our method in Sec. C.

A. Dataset
CIFAR-10 [4] contains 50,000 training images from 10

classes, each of which has a size of 32× 32. For the setting
of novel class discovery, we split the samples of the first five
classes (namely airplane, automobile, bird, cat and deer) as
the labeled data and the remaining samples of the other five
classes as the unlabeled data.

CIFAR-100 [4] has the same number of training images
and the same image size as CIFAR-10. The difference is
that CIFAR-100 is captured from 100 classes. For evalua-
tion, we regard the samples of the first 80 classes as the la-
beled data and the remaining samples of the other 20 classes
as the unlabeled data.

ImageNet [1] is a large-scale dataset, including 1.28 mil-
lion training images from 1,000 classes. Following [2, 3],
we divide the training data into two splits that are composed
of images from 882 classes and 118 classes, respectively.
The split with 882 classes is regarded as the labeled data.
For the unlabeled data, we randomly sample three subsets
from another split with 118 classes. Each subset consists
about 30,000 images from 30 classes and is used as an un-
labeled data.

B. Parameter Analysis
B.1. Parameter Analysis of NCL

We investigate four important parameters in neighbor-
hood contrastive learning (NCL), i.e., memory size |M |,
temperature of contrastive learning τ , number of pseudo-
positives k1, and weight of augmented-positive α. For eval-
uation, we vary one parameter at a time while the other three
are set to their default values. Results on CIFAR-10 and
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CIFAR-100 are shown in Fig. 7.
(1) Sensitivity to memory size. In Fig. 7(a), we vary the

memory size |M | in the range [500, 20000]. The ACC first
increases with the memory size and achieves the best results
when memory size is between 2,000 and 10,000. Consid-
ering the efficiency, we set memory size to 2,000, which
achieves reasonably good performance on both datasets
with limited computational cost (computing the similarities
between mini-batch samples and memory samples).

(2) Sensitivity to temperature. We vary the temperature
τ in the range of [0.01, 0.5] and show the results in Fig. 7(b).
We can observe that results are similar when temperature is
between 0.02 and 0.1, indicating our NCL is robust to tem-
perature within certain ranges. The best results are obtained
when temperature is around 0.05.

(3) Sensitivity to number of pseudo-positives. Since
the number of novel classes (Cu) is different in CIFAR-10
and CIFAR-100, we vary the number of pseudo-positives k1
in different ranges for these two datasets. The range of k1
is [10, 360] for CIFAR-10 and is [1, 80] for CIFAR-100, re-
spectively. Results are shown in Fig. 7(c). Selecting too few
KNNs will ignore most of the positive samples and regard
them as negative samples, resulting in worse performance.
On the other hand, assigning too many KNNs will include
more negative samples. Enforcing a sample to approach
too many negative samples will suppress the benefit of true
positive samples in the KNNs and will undoubtedly hamper
the ACC. Interesting, we find that our NCL achieves consis-
tent good performance when the number of KNNs is equal
to the half of |M |/Cu (i.e., 200 for CIFAR-10 and 50 for
CIFAR-100).

(4) Sensitivity to weight of augmented-positive. As
shown in Fig .7(d), both datasets achieves best results when
the weight of augmented-positive α is around 0.2. The ACC
will be largely reduced when α ≥ 0.35 for CIFAR-10. For
CIFAR-100, when α ≤ 0.05, the ACC are clearly lower
than those of α ≥ 0.1.

Based on the above analyses, we set the memory
size |M |=2,000, temperature τ=0.05, number of pseudo-
positives k1=|M |/Cu/2, and weight of augmented-positive
α= 0.2 for all datasets in default.
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Figure 7. Parameter analysis of the proposed neighborhood contrastive learning on CIFAR-10 and CIFAR-100. Sensitivities to (a) memory
size, (b) temperature of contrastive learning, (c) number of pseudo-positives, and (d) weight of augmented-positive.
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Figure 8. Parameter analysis of the proposed hard generative gen-
eration (HNG) on CIFAR-100. Sensitivities to (a) number of iter-
ations N , and (b) number of negative samples k2.

B.2. Parameter Analysis of HNG

We evaluate two parameters for hard negative generation
(HNG), i.e., number of iterationsN and number of negative
samples k2. For evaluation, we vary one parameter and fix
the other one to its default value. Results on CIFAR-100
are shown in Fig. 8. When N = 0 (in Fig. 8(a)) or k2 = 0
(in Fig. 8(b)), the model reduces to the baseline trained only
with NCL that does not consider the hard negative samples.
As shown in Fig. 8, all values of N and k2 achieve higher
ACC than the model trained only with NCL, demonstrating
the effectiveness of the proposed HNG. The ACC first in-
creases with N / k2 and achieves best results when N ≈ 5 /
k2 ≈ 400. Performing the HNG with too many iterations or
selecting too many negative samples does not lead to further
improvement. Considering the above factors, we set N = 5
and k2 = 400 for all datasets in default.

C. Discussion of Our Method
C.1. Different Impact on CIFAR-10 and CIFAR-100

From Table 6, we find that removing pseudo-positives
(NCL w/o PP) and adding hard negative generation (NCL
+ HNG) have inconsistent effects on performance between
CIFAR-10 and CIFAR-100. We conjecture that this phe-
nomenon is caused by the difference of number of labeled
classes Cl and number of unlabeled classes Cu. 1) We
haveCu=5 for CIFAR-10 andCu=20 for CIFAR-100. NCL
w/o PP will regard much more positives as negatives in
the memory for CIFAR-10 than CIFAR-100, and thus the
performance of CIFAR-10 will be degraded more than of
CIFAR-100. 2) We have Cl=5 for CIFAR-10 and Cl=80

Method CIFAR-10 CIFAR-100
Baseline 87.9±0.7% 69.4±1.4%
NCL 93.4±0.2% (↑ 5.5%) 82.3±2.6% (↑ 12.9%)
NCL w/o PP 61.8±7.6% (↓ 26.1%) 68.5±1.9% (↓ 0.9%)
NCL + HNG 93.4±0.1% (↑ 5.5%) 86.6±0.4% (↑ 17.2%)

Table 6. Evaluation of the effectiveness of the proposed neigh-
borhood contrastive learning (NCL) and hard negative generation
(HNG). NCL w/o PP: NCL without pseudo-positives.

for CIFAR-100. CIFAR-10 contains a smallCl. In this con-
text, mixing between labeled and unlabeled samples cannot
generate diverse hard negative samples and thus fails to fa-
cilitate contrastive learning.

C.2. Positive Selection for BCE and NCL

In our method, we use different strategies to select posi-
tives for BCE and NCL. The decision is mainly dependent
on the number of samples in the batch and memory. 1) The
number of samples in batch is much smaller than the size of
the memory bank, so the class-balance cannot be ensured.
When there are few or no samples of class-i in the batch, we
may select overmuch false-positives for a sample of class-i
by top-k, which will hamper the performance. 2) Using the
memory with larger size, the class distribution will be close
to uniform and each class has roughly equal number of posi-
tives. Thus, selecting top-k is more suitable for NCL, which
potentially leverages class-balance property and helps a ro-
bust training. In our experiment, we find that using top-k
for BCE and threshold for NCL lead to lower results.
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