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Abstract

We propose a principled and practical method for out-
of-distribution (OoD) detection with deep hybrid models
(DHMs), which model the joint density p(x,y) of features
and labels with a single forward pass. By factorizing the
joint density p(x,y) into three sources of uncertainty, we
show that our approach has the ability to identify samples
semantically different from the training data. To ensure
computational scalability, we add a weight normalization
step during training, which enables us to plug in state-of-
the-art (SoTA) deep neural network (DNN) architectures for
approximately modeling and inferring expressive probabil-
ity distributions. Our method provides an efficient, general,
and flexible framework for predictive uncertainty estima-
tion with promising results and theoretical support. To our
knowledge, this is the first work to reach 100% in OoD de-
tection tasks on both vision and language datasets, espe-
cially on notably difficult dataset pairs such as CIFAR-10
vs. SVHN and CIFAR-100 vs. CIFAR-10. This work is a
step towards enabling DNNs in real-world deployment for
safety-critical applications.

1. Introduction

One significant obstacle to deploying DNN models in
real-world applications is that deep learning systems often
break down in novel situations. Specifically, DNNs tend to
yield unreliable predictive uncertainty estimates and make
high-confident yet incorrect predictions when exposed to
inputs drawn from unfamiliar distributions. Therefore, ac-
curate quantification of predictive uncertainty of DNNs is
critical in high-stake applications such as medical diag-
nosis [16, 87], self-driving vehicles [20, 45], and financial
decision-making [65], where silent mistakes can lead to
catastrophic consequences.

Suppose that the training data come from the distribu-
tion p(y, x), where y denotes labels and x denotes features.
The majority of the literature uses DNNs to model the con-
ditional distribution p(y|x), which has achieved impressive
performance when the test data are restricted to p(y,X)
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Figure 1. The histograms of log p(x) for both in-distributional
(CIFAR-10) and OoD datasets (CIFAR-100 and SVHN).
[12,24,99, ]. However, when faced with OoD test sam-
ples x* drawn from a different distribution, p(y|x*) often
yields incorrect predictions with low uncertainties, result-
ing in silent failures. The main reason for this phenomenon
is that p(y|x*) does not fit a probability distribution over
the whole (x,y) space. This motivates the need for a fam-
ily of models endowed with a meaningful notion of proba-
bility over (X, y): deep hybrid models (DHMs), which aim
to learn the joint distribution p(y,x) = p(y|x)p(x). Since
p(y, X) is a probability distribution which integrates to one
over its support, p(y,x*) is automatically decreased after
maximizing the probability of the in-distributional (ID) data
during training. As a result, even though p(y|x*) might
yield an incorrect label, p(y|x*)p(x*) should be a small
value suggesting a high predictive uncertainty and an alarm-
ing signal for potentially wrong predictions.

This paper aims to construct a family of DHMs that are
computationally efficient and practically effective for de-
tecting OoD samples. However, we face two main chal-
lenges. The first challenge is the model’s expressibility and
computational scalability. Constructing a DHM usually re-
quires modeling p(y|x) and p(x) with two DNNs sharing a
subset of their parameters [8, 44,47, 50,53, 69,76,77, 85].
Training a high-fidelity DHM on high dimensional data is
difficult typically because p(x) often underfits, and proba-
bilistic inference for flexible p(x) is usually computation-
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Figure 2. This figure (adapted and redrawn from [29]) illustrates the basic structure of our proposed DHMs. The data manifold M
embedded in R™ is mapped, under an approximately volume-preserving mapping ¢, to the low dimensional embedding space R™ (m < n),
where an NF learns to capture its probability density and a discriminator learns to distinguish semantically different objects.

ally expensive. Recently, normalizing flows (NFs) [15,79]
have been adopted to model p(x) [42,72] due to their great
promise for modeling complex distributions. A standard
Euclidean NF is a transform ¢ : R®™ — R" that maps
the data points x to their latent embeddings h equipped
with a tractable base density p(h), where the density p(x)
can be computed in closed-form: p(x) = p(h)|det Jy|.
However, this result requires the NF ¢ to be invertible
and dimension-preserving, imposing significant structural
constraints on ¢ and limiting the model’s expressibility
[4,13,14,21,23,32,41,46, 84]. To overcome the limita-
tions on the dimensionality, a few attempts have been made
to generalize NFs from Euclidean spaces to Riemannian
manifolds where |det J4| becomes a pseudo determinant

\/|det J$J¢| [11,29,43,68]. However, to make computing

the pseudo determinant tractable (yet still very expensive),
additional restrictions are usually placed on ¢, significantly
limiting the model’s expressiveness and performance.

The second challenge is that NFs tend to learn low-level
features of their inputs, such as simple graphical structures
for image data, rather than high-level semantic information
[48]. This is due to the fact that the features learned by NFs
are primarily aimed at reconstructing the inputs rather than
distinguishing semantically different objects, such as a cat
and a dog. Although the semantic structures of ID and OoD
data are generally different, they may share common low-
level features. As a result, NFs, in general, fail to detect
OoD samples.

In this paper, we introduce a simple and effective method
to deal with both challenges. First, to relax the dimension-
preserving requirement of ¢ while also circumventing the
expensive step of computing the pseudo determinant, we
replace the invertible mapping ¢ with a bi-Lipschitz con-
tinuous DNN ¢ : R" — R™ by applying spectral nor-
malization [70] to its weights. A bi-Lipschitz continuous
function is distance-preserving and bijective (restricted to
its image) but has no restrictions on the dimensionality of
its output layer. This property enables us to use SOTA DNN
architectures to obtain geometry-preserving and low dimen-
sional representations of the inputs x, namely h = ¢(x). We
show that a bi-Lipschitz continuous function ¢ also approx-
imately preserves the measure, intuitively the local volumes

of the data manifold, implying that p(x) = p(h). Second, to
capture the density of h, we add a Euclidean NF f : h — z
on top of it, where z ~ A(0,I). In order for ¢ to learn
high-level semantic features of its inputs x, we also add a
fully connected layer as a discriminator ¢ : h — y. The
structure of our proposed DHMs is illustrated in Figure 2.

While the lack of restrictions on ¢ increases a DHM’s
expressivity, a DHM is computationally efficient because it
only requires one feed-forward pass to obtain both p(y|x)
and p(x) without the expensive step of calculating the
pseudo determinant. By learning a joint embedding h for
both the density estimator f and the discriminator ¢, a DHM
improves the discriminative expressiveness of the features.
Therefore, the density estimator f is built on high-level fea-
tures and thus able to distinguish objects that are semanti-
cally different from the training data. To our knowledge,
this is the first work to reach 100% in OoD detection tasks
on both vision and language datasets. This work is a step to-
wards enabling DNNss in real-world deployment for safety-
critical applications since any result lower than 100% still
provides no safety guarantee.

Contributions: 1: in Section 2, we introduce a novel un-
certainty factorization: factorizing p(y, X) into three sources
of uncertainty. It provides theoretical support for DHMs
to do OoD/anomaly detection. 2: we propose one type of
DHMs that is both computationally efficient and practically
effective for OoD detection.

2. Uncertainty Factorization

Notation and Problem Setup We assume that the train-
ing data D = {x;,y;})¥, are generated from a joint dis-
tribution p(y,x). The features {x;}¥, are i.i.d. samples
of a random variable x € R that takes values on a low-
dimensional manifold M (equipped with a metric ||.|| r1)
diffeomorphic to R™ with typically m < n (the well-
known manifold hypothesis). Our goal is to train a DHM
p(y,x;0) = p(y|x; 0)p(x; @) parameterized by 6 to generate
reliable predictive uncertainty estimates that can be used to
detect OoD samples x*.
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2.1. Different Types of Uncertainty

In machine learning modeling, there are two types of
uncertainty that are crucial to distinguish: aleatoric uncer-
tainty and epistemic uncertainty [83]. Aleatoric uncertainty,
or data uncertainty, arises due to the inherent randomness
of the data generating mechanism, which is not reducible by
observing more data points. On the other hand, epistemic
uncertainty describes the uncertainty due to the lack of data
and knowledge. It can be sufficiently reduced theoretically
as the size of training data grows to infinity. A model’s
epistemic uncertainty mainly comes from two sources [00]:
parametric uncertainty, or model uncertainty, which mea-
sures the uncertainty in estimating the model parameters
under the current model specification, and distributional
uncertainty that arises due to the discrepancy between the
training and test distributions. A well-calibrated model
should assign higher distributional uncertainty to OoD sam-
ples than to ID samples.

2.2. Uncertainty Factorization

What Is a Good Uncertainty Factorization? In the
literature of uncertainty factorization, the main goal is to
factorize the model into two or three types of uncertainty so
that we can directly access the uncertainty information once
we learn the model. First, we want the uncertainty factor-
ization to be general and natural so that it can be used in a
wide variety of models. Second, a good uncertainty factor-
ization should be semantically accurate, which means that
the results should be aligned with the definitions described
in Section 2.1.

The existing literature [19,59,67] focuses on factorizing
the posterior predictive distribution p(y|x, 6, D). The main
shortcoming of this approach is that the proposed factoriza-
tions are often complicated and not general, only suitable
for specific models. Furthermore, many factorizations fail
to correctly capture the semantics of different sources of
uncertainty described in Section 2.1. A more detailed liter-
ature review is presented in Appendix A.

Our Proposed Uncertainty Factorization Instead of
factorizing the posterior predictive distribution p(y|x, 6, D),
we propose to factorize the posterior joint distribution
p(y,x, 0| D) into three sources of uncertainty. We assume
that x is independent of #. This assumption is generally
valid for the following reason: @ is trained from the data D;
thus, 6 is dependent on D. However, in our problem set-
tings, X can be OoD, which means that the distribution of x
is independent of (can be different from) the distribution of
the data D. Therefore, x is independent of #. With this as-
sumption, the posterior joint distribution can be factorized
as follows:

p(y,x,0|D) = p(yl|x,0) p(x|D) p(6|D) (D

data distributional model

p(y|x, ) is the aleatoric uncertainty which measures the in-
trinsic randomness of y at a particular point x; p(x|D) rep-
resents the distributional uncertainty, reflecting how likely
it is to see a new point X in light of the training data D;
p(0|D) is the parametric uncertainty which can be reduced
to a Dirac delta function (point estimate) given infinite data
points.

This uncertainty factorization is quite neat and seman-
tically accurate. More importantly, it is also quite general
since it does not introduce auxiliary variables and there-
fore can be used in a wide variety of models. This uncer-
tainty factorization can be used in both Bayesian and non-
Bayesian models since the parametric uncertainty is sepa-
rated (Equation (1)). To be specific, for Bayesian models,
when making predictions on a new data point x*, we inte-
grate out § and obtain:

p(y,x*|D) = p(x*D) / p(ylx*, 0)p(6|D)d8 ()

For non-Bayesian models, if we use the maximum likeli-
hood method, we have:

Py, x*|D) = p(x*(D) p(y|x*, O 3)
— ——— —
data distributional

It is crucial to distinguish different types of predictive
uncertainty in real-world problems so that different ac-
tions can be taken depending on the source of uncertainty.
Our uncertainty factorization enables us to model differ-
ent sources of uncertainty separately. For example, from
Equations (2) and (3), the parametric uncertainty can only
be estimated in Bayesian models; however, the distribu-
tional uncertainty and the aleatoric uncertainty can be mod-
eled independently regardless of whether the model is under
the Bayesian setting. Thus, this uncertainty factorization is
practical when one needs to differentiate between different
sources of uncertainty with a single model.

2.3. Connecting Uncertainty Factorization to OoD
Detection

Our proposed uncertainty factorization (Equation (1))
sheds light on what type of models are capable of de-
tecting OoD samples. Without combining additional tech-
niques, the widely used conditional models p(y|x, #) alone
are not good at OoD detection because they only capture the
data uncertainty. However, a well-trained DHM p(y, x, 0)
should be able to detect OoD samples since it contains the
distributional uncertainty in nature. Furthermore, since a
DHM fits a probability distribution over the whole (x,y)
space, it also learns the interactions between x and y. Labels
y provide the interested ID semantics of the features x and
tell the model what is ID and what is OoD. Consequently,
modeling p(x,6) alone with NFs generally fails to detect
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Figure 3. An example to show that labels contain ID semantic
information.
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means to be ID.

We briefly illustrate the above idea with a toy example.
In Figure 3, given a training dataset of six pictures and two
test pictures, without information about the labels, we have
no idea of what it means to be OoD. If the labels are 1,
72”7, and 73, the test data are ID. On the other hand, if
the labels are “red” and blue”, the test pictures should be
considered OoD. With different labels, the ID semantics can
change. As a result, the notion of OoD also changes. There-
fore, labels contain semantic information that is useful for
OoD detection, especially for hard OoD samples.

] since the model does not learn what it

3. L-Measure-Preserving Mappings

In this section, our goal is to construct an approximately
measure-preserving (volume-preserving) mapping ¢ such
that we have p(x) & p(h) where h = ¢(x). To begin with,
we provide some mathematical background.

Definition 3.1 (Volume of a Matrix A) Consider a matrix
A € R™ ™ with nonzero singular values o, 0s,...,0y, the
volume of A, volA =1I]_, 0;.

volA is a generalization of |det(A)|, which intuitively
measures the volume of the parallelepiped generated by the
rows (columns) of A. Any r-dimensional unit cube em-
bedded in R™ is mapped, through A, into a parallelepiped
of volume volA. If A is of full row (column) rank, then
volA = \/|det(GQ)| where G = AT A is the Gram matrix
of A [5].

Normalizing Flow on Riemannian Manifolds Let x €
R"™ be arandom variable that takes values on an m-manifold
M with m < n (the manifold hypothesis). Consider an NF
¢ : R™ — R™ that is bijective and differentiable almost ev-
erywhere (allowing for piecewise differentiable functions).
Denote the Gram matrix of ¢ as G(x) = J,(x)T J4(x)
where Jy(x) is the Jacobian of ¢; then we have volJy =

|det G(x)|. For any measurable set B C R", one can cal-

culate the probability of its image under ¢ [6, 1 1,29,43,68]:
Pive o(B) = [ pdc= [ pwdvim) @
B #(B)

where
p(h) = p(x)/volJy ©)

dVy(h) = vol Jsdx 6)

Equation (5) is a general version of the “change-of-
variables” formula, and it illustrates the relationship be-
tween p(x) and p(h). To evaluate the density p(h), we need
to compute the volume term volJg, which is not scalable
to high-dimensional data. Equation (6) elucidates the ge-
ometric intuition of volJy: it represents the ratio between
two differentials (infinitesimal volumes) before and after
the mapping ¢. In light of this observation, one way to
bypass the computation of volJy is to make ¢ a measure-
preserving (volume-preserving) mapping where volJy = 1,
which is the goal of this section. However, in practice,
this requirement might be too stringent. Therefore we con-
sider a more general version of measure-preserving map-
pings (Definition 3.4) to keep ¢’s expressivity.

3.1. Bi-Lipschitz Mappings Approximately Preseve
the Measure (Volume)

Definition 3.2 (Bi-Lipschitz mappings). Consider two
metric spaces (X, ||.|x) and (H, ||.||g). A function ¢ :
X — H is called bi-Lipschitz continuous if there exists a
constant L > 1, s.t. +x|x1—x2||x < [|¢(x1)—(x2)||g <
L * ||x1 _x2||X, Vxl,xg e X.

The smallest L that satisfies the inequality is called the
bi-Lipschitz constant of ¢, and we say that ¢ is L-bi-
Lipschitz continuous. If ¢ only satisfies half of the inequal-
ity [[6(x1) — 6(x2) i < L * [[x1 — Xel|x. we say that  is
L-Lipschitz continuous. Note that invertible functions are
not necessary to be bi-Lipschitz continuous, whereas bi-
Lipschitz continuous functions are always bijective.

Proposition 3.3 If a function ¢ is L-bi-Lipschitz contin-
uous, then ¢ is differentiable almost everywhere (Theorem
3.1.6 of [20]), and the singular values of its Jacobian lie in
the interval (L=, L).

Definition 3.4 (L-measure-preserving). Consider two
measure spaces (X, </, volx) and (H, , volg). A
function ¢ : X — H is called L-measure-preserving
(volume-preserving) if there exists a constant L > 1, s.t.
T xvolx(B) <wvolp(¢(B)) < L*volx(B),VB € &.

Theorem 3.5 (Bi-Lipschitz mappings are approximately
measure-preserving). Specifically, if a mapping ¢ : R™ —
R™ js LY/ ™ _bi-Lipschitz continuous, then it is L-measure-
preserving.

The proof is in Appendix A. Suppose that ¢ is L-
measure-preserving and By € &/ is an infinitesimal
open cover of a point x € X. The volume ratio
volg (¢(Bx))/volx (Bx) = dVy(h)/dx = wolJy lies in
the interval (L1, L) where L > 1 and thus approximately
equal to 1 when L is close to 1. Therefore, from Equa-
tion (5), we have p(x) = p(h)volJy ~ p(h), which gives
us a chance to circumvent the expensive step of computing
volJg. The bounds are tight when L = 1 and ¢ becomes a
strictly measure-preserving mapping.
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3.2. Constructing Measure-Preserving Mappings
via Spectral Normalization

Modern DNNs, such as ResNets, BERT, and Transform-
ers, are often constructed with residual blocks. Spectral nor-
malization (SN) [70] provides a simple yet efficient method
to ensure the L-measure-preserving property on such DNN
architectures. We state the theorem formally below:

Proposition 3.6 (Lipschitz-bounded residual blocks lead
to bi-Lipschitz continuous DNNs [3,58]). Consider a resid-
ual DNN ¢ = ¢g o ... 0 3 0 ¢p1 where ¢y(x) = x + g;(x)
forl = 1,...,d. Ifall g/(x) are B-Lipschitz continuous
where 0 < 8 < 1, then ¢ is L-bi-Lipschitz continuous where
L =maz{(1 - 8)~% (1 + )%}

The proof is in Appendix A. We consider g;(x) =
o(W;x + b;), where o is the activation function such as
ReLU. We notice that the Lipschitz constant of the affine
transformation W;x + b; is the spectral norm of its weight
matrix W, denoted as ||W;]|2 (the largest singular value of
W) [70,75], and the spectral norm of the activation function
o is less than 1. Therefore, to ensure g; to be S-Lipschitz
continuous where 0 < 3 < 1, it is sufficient to restrict
[IW:]|2 to be less than 1. To this end, we apply SN to the
weight matrices {W;}_,. Following [4], at each training
step, we first estimate the spectral norm 7j; = ||W;]|2 with
the power iteration method [31,70] and then normalize the
weights via:

Wl{c*Wl/ﬁl ifc<7?l ™
W, otherwise

c > 0 1is a scaling coefficient called the SN upper bound
since it is the upper bound for the scaled spectral norm
(|[Wi]]2 < ¢), and therefore the upper bound for the Lip-
schitz constant of g;(x) (8 < c).

Tighter Bi-Lipschitz Bounds It is crucial to note that
even if L and L are individually the best bi-Lipschitz con-
stants of ¢; and ¢o, respectively, L1 Lo will not necessarily
be the smallest bi-Lipschitz constant of ¢ o ¢;. It is pos-
sible to obtain a much tighter bi-Lipschitz bound by con-
sidering the entire DNN as a whole rather than each layer
in isolation. Under mild assumptions, we can provide some
analysis on the bi-Lipschitz bound of a residual DNN.

Corollary 3.7 (A tighter bi-Lipschitz bound for residual
DNNSs). Consider a DNN ¢ composed of d residual blocks,
each of which is B-Lipschitz continuous where 0 < < 1.
The expected value of the bi-Lipschitz constant of the DNN
is 0.5%(1 + B+ 135)%

The proof (informal) is in Appendix A. Let us look at an
example. If our model is a DNN composed of 10 residual
blocks and each block is 0.1-Lipschitz continuous. From
the manifold hypothesis, suppose that the data lie on a three-
dimensional manifold. Then, after the model is trained on

the dataset, we would expect it to become a 1.14-measure-
preserving mapping.

It is crucial to note that an overly strong measure-
preserving property (L is too close to 1) might harm OoD
detection in practice. This is due to the fact that the bi-
Lipschitz condition, by definition, leads the model to pre-
serve a naive metric ||.||x (such as the Euclidean distance)
in the original data space X rather than a semantically
meaningful distance in the data manifold M. Due to highly
non-convexity, OoD data in space X can be even closer
to the center of the ID data than the ID data themselves.
Consequently, an overly strong measure-preserving condi-
tion makes detecting OoD samples even harder. For exam-
ple, a strictly measure-preserving mapping would become
a naive rotation or identity function (for residual networks),
in which case detecting OoD samples is impossible. There-
fore, we hope that our model is measure-preserving only to
the extent that it is safe to drop the volume term vol.J, and
we can still do OoD detection. For example, if the probabil-
ities of the ID data are ten times larger than the probabilities
of the OoD data, it is safe to drop the volume term even if
the measure-preserving constant is as large as 2. In practice,
the SN upper bound c is a critical hyperparameter to control
the strictness of the measure-preserving property.

4. Method Summary for DHMs

Architecture Given a DNN ¢, logits(x) = ¢ o ¢(x;0)
where ¢ is a fully connected layer, a DHM makes two
changes to the model: applying SN on the weights of ¢ and
adding an NF f : ¢(x;0) — z, where z ~ N (0, I).

Objective In DHMs, the maximum likelihood objective
is naturally separated into log p(y, x;0) = logp(y|x;6) +
log p(x; 6). In practice, though, a weighted maximum likeli-
hood objective log p(y, x; 0) = log p(y|x; 0) + A log p(x; 6)
is commonly used where A is a scaling constant, as predic-
tion accuracy is usually of more interest.

Training and Prediction We summarize the methods in
Algorithm 1 and Algorithm 2.

Algorithm 1 DHM Training

1: Input: batches B = {x;,y; }},
2: Initialize parameters 6

3: for step = 1 to max_step do

4: SGD update 6

5: Apply SN to 6

6: end for

Algorithm 2 DHM Prediction

: Input: test example x*

: Compute p(y|x*) = max softmax o ¢ o ¢(x*; 0)
: Compute p(x*) ~ p(z)|det J¢(¢(x*;0))]

: Compute Uncertainty = p(y|x*)p(x*) or p(x*)
: Compute Label = arg max c o ¢(x*; 0)

: Return Label, Uncertainty

AN N AW N =
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Why Do DHMs Work? 1: a DHM aims to learn a joint
density p(x, y) which contains the distributional uncertainty
in nature (Equation (1)); 2: by learning a joint embedding
for both p(y|x) and p(x), a DHM encodes high-level seman-
tic information of the data (partly coming from labels y); 3:
by applying SN, we construct an approximately measure-
preserving mapping ¢ (p(x) = p(h) where h = ¢(x)).
This technique enables us to use SOTA DNNSs to learn low-
dimensional representations of the inputs x without comput-
ing the expensive volume term (pseudo determinant), which
solves the problem of expressibility and computational scal-
ability.

5. Related Work

Hybrid Models The idea of hybrid modeling might orig-
inate from C.M. Bishop (1994) [8], who uses it for nov-
elty detection. Hybrid models are then shown to be use-
ful for supervised learning [44, 69], semi-supervised learn-
ing [47,50,53,76,77], and information regularization [85].
Recently, hybrid models have been applied to OoD detec-
tion [72] and open set recognition [42]. [72] proposes con-
structing hybrid models where p(x) is modeled with an
NF and p(y|x) is modeled with a generalized linear model
stacked on top of p(x). Unfortunately, this method produces
low OoD detection performance because the latent embed-
dings learned from the NF do not have sufficient discrim-
inative expressiveness. One way to improve the discrimi-
native expressiveness of the latent embeddings is to learn a
joint embedding for both p(x) and p(y|x). To this end, [42]
(OpenHybrid) proposes to attach an NF (p(x)) to the penul-
timate layer of a DNN (p(y|x)), which outperforms base-
lines in the open set recognition field. However, OpenHy-
brid still performs poorly in OoD detection tasks on difficult
dataset pairs such as CIFAR-100 vs. CIFAR-10. One main
reason is that the authors mistakenly use p(h) to substitute
p(x) as the score for OoD detection, whereas p(h) and p(x)
can be very different everywhere in practice. Furthermore,
the gradients of the NF and the DNN are propagated sep-
arately instead of jointly at each training step. In this pa-
per, we improve upon OpenHybrid and correct their mistake
by applying SN to the weights of the DNN to enforce its
approximately measure-preserving property (p(h) ~ p(x))
and training all the weights concurrently, which achieves
surprising results.

OoD Detection A principled approach to estimate pre-
dictive uncertainty is Bayesian DNNs [40, 62, 74] that learn
a posterior distribution over their parameters with MCMC
[2, 89], variational inference [9, 10, 25, 34, 61, 90, 92], or
other posterior approximations such as MC-Dropout [28],
SWAG [64], and Laplace approximation [80]. In prac-
tice, Bayesian approaches are outperformed by Deep En-
sembles [51], which come at the expense of more computa-

tional cost and memory. Another approach is to make use
of real [38, 67] or synthetic [54] auxiliary OoD examples
to learn to distinguish OoD inputs. For example, OE [38]
and DPN [67] train a DNN on OoD examples through regu-
larization, while others use OoD examples to tune hyperpa-
rameters such as Temperature Scaling [36], ODIN [56], and
Mahalanobis [55]. However, this type of methods is unable
to generalize to other unseen OoD datasets in practice. Fur-
thermore, recent studies on unsupervised methods, includ-
ing density-based [17,22,27,33,63,606,71,73,78,81,82,97]
and self-supervised [7, 30,39, 57, 86, 91] approaches, have
shown that more elaborate data augmentation such as ro-
tation, reflection, blurring [ 18], mixup [98], or adversarial
training [51] significantly helps to learn discriminative fea-
tures for OoD detection. In this paper, we do not assume
access to OoD datasets in advance or rely on complicated
data augmentation. More related to our work are SoTA
single-model approaches: DUQ [88] and SNGP [58]. Both
methods impose “distance-preserving” on the DNNs with
either Jacobian penalty [35] or SN and suggest “distance-
aware” output layers in the form of RBF kernels and Gaus-
sian processes, respectively. However, as discussed in Sec-
tion 3.2, an overly strict distance-preserving condition can
harm OoD detection. Our method is a novel application of
the approximately measure-preserving property, which out-
performs both methods on various datasets.

6. Experiments
6.1. Vision and Language Understanding

Baseline Methods and Experimental Setup For fair
comparisons, all the baseline approaches are supervised
methods and do not require auxiliary OoD datasets either to
train the models or to tune hyperparameters. We compare a
DHM against a deterministic baseline (vanilla DNN) and
an ensemble baseline: Deep Ensembles (with 10 indepen-
dent DNNs). We also consider two SoTA single-model ap-
proaches: DUQ and SNGP (see Section 5). We include
two ablated versions of a DHM: DNN+SN which performs
SN on a vanilla DNN and DNN+NF which adds an NF
on top of a vanilla DNN. For all the methods, we use a
Wide ResNet 28-10 [96] for image classification and XL-
Net [94] for language understanding. For CIFAR-10 [49]
and CIFAR-100 [49], we apply the standard data augmen-
tation (horizontal flips and random cropping) for both ID
and OoD datasets. Further training and evaluation configu-
rations are described in Appendix B.

Vision Domain: CIFAR-10 and CIFAR-100 We first
evaluate a DHM’s predictive accuracy and calibration error
on ID test data. As shown in Table 1-2, the DHM slightly
outperforms the vanilla DNN, DUQ, and SNGP in terms of
predictive accuracy and is competitive with them in terms
of calibration error. Deep Ensembles (10 DNNs) still have
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In-distribution OoD: SVHN OoD: CIFAR-100 Latency (1)

(ms/example)

Accuracy () [ ECE (}) NLL (}) AUROC (1) | AUPR (D) AUROC (1) | AUPR(T) | Train | Test

Deterministic | 96.0 £+ 0.01 0.024 +0.002 0.158 £0.02 | 0.923 +£0.01 0.907+0.01 | 0.868 £0.01 0.820+£0.01 | 1.39  0.62
Deep Ensemb | 96.7 £ 0.01  0.010 = 0.001 0.113 £ 0.01 | 0.980 £ 0.01 0.978 +0.01 | 0.921 £0.01 0.919 +£0.01 | 14.01 6.33
DUQ 95.5+£0.02 0.034 £0.002 0.234£0.02 | 0.972 £0.01 0.969 = 0.01 | 0.908+ 0.01 0.888 = 0.01 | 3.07 1.14
SNGP 96.0 + 0.01 0.020 £ 0.002 0.150 £0.01 | 0.978 £0.01 0.975£0.01 | 0916 =0.01 0911+£0.01 | 2.21 0.82
DNN+SN 96.1 £0.01 0.024 £ 0.003  0.155+0.02 | 0.956 +0.01 0.937£0.01 | 0.872 +£0.01 0.840 £0.01 | 1.58 0.65
DNN-+NF 96.2 + 0.01 0.023 £0.003 0.152+0.02 | 0.998 £0.01 0.995+0.01 | 0.951 £0.03 0.938 £0.04 | 2.25 0.83
DHM (Ours) | 96.3 £ 0.01 0.022 + 0.003  0.149 +0.02 | 1.000 £+ 0.00 1.000 £ 0.00 | 1.000 + 0.00 1.000 £ 0.00 | 2.43 0.84

Table 1. Results for Wide ResNet-28-10 on CIFAR-10, averaged over 10 independent seeds.

In-distribution OoD: SVHN OoD: CIFAR-10 Latency (1)

(ms/example)

Accuracy 1) [ ECE () NLL () AUROC (1) [ AUPR (1) AUROC (1) [ AUPR () Train | Test

Deterministic | 80.5 £0.02  0.055 £0.004 0.783 £0.02 | 0.862 £ 0.01 0.893 +0.01 | 0.806 +0.01 0.812+0.01 | 1.40  0.63
Deep Ensemb | 81.9 £0.01  0.022 £ 0.001 0.658 &+ 0.01 | 0.919 +£0.01 0.933 £0.01 | 0.854+£0.01 0.887 £0.01 | 1422 6.42
DUQ 799 £0.02 0.084 £0.004 0.880+0.02 | 0.897 £0.01 0.908 £0.01 | 0.839 +0.02 0.872+0.02 | 1.75 0.67
SNGP 80.5+0.03 0.040+0.003 0.759 £0.02 | 0.928 £0.01 0.935+£0.01 | 0.863 £0.01 0.875+0.01 | 1.86  0.70
DNN+SN 80.8 £0.02  0.055+0.003 0.780+0.02 | 0.886 £0.01 0901 £0.01 | 0.811+0.02 0.819+£0.02 | 1.60  0.65
DNN+NF 81.1£0.02 0.051 £0.004 0.760 £0.02 | 0.989 £0.02 0.985+0.02 | 0.945+0.04 0.925+0.04 | 2.31 0.84
DHM (Ours) | 81.3 £0.02  0.049 £0.004 0.757 £0.02 | 1.000 + 0.00 1.000 £ 0.00 | 1.000 £ 0.00 1.000 + 0.00 | 2.54  0.88

Table 2. Results for Wide ResNet-28-10 on CIFAR-100, averaged over 10 independent seeds.

more powerful classification capacities than single-model
approaches. We then evaluate a DHM’s OoD detection per-
formance for notably difficult dataset pairs, such as CIFAR-
10/-100 vs. SVHN, CIFAR-10 vs. CIFAR-100, and CIFAR-
100 vs. CIFAR-10. Note that the classes of CIFAR-10 and
CIFAR-100 are mutually exclusive. Results in Table 1-2
show that the DHM clearly outperforms the existing SoTA,
including Deep Ensembles, and achieves 100% AUROC
and AUPR on all the OoD detection tasks.

Text Domain: CLINC150 We report a DHM’s perfor-
mance on a real-world dataset: CLINC150 [52]. CLINC150
is designed for evaluating the performance of an intent clas-
sification system in the presence of “out-of-scope” queries.
We train XLNet models only on in-scope data and eval-
uate their predictive accuracy and calibration error on the
in-scope test data and their OoD detection performance on
the out-of-scope data. As shown in Table 3, compared to
the vanilla DNN, DUQ, and SNGP, the DHM achieves a
slightly superior predictive accuracy and a competitive cal-
ibration error. For the OoD detection tasks, consistent with
the vision experiments, the DHM outperforms all the base-
lines and achieves 100% AUROC and AUPR.

Ablation Study DNN+NF without SN does not achieve
the best OoD detection performance in both vision and
language understanding tasks. Empirically, it produces
unstable results, sometimes achieving 100%, whereas on
other occasions (different seeds or parameter initializations)
falling below 90%. This fact illustrates the necessity of the
measure-preserving property obtained by SN for stable and
high-quality predictive uncertainty quantification.

Additional Experiments To further validate a DHM, we
perform two more sets of experiments. First, we evaluate a
DHM’s OoD detection performance on additional widely-
used but relatively easier OoD datasets such as Tinylma-
geNet [1], LSUN [95], and iSUN [93]. Consistent with the
previous experiments, the DHM achieves 100% AUROC
and AUPR on all the OoD datasets. Second, to increase the
task’s difficulty, we conduct all the vision experiments with
a smaller network, ResNet18 [37]. While the performance
of all the baseline methods decreases by a large margin, a
DHM still retains 100% AUROC and AUPR. Detailed re-
sults are reported in Appendix C.

Hyperparameter Analysis A DHM consists of three
components: DNN+SN+NF. For training the DNN and the
NF, we use almost the same hyperparameters and training
setup as the original papers, namely [96] for Wide ResNet
28-10, [94] for XLNet, and [42] for the NF, with a few ex-
ceptions on learning rates and batch size. Detailed con-
figurations are in Appendix B. SN contains two hyperpa-
rameters: the number of power iterations and the SN upper
bound c. Following [58], we set power iteration to 1, and
c to 6 for Wide ResNet 28-10 and 0.95 for XLNet. [58]
proposes analysis and methods for selecting ¢, namely per-
forming a grid search for ¢ € {0.95,1,2,...} to find the
smallest possible value of c that still maintains competitive
predictive performance. It is generally sufficient to apply
only one step of power iteration to obtain a reasonable es-
timate of the spectral norms for dense layers. However, it
highly overestimates the true spectral norms for the convo-
lutional kernels. Therefore, a looser SN upper bound c is
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In-Scope Content Out-of-Scope Content Latency (1)

(ms/example)

Accuracy () [ ECE(]) | NLL()) AUROC () [ AUPR () Train | Test

Deterministic | 97.1 £0.10  0.025 +0.002 0.160 +0.10 | 0.975 £0.02 0.974 +£0.02 | 3.66  2.08

Deep Ensemb | 98.2 +0.03  0.011 + 0.001 0.124 +0.02 | 0.990 = 0.01 0.989 + 0.01 | 36.70 20.82
DUQ 96.7 £0.05  0.030 +0.004 0.160 £0.08 | 0.974 +£0.02 0.975+0.02 | 549 345
SNGP 969 +£0.05 0.0154+0.003 0.157 £0.04 | 0.989 +£0.01 0.987+0.01 | 6.07 3.97
DNN+SN 97.1 £0.11 0.025 +0.003  0.159 +0.09 | 0.976 +0.01 0.976 +£0.01 | 3.71 2.13
DNN+NF 972 +£0.10  0.022 +£0.005 0.156 £0.05 | 0.991 £0.01 0.990+0.02 | 3.98  3.08
DHM (Ours) | 97.54+0.10  0.020 + 0.005 0.152 +0.05 | 1.000 = 0.00 1.000 + 0.00 | 4.01 3.19

Table 3. Results for XLNet on CLINC150, averaged over 10 independent seeds.
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Figure 4. This figure shows, for CIFAR-10 as ID data, how the
predictive accuracy and the AUROC change when A\ varies.
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Figure 5. This figure shows, for CIFAR-100 as ID data, how the
predictive accuracy and the AUROC change when A\ varies.

generally needed for SoTA performance for convolutional
layers. NF introduces one more hyperparameter: A. A large
value of A may harm the model’s predictive performance,
while a small value of A may lead to the loss of the measure-
preserving property. Since we cannot assume access to the
OoD data in advance, we recommend performing a binary
search for A € (0, 1) to choose the largest possible value of
A, not affecting the predictive performance. This strategy
works well in practice because we observe that the predic-
tive accuracy is generally more sensitive to A than the OoD
detection performance (Figure 4-5). In this paper, we set
A to be 0.06 for all the vision experiments and 6e-6 for the
text experiments.

Computation Analysis Suppose that ¢ has d hidden lay-
ers of size {D; }¢_,. The main computational burden comes
from performing SN using the power iteration method,
which has time complexity O(z:ld=1 Dy); the NF also intro-
duces some additional overhead depending on its size. Dur-
ing training, a DHM is approximately 1.7-1.8 times slower
than a single DNN. However, the gap can become smaller
after removing the SN step in the testing mode (approxi-
mately 1.3-1.4 times slower).

Limitations and Social Impacts Experimental results
have showcased DHMs’ ability in detecting OoD samples
on a wide range of standard benchmark datasets in differ-
ent modalities. Nonetheless, before they can be deployed in
industrial-scale and safety-critical applications such as self-
driving cars, DHMs still need to be tailored to specific sit-
uations. DHMs should be examined on more complex and
harsh data such as highly corrupted and unclear samples to
ensure safety guarantees. Another limitation of our method
is that DHMs only work with residual-based DNNs. How-
ever, we notice that modern deep learning models (ResNets,
BERT, Transformers) are commonly composed of residual
blocks. Therefore, our method is still widely useful. Fur-
thermore, any powerful theory is a mixed blessing. If mis-
used or misinterpreted, a good theory may become a threat
to humanity, resulting in negative social impacts such as dis-
crimination. Hence, we suggest that users of DHMs not
be over-dependent on them and always think about the re-
sults critically. We hope that our method can be used to
bring positive impacts to society and improvements to ap-
plications on human well-being such as medical imaging,
pathologies, and policy decision-making.

7. Conclusion

We propose DHMs, a practical and efficient methodol-
ogy for modeling and inferring expressive probability dis-
tributions. They do well on OoD detection tasks on various
datasets, including the most difficult ones, while remain-
ing competitive predictive accuracy. We introduce a novel
uncertainty factorization, and it is quite general and seman-
tically accurate. It also sheds light on what types of models
are capable of detecting OoD samples.
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