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Abstract

Unsupervised point cloud completion aims at estimating
the corresponding complete point cloud of a partial point
cloud in an unpaired manner. It is a crucial but challenging
problem since there is no paired partial-complete supervi-
sion that can be exploited directly. In this work, we pro-
pose a novel framework, which learns a unified and struc-
tured latent space that encoding both partial and complete
point clouds. Specifically, we map a series of related par-
tial point clouds into multiple complete shape and occlu-
sion code pairs and fuse the codes to obtain their repre-
sentations in the unified latent space. To enforce the learn-
ing of such a structured latent space, the proposed method
adopts a series of constraints including structured ranking
regularization, latent code swapping constraint, and dis-
tribution supervision on the related partial point clouds.
By establishing such a unified and structured latent space,
better partial-complete geometry consistency and shape
completion accuracy can be achieved. Extensive experi-
ments show that our proposed method consistently outper-
forms state-of-the-art unsupervised methods on both syn-
thetic ShapeNet and real-world KITTI, ScanNet, and Mat-
terport3D datasets.

1. Introduction

Point cloud completion aims at estimating the corre-
sponding complete point cloud of a partial point cloud,
which is an important task and can assist downstream appli-
cations such as shape classification [17,26-28,34], robotics
navigation [12, 31] and scene understanding [1, 2, 10, 19],
as raw point clouds are often noisy, sparse and partial.
Although fully supervised point cloud completion meth-
ods [21,22,25,43,45,48-51] have achieved impressive per-
formance, they heavily rely on large-scale paired partial-
complete training data. It is, however, difficult to collect
paired data from real-world scans. Additionally, such com-
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Figure 1. Illustration of the unified and structured latent space
where any point cloud can be represented as a complete shape
code z and a corresponding occlusion code o. We complete the
partial point cloud via properly regularizing such codes in an un-
supervised manner. Best viewed in color.

pletion networks trained on paired real data or paired syn-
thetic data cannot sufficiently generalize to actual scans, as
their data distributions might not well match those of train-
ing samples.

A promising alternate solution is to learn a comple-
tion network in an unpaired manner following the setup
of [6,41,44,52]. However, it is a more challenging setup
since there is no paired and accurate point-wise supervision
that can be adopted directly. To tackle the problem, differ-
ent methods are proposed to adopt different types of super-
vision from the unpaired data. A representative work [52]
adopts GAN inversion for 3D shape completion. It trains
a complete point cloud generator with adversarial losses.
During inference, an optimal shape code can be recovered
via hundreds of gradient descent iterations by minimizing
a partial-complete consistency loss. The consistency' be-
tween the predicted point cloud and the input can be main-
tained. However, the inverse optimization is generally un-
stable and easy to stuck at local minima if using unsuitable

IConsistency describes whether the predicted point cloud represents
the same object as the partial input.
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initial code, unsuitable learning rate or too many iterations,
etc. The inversion process is much more time-consuming
than direct methods (~3500x). Another representative un-
supervised work [4 1] exploits cycle supervisions to enhance
consistency indirectly by learning bidirectional transforma-
tions between the latent spaces of complete and incomplete
shapes (point clouds). However, the bidirectional transfor-
mations need to be separately modeled and are difficult to
learn, especially for the complete-to-partial mapping. If one
direction is not learned well, the other direction would be in-
fluenced correspondingly. In summary, without direct and
accurate paired supervision, designing proper supervision
and applying to unsupervised point cloud completion is of
great importance to this task.

To this end, we propose to create a unified and struc-
tured latent space for encoding both partial and complete
shapes. To apply strong supervisions for unsupervised point
cloud completion, we make an assumption that each partial
shape is created by occluding a complete one. If a complete
shape is occluded to become partial in the 3D space, its code
in the latent space should also be “occluded” from a com-
plete shape code accordingly. We model the “occlusion”
of a complete code in the latent space as weighting each of
its dimension with a weight in [0, 1]. However, instead of
manually determining the occlusion weights, we make them
learned from the training data. In this way, the complete and
partial shapes are strongly bounded in a unified latent space.
In addition, to better regularize the relation between partial
point clouds from the same complete shape, the occlusion
code of a more occluded shape is required to have smaller
weights than that of a less occluded shape.

Specifically, to learn the unified latent space, we repre-
sent any partial or complete point cloud by two codes: a
complete shape code and an occlusion code. The complete
shape code can be fed into a completion decoder to recon-
struct the corresponding complete point cloud. The “oc-
cluded” shape code via multiplying the above two codes
can be fed into a partial decoder to reconstruct the partial
shape. Furthermore, we create a series of related partial
point clouds by gradually removing more points from a par-
tial shape and apply ranking constraints to their occlusion
codes by N-pair loss [36] according to their relative occlu-
sion degrees. Their complete shape codes are required to
be equal since they represent the same object. By adopt-
ing such properly designed strong supervisions, more ac-
curate complete point clouds with better geometric consis-
tency and shape details can be reconstructed.

We experiment on popular point cloud completion
benchmarks, including a synthetic dataset (ShapeNet [23])
and real datasets (KITTI [13], ScanNet [9] and Matter-
port3D [3]). The proposed method outperforms state-of-
the-art unsupervised methods [6,4 1,44, 52]. Our main con-
tributions are summarized as follows:

* We propose to learn a unified and structured latent
space for unsupervised point cloud completion, which
encodes both partial and complete point clouds to im-
prove partial-complete geometry consistency and lead
to better shape completion accuracy.

* We propose to constrain the complete and occlusion
codes of a series of related partial point clouds to en-
hance the learning of the structured latent space.

» Experimental results demonstrate the superiority of the
proposed method over state-of-the-art unsupervised
point cloud completion methods on both synthetic and
real datasets.

2. Related Work

Point Cloud Completion. Point cloud completion has
played an important role for many downstream applica-
tions such as robotics [12,31] and perception [, 2, 10,20],
which has seen significant development since the pioneer-
ing work PCN [51] proposed. Most existing approaches
like [6,11,22,22,25,29,37,39,42,48,50,53] are trained in a
fully-supervised manner. Although supervised point cloud
completion methods have achieved impressive results, they
are difficult to generalize to real-world scans, since the
paired data is difficult to collect for actual scans and their
data distributions might not match well. Pcl2pcl [6] first
proposes to complete the partial shapes in an unsupervised
manner without the need for paired data, which trains two
separate auto-encoders, for reconstructing complete shapes
and partial ones respectively and learns a latent code trans-
formation from the latent space of partial shapes to that
of the complete ones. Its subsequent work [44] outputs
multiple plausible complete shapes from a partial input.
Base on Pcl2pcl, Cycle4completion [41] exploits an ex-
tra complete-to-partial latent spaces transformation in addi-
tion of partial-to-complete direction to capture the bidirec-
tional geometric correspondence between incomplete and
complete shapes. Another unsupervised work Shapelnver-
sion [52] proposes to apply GAN inversion which utilizes
the shape prior learned from a pre-trained generator to com-
plete the partial shape in an unsupervised manner. However,
the inverse optimization process is time-consuming com-
pared with forward-based methods and the results are easy
to stuck at local minima, which greatly limits the practi-
cal application of inversion-based methods. Different from
existing methods, we propose to learn a unified latent space
supervised by tailored structured latent constraints to recon-
struct better complete shapes.

Structured Ranking Losses. Deep metric learning plays
an important role in various applications of computer vi-
sion, such as image retrieval [30, 36], clustering [18], and
transfer learning [33]. The loss function is one of the essen-
tial components in successful deep metric learning frame-
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Figure 2. Overview. (a) A series of related partial point clouds encoded to multiple complete shape and occlusion code pairs. Their
element-wise multiplication are the representation in the unified latent space. (b) Reconstructing the partial input P and predicting the
completed point cloud C simultaneously with a shape latent code discriminator and a complete point cloud discriminator. (c) The real
complete shape codes and point clouds are provided by the complete point cloud auto-encoder. Best viewed in color.

works and a large variety of loss functions have been pro-
posed. Contrastive loss [7, 16] captures the relationship
between pairwise data points, i.e., similarity or dissimi-
larity. Triplet-based loss is widely studied [8, 35, 38] and
composed of an anchor point, a positive data point, and
a negative point and aims to pull the anchor point closer
to the positive point than to the negative point by a fixed
margin 6. Inspired by this, recent ranking-motivated ap-
proaches [24, 30,32, 33, 35, 36] have proposed taking into
consideration richer structured information across multiple
data points and achieve impressive performance. Different
from triplet loss who considers one negative point, N-pair
loss [36] aims to identify one positive example from multi
negative examples.

3. Method

The goal of our work is to reconstruct the complete point
cloud from an input partial point cloud with only unpaired
data. Designing proper and strong supervisions is of great
importance to tackle this challenging problem. We propose
to learn a unified latent space for encoding both complete
and partial point clouds (shapes). We first introduce the
unified latent space in Section 3.1, which encodes complete
and partial point clouds in a joint space. Then structured
latent supervisions of a series of related partial point clouds
are adopted to further regularize the learning of the space
(Section 3.2). The overall architecture is depicted in Fig-
ure 2.

3.1. A Unified Latent Space for Point Cloud Encod-
ing

We introduce the unified latent space to establish the re-

lations between partial and complete point clouds in an un-

paired manner. Partial point clouds can be considered as

being created by occluding the complete shapes. A partial

point cloud represents the same object as its correspond-

ing complete point cloud and the difference between the
complete and partial point is just their occlusion degrees, as
shown in Figure 2 (a). Therefore, we embed the incomplete
and the complete point clouds into a unified latent space
equipping with different occlusion degrees.

Specifically, as illustrated in Figure 2 (b), we map any
partial point cloud P into a complete shape code z € R and
a corresponding occlusion code o € R? via a point cloud
encoder E, [46] consisting of EdgeConv [40] layers. Each
entry z;, ¢ € [1,...,d] of the occlusion code is bounded
in [0, 1] by a sigmoid function and has the same length as
the complete shape code. Occlusion of the complete shape
in the latent space is modeled as softly “gating” each di-
mension of the complete shape code. A smaller occlusion
value denotes more occlusion to a complete shape. The em-
bedding of the partial shape in the unified latent space can
then be obtained by element-wise multiplication of the two
codes. The complete and partial codes are then fed into
two separate decoders, D. and D,, to generate completed
point cloud C and reconstruct the input partial point cloud
P, respectively. The two separate decoders adopt the same
architecture made up of a multiple layers perception (MLP)
following [41]. Both C and P are supervised by a point-
wise Chamfer Distance (CD) loss with respect to the partial
input. The point-wise reconstruction loss is expressed as:

Lrce = Lop(P, P) + Lop(P, Deg(C)). ()

For (P,C), the bi-direction Chamfer Distance cannot be
utilized directly, but only the Unidirectional Chamfer Dis-
tance (UCD) cannot provide enough supervision for the in-
ference of the missing parts, so we degrade (i.e. Deg) the
C into a partial point cloud following [52]’s degradation
module, where only top-k nearest points with respect to
partial point cloud are kept. In order to further encourage
the predicted complete point clouds to represent reasonable
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shapes, a point cloud discriminator is adopted. We formu-
late the point cloud discriminator with WGAN-GP [15] loss
as

LY, =EsD(C) —EyD(Y) + AT, 2

where A, is a pre-defined weight factor and 7p is gradient
penalty term, denoted as
2
1) } : 3)
2

The code adversarial training loss for the encoder E, and
decoder D, is

To = Eg {(HVCD(C')

Lt = —E-D(O). %)

Note that, during inference, only the encoder E;, and de-
coder D, are needed.

3.2. Structural Regularization of the Unified Space

To further regularize the learning of the structured la-
tent space, we create a series of related partial point clouds
and propose several properly designed latent code super-
visions, including structured ranking regularization, latent
code swapping constraint, and latent code distribution su-
pervision to enhance the learning of the structured latent
space. Specifically, given a partial input P, we can create
a series of related partial point clouds (see {P, P’, P"} in
Figure 2 (a)) by gradually removing more points. For P’
and P”, there are K and 2K points removed from the ini-
tial partial shape P. Therefore, for a triplet of such related
partial point clouds S={ P, P’, P"}, their occlusion degrees
gradually increase.

Structured Ranking Regularization. For their complete
shape codes, since the point clouds represent the same ob-
ject, their complete shape latent codes, z, z’, z”’ are required
to be equal. And we adopt Smooth L1 loss to constrain them

L,=1L(z,2)+ L, (z2"). 5)

Furthermore, since their occlusion codes represent the in-
creasing degree of occlusion, their corresponding occlusion
codes’ weights shall be smaller as their occlusion degrees
increase. Such relations between their occlusion codes can
be expressed as

of <oj<oi<1  for i=1,---,d,  (6)

where 0/, 0}, o; are the ith entry of the occlusion codes for
P", P', P, respectively. To implement such a constraint, we
adopt the N-pair loss [36] to constrain the proposed relative
relations in Eq. (6),

N
L (a, p, {nj};,vzl) = log(1 + Z exp (aTnj — an)).

j=1
(N
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Figure 3. Illustration of the latent code swapping. To better de-
couple the complete shape and occlusion codes, we swap the com-
plete shape codes between related partial point clouds and apply
point-wise reconstruction loss to supervise the reconstructed par-
tial point clouds. Best viewed in color.

For the N-pair loss, there are one anchor sample a € RY,
one positive sample p € R? and N negative samples
n; € R, as shown in Eq. (7). By minimizing the loss
function, the positive sample would be pulled closer to the
anchor, and negative samples are pushed farther away from
the anchor. Here, we adopt N-pair loss by choosing differ-
ent occlusion codes as anchors, which can be written as the
following sets, where 1 € R4 is an all-one vector:

famt p=o fm) = (oo},
{a =o, p=o, {n} = {o”}} : (8)
{a =o", p=o, {m}L, = {0}} ,

Therefore, the proposed relative ranking relation Eq. (6) be-
tween occlusion codes are constrained via applying the N-
pair loss on each of the sets in Eq. (8). Through adopting
such strong ranking regularization, the unified latent space
is trained to be more structured.

Latent Code Swapping. To further regularize the com-
plete shape codes and occlusion codes, we employ a latent
code swapping constraint. Specifically, as illustrated in Fig-
ure 3, we swap the complete and occlusion codes extracted
from a partial point cloud P and a more occluded version
of P’ to reconstruct the corresponding partial point clouds.
Based on our assumption on the unified space, z and z’ rep-
resent the same complete object and the partial degrees are
decided by their occlusion codes. Therefore, no matter o’ is
combined with z or z’, the same partial point cloud should
be reconstructed. Therefore, we also feed the fused code
from z and o’ to the decoder D,, and apply point-wise re-
construction loss L. to constrain. And the fused shape
code from z’ and o is similarly processed. Through such a
latent code swapping constraint, the disentanglement of the
complete shape codes and the occlusion codes are greatly
improved, which leads to better shape completion.

Latent Code Distribution. In order to further constrain the
reality of the complete shape codes, a shape latent code dis-
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criminator is applied to directly supervise whether the com-
plete shape codes learned from partial point clouds match
well with the real complete shape codes extracted from a
complete shape auto-encoder. As illustrated in Figure 2 (c),
the real shape latent code z. € R can be obtained from
a complete point cloud auto-encoder following [41]. The
input of the auto-encoder Y is a shape randomly sampled
from a complete point clouds set which is not paired with
P. The objective functions for updating latent code dis-
criminator £, and latent code generator £g, are similar as
Egs. (2) and (4) respectively.

In summary, through the constraints on the unified latent
space, the complete shape and occlusion codes can be well
learned to enhance the relation between the complete and
partial point clouds.

Overall Loss. The overall training objective for the two
discriminators is

Lp =LY+ L. )

And the overall training loss for the encoders and decoders
including E,, D,,, E. and D, is the weighted sum of point-
wise reconstruction loss, structured latent supervision and
adversarial losses:

L=Lrec+ L, + £7Lpair + E% + Eéa (10)
where 7 and (3 are pre-defined weight factors.
4. Experiments

We evaluate the proposed method through extensive ex-
periments. Besides shape completion on the virtual scan
benchmarks, we also demonstrate its effectiveness com-
pared with other methods on the widely used real-world
partial scans.

Datasets. For a comprehensive comparison, we conduct ex-
periments on both synthetic and real-world partial shapes
following state-of-the-art unsupervised point cloud comple-
tion methods [0,41,44,52]. We evaluated our method on
three synthetic datasets CRN [39], 3D-EPN [ 1] and Part-
Net [29], which are all derived from ShapeNet [5]. For
real-world scans, we evaluate on objects extracted from
three datasets covering indoor and outdoor scenes, KITTI
(cars) [14], ScanNet (chairs and tables) [9], and Matter-
Port3D (chairs and tables) [4].

Evaluation Metrics. For datasets equipped with ground
truth, we evaluate the shape completion performance us-
ing CD and F1-score following previous unsupervised point
cloud completion methods [6,41,52], where F1-score is the
harmonic average of the accuracy and the completeness.
The Chamfer Distance is defined as:

1 .
—— > min [p—q|l3
Xin

*CCD (Xoutaxin) = |X |
out

|zn

where x,,¢ and x;,, are two point clouds. The smaller the
distance value is, the more accurate the reconstructed point
cloud is. For synthetic dataset PartNet utilized by [44],
we follow the method and also use Minimum Matching
Distance (MMD) metric to evaluate the accuracy of the
completion. The MMD measures the quality of the com-
pleted shape and we calculate the MMD between the set
of completion shapes and the set of test shapes. For real-
world scans where no ground truth is provided, we fol-
low [44,47] to evaluate the generated shapes in terms of
UCD and MMD, respectively. The UCD evaluates the con-
sistency and computes the Chamfer distance from the par-
tial input to the predicted complete point cloud.
Implementation Details. The proposed method follows
previous unsupervised point cloud methods [6, 41, 44, 52]
to train single-class models separately for better fidelity.
The number of points of the predicted complete shapes is
2048 for all datasets. We use 8 TITAN GPUs to implement
our experiments. Specifically, we adopt an Adam optimizer
with a learning rate 10~* and a batch size of 16 per GPU
to train the framework for 500 epochs. The top 5 points are
kept for complete point cloud degradation. The dimension
d of complete shape code and occlusion code are both 96
and a number of 500 points (i.e., {=500) are gradually re-
moved to generate more partial point clouds. The y=100,
B=10 and A\ ,=1 are set for the combination of losses.

4.1. Completion Results on ShapeNet Benchmark

We conduct experiments on CRN, 3D-EPN, and PartNet
synthetic datasets generated from ShapeNet to demonstrate
the superiority of our method over state-of-the-art unsuper-
vised methods.

Comparison on CRN and 3D-EPN datasets. For syn-
thetic datasets CRN and 3D-EPN equipped with ground
truth, we evaluate the shape completion performance us-
ing CD and F1-score following [6,41,52]. Tables 1 and 2
show the experiment results on the two datasets across eight
categories where “Cycle.” and “Inversion.” represent Cy-
cle4Completion and Shapelnversion respectively. As illus-
trated in Table 1, the proposed method outperforms state-of-
the-art unsupervised method Shapelnversion [52] by large
margins across most categories and achieves 12.2 CD and
85.6 Fl-score surpassing [52] by 2.7 and 1.7 for average
CD and F1-Score metrics, respectively. For ShapeNet 3D-
EPN dataset, as shown in Table 2, our method consistently
achieves the best completion performance on most cate-
gories, especially for categories like “chair” and “table”,
whose shape diversity and number of training samples are
relatively rich compared with other categories. For chair
and table, the CD and F1-score metrics show significant im-
provements (from 14.6/84.2 to 12.1/86.4 for chair and from
22.5/82.7 to 19.8/85.5 for table). There is a 0.9 gap between
our method and [41] on the car category. Through evalua-
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Table 1. Shape completion performance on CRN benchmark. The numbers shown are [CDJ, /F11], where CD is scaled by 10*.

Methods Plane Cabinet Car Chair Lamp Sofa Table Boat Average
Pcl2pcl [6] 9.7/89.1 | 27.1/68.4 | 15.8/80.8 | 26.9/70.4 | 25.7/70.4 | 34.1/58.4 | 23.6/79.0 | 15.7/77.8 | 22.4/74.2
Cycle. [41] 5.2/94.0 | 14.7/82.1 | 12.4/82.1 | 18.0/77.5 | 17.3/77.4 | 21.0/75.2 | 18.9/81.2 | 11.5/84.8 | 14.9/81.8
Inversion. [52] | 5.6/94.3 | 16.1/77.2 | 13.0/85.8 | 15.4/81.2 | 18.0/81.7 | 24.6/78.4 | 16.2/85.5 | 10.1/87.0 | 14.9/83.9
Ours 3.9/95.9 | 13.5/83.3 | 8.7/90.4 | 13.9/82.3 | 15.8/81.0 | 14.8/81.6 | 17.1/82.6 | 10.0/87.6 | 12.2/85.6

Table 2. Shape completion performance on 3D-EPN benchmark. The numbers shown are [CDJ, /F11], where CD is scaled by 10%.

Methods Plane Cabinet Car Chair Lamp Sofa Table Boat Average
Pcl2pcl [6] 4.0/- 19.0/- 10.0/- 20.0/- 23.0/- 26.0/- 26.0/- 11.0/- 17.4/-

Cycle. [41] 3.7/96.4 | 12.6/87.1 | 8.1/91.8 | 14.6/84.2 | 18.2/80.6 | 26.2/71.7 | 22.5/82.7 | 8.7/89.8 | 14.3/85.5
Inversion. [52] | 4.3/96.2 | 20.7/79.4 | 11.9/86.0 | 20.6/81.1 | 25.9/78.4 | 54.8/74.7 | 38.0/80.2 | 12.8/85.2 | 23.6/82.7
Ours 3.5/96.8 | 12.2/86.4 | 9.0/88.4 | 12.1/86.4 | 17.6/81.6 | 26.0/75.5 | 19.8/85.5 | 8.6/89.8 | 13.6/86.3

Table 3. Shape completion performance on PartNet benchmark.
We evaluate the results with MMDJ,, which is scaled by 102,

Methods Chair | Lamp | Table | Average
Pcl2pcl [6] 1.90 | 2.50 1.90 2.10
MPC [44] 1.52 1.97 1.46 1.65
Cycle. [41] 1.71 3.46 1.56 2.24
Inversion. [52] | 1.68 2.54 1.74 1.98
Ours 143 1.95 1.37 1.58

tion on the two popular synthetic datasets across eight cat-
egories, our method outperforms existing methods consis-
tently, which proves the superiority of the proposed frame-
work that learns a unified latent space with effective and
efficient structured regularization.

Comparison on PartNet dataset. We also conduct ex-
periments on PartNet dataset utilized by MPC [44]. The
PartNet benchmark is generated by removing semantic parts
on ShapeNet dataset. We follow [44] to adopt Minimum
Matching Distance on three categories to evaluate the qual-
ity of the completed shapes. As shown in Table 3, our
method outperforms existing state-of-the-art unsupervised
methods on the three categories consistently.

Qualitative Results. Figure 4 illustrates the qualitative re-
sults of the same samples from the ShapeNet dataset. De-
spite the efforts of previous approaches, they usually fail
to deal with severe occlusion cases and can not maintain
shape details. As shown by the couch and car in Figure 4
first two rows, in the case of severe occlusion, the com-
pleted point clouds of previous methods do not represent
the target objects (see the large missing regions which are
not recovered correctly). However, our method can accu-
rately recover the complete point cloud of the target ob-
ject, even when only fairly limited information is available
under severe occlusion. What’s more, our method recon-
structs more accurate complete point clouds equipped with
better fine-grained shape details. As shown by the red dot-
ted boxes, our method can generate more accurate complete
shapes at the corner of the lamps, the tail of the planes, and
the legs of chairs and tables. We attribute the great results to

the learned unified latent space and properly applied struc-
tured latent supervisions, which leads to more reasonable
predicted complete point clouds and better consistency be-
tween partial and complete point clouds.

4.2. Completion Results on Real-World Scans

We investigate the generalization of the proposed
method on various real-world datasets including both out-
door and indoor scenes, where the objects tend to be more
incomplete and noisier. The trained car, chair and table
models on CRN dataset are directly utilized to predict com-
plete point clouds on KITTI, ScanNet and MatterPort3D
datasets without any further fine-tuning process. As shown
in Table 4 (Cycle. [41] vs. Ours), our method signifi-
cantly outperforms Cycle4Completion [41] across multi-
ple categories on all the three real-scan datasets. For the
comparison with Shapelnversion [52], as the inversion pro-
cess is to minimize the UCD loss directly between partial-
complete pairs, it is unfair to compare our method that
does not involve GAN inversion with Shapelnversion [52].
However, our method is also compatible with Shapelnver-
sion [52]. When integrating GAN inversion on the top of
our method, it can surpass Shapelnversion on all various
real-world scans, as shown in Table 4 (Inversion. [52] vs.
Ours + Inversion), which demonstrates that our method can
enhance consistency between the predicted complete point
cloud and the partial input. On the other hand, the results
of our method in Table 5 also surpass other unsupervised
methods consistently.

In addition, as shown in Tables 4 and 5, we also com-
pare the generalization of our models with those of state-of-
the-art fully-supervised methods [48, 50] on the real scans.
Their authors’ official released models are used here. Our
unsupervised model can outperform them on multiple cate-
gories of real scans, which demonstrates that the proposed
unsupervised method has better generalization ability on
real-world scans than the supervised methods, which are
specifically trained to only fit their original synthetic data.
Figure 5 shows the completion results of our method on
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Figure 4. Point cloud completion results on ShapeNet dataset. From left to right: partial input, results of Cycle4completion [41],
Shapelnversion [52] ours and ground truth. Our results achieve more accurate completion under severe occlusion and recover better
fine-grained shape details compared with state-of-the-art methods. Better viewed in color and zoom in.

Table 4. Shape completion performance on the real scans. The
results are evaluated by UCDJ, where UCD is scaled by 10*. sup.:
supervised methods.

Methods sup. S.canNet Mat.terPort3D KITTI
Chair | Table | Chair | Table Car
GRNet [48] yes 1.6 1.6 1.6 1.5 2.2
PoinTr [50] yes 1.7 1.5 1.8 1.3 1.9
Pcl2pcl [6] no 17.3 9.1 15.9 6.0 9.2
Cycle. [41] no 94 4.3 4.9 49 9.4
Inversion. [52] no 3.2 3.3 3.6 3.1 2.9
Ours no 3.2 2.7 33 2.7 4.2
Ours + Inversion | no 1.1 0.87 1.1 0.87 0.76

Table 5. Shape completion performance on the real scans. We
evaluate the results with MMDJ,, where MMD is scaled by 102.
sup.: supervised methods.

ScanNet MatterPort3D | KITTI
Chair | Table | Chair | Table Car
GRNet [48] yes | 6.070 | 6.302 | 6.147 | 6911 | 2.845

Methods sup.

PoinTr [50] yes | 6.001 | 6.089 | 6.248 | 6.648 | 2.790
Cycle. [41] no | 6.278 | 5.727 | 6.022 | 6.535 | 3.033
Inversion. [52] | no | 6.370 | 6.222 | 6.360 | 7.110 | 2.850
Ours no | 5.893 | 5.541 | 5.770 | 6.076 | 2.742

real data, which indicates that even under severe occlusions
(such as KITTTIs car), our method can still generate reason-
able complete shapes.

4.3. Ablation Study

To verify the effectiveness of each component of the pro-
posed method, we conduct a series of experiments on four
representative categories on ShapeNet CRN dataset.

Effect of Unified Latent Space for Point Clouds Encod-
ing. To evaluate the benefits of introducing the unified la-
tent code space for unsupervised point cloud completion,
we compare two alternative strategies that do not encode
occlusion codes as soft weighting vectors. Instead of fus-
ing the codes via element-wise multiplication, we test fus-
ing the shape and occlusion codes via concatenation or
element-wise addition. Table 6 shows the quantitative re-
sults of the compared schemes. We employ our simplified
model, which multiples the shape and occlusion codes, and
has point and code discriminators and code swapping con-
straints under our unified space design but without using
the ranking constraints as the baseline (denoted as “Uni.
Space”) in Table 6. The average CD drops from 18.3 to
19.1 and 18.6 when fusing the two codes via concatena-
tion or addition, which proves that the learned unified latent
space is conducive to unsupervised point cloud completion,
and also creates a foundation for integrating our stronger
ranking supervision.

Effect of Structured Ranking Supervision. To evaluate
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Table 6. Comparison of different schemes for fusing complete
shape and occlusion codes. CD/ scaled by 10 are reported here.

Method Chair | Lamp | Sofa | Table | Avg.
Uni. Space 16.2 | 203 | 16.1 | 20.5 | 18.3
Concatenation | 17.2 | 20.7 | 17.5 | 20.8 | 19.1
Addition 172 | 20.1 | 163 | 20.8 | 18.6

Input Cycle4Completion Shapelnversion Ours

KITTI

KITTI

Matterport ScanNet

ScanNet

Matterport

Figure 5. Point cloud completion results on real-world scans.
From left to right: partial input, results of Cycle4completion [41],
Shapelnversion [52] and ours, respectively. Our method predicts
more reasonable complete shape results compared with other state-
of-the-art methods. Better viewed in color and zoom in.

Table 7. Effect of different ranking supervisions. CDJ scaled by
10* are reported here.

Method Chair Lamp Sofa Table | Avg.
Uni. Space 16.2 20.3 16.1 20.5 18.3
+triplet 14.7 19.5 15.0 19.5 172
@6=5) =2 |@E=10)| (5=5)
+n-pair 13.9 15.8 14.8 17.1 15.4

the effect of our proposed structured ranking supervision,
we adopt different ranking supervisions, N-pair loss and
triplet loss with varying hyper-parameters. As shown in
Table 7, our model with the triplet loss with different
hyper-parameters (denoted as “+triplet”) shows better per-
formance compared with not using the ranking supervi-
sions. Specifically the average Chamfer Distance improves
from 18.3 to 17.2. Furthermore, when equipped with N-pair
loss, the results are further improved and the average CD
has an obvious improvement from 18.3 to 15.4. It demon-
strates that the proposed structured ranking supervisions
assist the learning of the unified latent space. Therefore,
for our full model, we use N-pair loss without any hyper-
parameter as our final structured ranking supervision.

Effect of Discriminators. We also test the effects of the two
discriminators used in our system via deducting the code

Table 8. Effect of discriminators and latent code swapping. CDJ
scaled by 10* are reported here.

Method Chair | Lamp | Sofa | Table | Avg.
Full Model 139 | 158 | 148 | 171 | 154
w/o pointD 147 | 236 | 200 | 194 | 194
w/o codeD 185 | 21.7 | 22.0 | 20.8 | 20.8
w/o code swap | 14.7 200 | 17.0 | 19.2 | 17.7

discriminator (denoted as w/o codeD) or point cloud dis-
criminator (denoted as w/o pointD) from our final model
to compare with our full solution (denoted as Full Model).
As shown in Table 8, when removing the point cloud dis-
criminator or latent code discriminator, the average Cham-
fer Distances drops 4 and 5.4 points, respectively. It proves
that the integration of the discriminators can assist the com-
plete model to generate better predictions via providing di-
rect guidance about the distributions of complete shape la-
tent codes and point clouds.

Effect of Latent Code Swapping. The occlusion codes
swapping between a series of related partial point clouds is
designed to improve the disentanglement of complete shape
and occlusion codes. Here we test removing the design of
swapping occlusion code for reconstructing pairs of partial
point clouds (denoted as w/o code swap) to compare with
our solution. As shown in the last row of Table 8, without
latent codes swapping, the system shows much worse per-
formance on all categories, decreasing for 2.3 CD from 15.4
to 17.7. It demonstrates that generating related partial point
clouds and swapping their latent codes provide effective su-
pervisions on decoupling the complete shape and occlusion
codes more thoroughly.

5. Limitations and Conclusion

In this paper, we propose to learn a unified and struc-
tured latent space, which encodes both partial and complete
point clouds to improve partial-complete geometry consis-
tency under an unsupervised manner. Furthermore, we ap-
ply tailored structured latent supervisions between a series
of related partial point clouds to enhance the learning of the
structured latent space. Extensive experiments prove that
the proposed method consistently achieves state-of-the-art
performance on both synthetic and real-world benchmarks.

Although our method has made great progress in accu-
racy, there are still limitations for some fine-grained struc-
ture reconstruction of objects, such as the complex texture
structure of chairs. These limitations may be solved by de-
signing better decoders or introducing implicit functions.
Acknowledgments: This work is supported in part by
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in part by the General Research Fund through the Re-
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