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Abstract

We propose Iterative Homography Network, namely
IHN, a new deep homography estimation architecture. Dif-
ferent from previous works that achieve iterative refinement
by network cascading or untrainable IC-LK iterator, the
iterator of IHN has tied weights and is completely train-
able. IHN achieves state-of-the-art accuracy on several
datasets including challenging scenes. We propose 2 ver-
sions of IHN: (1) IHN for static scenes, (2) IHN-mov for
dynamic scenes with moving objects. Both versions can be
arranged in 1-scale for efficiency or 2-scale for accuracy.
We show that the basic 1-scale IHN already outperforms
most of the existing methods. On a variety of datasets, the
2-scale IHN outperforms all competitors by a large gap. We
introduce IHN-mov by producing an inlier mask to further
improve the estimation accuracy of moving-objects scenes.
We experimentally show that the iterative framework of IHN
can achieve 95% error reduction while considerably sav-
ing network parameters. When processing sequential im-
age pairs, IHN can achieve 32.7 fps, which is about 8×
the speed of IC-LK iterator. Source code is available at
https://github.com/imdumpl78/IHN .

1. Introduction
Homography estimation aims to find the global perspec-

tive transform between two images. It serves as a cru-
cial step in a widely range of computer vision tasks such
as image/video stitching [13, 32], video stabilization [16],
SLAM [9, 24], augmented reality [29], GPS denied naviga-
tion [12, 40], and multimodal image fusion [37, 42].

The approaches in the literature can be roughly catego-
rized into photometric-based and feature-based ones [32].
Photometric-based approaches aim to estimate homogra-
phy from pixel intensities. The Lucas-Kanade (LK) algo-
rithm [2, 19] is the most widely adopted photometric-based
approach, which iteratively estimates the residual homog-
raphy using a pre-computed iterator. Feature-based ap-
proaches usually consist of three steps: feature extraction,
feature matching, and homography estimation [32]. The
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(a) Homography estimation on Google Earth.
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(b) Homography estimation on Google Map & Satellite.

Figure 1. Visualization of homography estimation with average
corner error (ACE) at each iteration of our IHN and DLKFM [40]
(which use the traditional IC-LK iterator). Left 2 images: im-
age pair for homography estimation with the source image IS on
the left and the target image IT on the right. Green polygons de-
note the ground-truth position of IS on IT. Blue polygons denote
the estimated position using MHN+DLKFM. Red polygons de-
note the estimated position using our IHN. Right plot: ACEs dur-
ing first 12 iterations. IHN stops at iteration 6 while DLKFM has
a dynamic stop criterion which iterates 21 times averagely.

well-known feature extractors are SIFT [18], SURF [4],
and ORB [4]. Homography estimation methods include
RANSAC [11], DLT [8], and MAGSAC [3].

Recently, deep homography methods have attracted in-
creasing interest due to their superior performance. The
VGG-style network, first proposed by DeTone et al. [6],
is adopted to directly estimate homography. Based on this
work, many recent methods have been introduced to boost
the estimation accuracy by cascading multiple VGG-style
networks [10,14,41]. The cascading is actually a way of it-
eration that can significantly improve the estimation perfor-
mance. However, this way of iteration is limited to a fixed
number of cascading, and more network cascading does not
necessarily lead to better performance [14].

To further improve the homography estimation accuracy,
some works [5, 40] take the Lucas-Kanade (LK) algorithm
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as an untrainable iterator and combine it with CNNs. How-
ever, the approximation of the Hessian matrix in the LK
algorithm fails when the Jacobian matrix is rank-deficient
[26]. Even worse, the training of the network is limited to
the feature extractor, which means the above drawback is
theoretically unavoidable.

To cope with these issues, we propose iterative homog-
raphy network (IHN), which is completely trainable. We
introduce 2 versions of IHN: (1) IHN for static scenes, (2)
IHN-mov for dynamic scenes with moving objects. Both
versions can be arranged in 1-scale for efficiency or 2-
scale for accuracy. We show that the basic 1-scale IHN
already outperforms most of the existing methods. On
MSCOCO [15], the 2-scale IHN outperforms all competi-
tors by a large gap, with more than 90% of the average cor-
ner errors (ACEs) lower than 0.1 pixels. On cross-modal
datasets [40], IHN outperforms the state-of-the-art method
MHN+DLKFM [40] that uses the traditional LK iterator in
refining the deep homography estimation of MHN [14]. On
moving-objects data [35], IHN and IHN-mov both surpass
the competitors. IHN-mov gains further accuracy improve-
ment by producing an inlier mask mimicking the essence of
RANSAC [11].

The motivation of IHN comes from the traditional IC-LK
iterator [2]. Different from IC-LK, IHN is completely train-
able and thus can learn prior information for the residual
homography prediction directly from data. Fig. 1 illustrates
the homography estimation results and average corner er-
rors (ACEs) at each iteration for our IHN and DLKFM [40]
that use the IC-LK iterator. The initial ACEs at iteration
0 differs because DLKFM uses the preliminary estimation
from MHN. It is observed that our basic 1-scale IHN can
produce an accurate homography estimation within 6 it-
erations, while DLKFM using the traditional IC-LK fails.
Furthermore, IHN can process image pairs in sequence at
32.7 fps, which is about 8× the speed of the IC-LK it-
erator. We further explore the effectiveness of our itera-
tive framework by replacing our global motion aggregator
(GMA, which directly estimate the residual homography)
with the network architectures in [6, 14, 39]. Experimen-
tal results show that compared to feature/image concatena-
tion strategy in [6, 14, 25, 39, 41], our iterative framework
achieves about 95% error reduction. Thanks to the iterative
framework, our global motion aggregator can achieve com-
parable accuracy with much fewer parameters than previ-
ous architectures, e.g., 36.4% of the architecture in [14] and
3.6% in [39]. The same deep iterative concept that signif-
icantly improves optical flow estimation accuracy has been
proposed in RAFT [33], which inspires us to construct a
completely trainable deep homography estimation network.

To summarize, the main contributions of this work are as
follows:

• We propose an iterative homography network, namely

IHN, which is completely trainable. IHN achieves
state-of-the-art accuracy on several datasets including
challenging scenes. The iteration of IHN is stable and
doesn’t require extra parameters.

• We show that the proposed iterative framework is vi-
tal for an accurate homography estimation, which can
achieve 95% error reduction regardless of a specific
network architecture design. The iterative framework
also enables considerable parameter saving.

• We specially design a network architecture IHN-mov
for the moving-objects scenes where homography as-
sumption is violated. The network produces an inlier
mask mimicking the essence of RANSAC that can fur-
ther benefit the homography estimation.

2. Related Work

We make a brief introduction of deep homography es-
timation, challenges in homography estimation, and itera-
tive homography estimation that are most relevant to our
method. For the basic knowledge of homography estima-
tion, the readers are referred to [32, 43].

Deep Homography Estimation. Deep homography es-
timation is first proposed by DeTone et al. [6], who adopted
a VGG-style network to directly predict the homography
between the concatenated source and target images. Fol-
lowing this pioneering work, several works [10,14,41] pro-
posed to cascade multiple VGG-style networks to improve
the homography estimation accuracy. Nowruzi et al. [10]
proposed to arrange similar stacked networks to succes-
sively refine the homography estimation. Le et al. [14] pro-
posed to use multiscale VGG-style networks to iteratively
estimate the residual homography. Nevertheless, compared
to the Lucas-Kanade iterator [2, 19], the cascaded deep ho-
mography methods still lack accuracy [5, 40].

Another kind of works accomplishes iterative deep ho-
mography estimation by combining the LK algorithm with
CNNs. Chang et al. [5] adopted the inverse compositional
LK (IC-LK) iterator as an untrainable layer of the deep net-
work. A CNN is employed to extract the feature maps that
are optimal for the IC-LK iterator. Zhao et al. [40] proposed
to construct a one-channel deep Lucas-Kanade feature map
(DLKFM) using CNNs. The DLKFM is then sent into the
IC-LK iterator. Similar approaches can be found in [12,34].
However, the LK iterator is untrainable, and therefore theo-
retically the drawbacks such as rank-deficient Jacobian can-
not be avoided.

Challenges in Homography Estimation. According to
the recent works [14, 25, 28, 39, 40], there are mainly two
challenges in homography estimation. The first challenge
comes from the photometric inconsistency such as illumi-
nation change or modality variation. Nguyen et al. [25]

1880



ISIS

ITIT

Hk
1Hk
1

H1H1

C1;C
1
2

1C1;C
1
2

1

Warping

Hk
2Hk
2

H2H2

Correlation 
Updater

Global Motion 
Aggregator (GMA)

Coordinate 
Projector

¢Dk¢Dk

DkDk

Homography 
Updater

SkSk

Hk+1Hk+1

FkFk

Dk+1Dk+1

Local Motion Information

Global Motion Information

HkHk X0kX0k

Convolution Group normalization 
+ ReLU Max-pooling Up-sampling Sigmoid

...

Skip connection 

Weight sharing Concatenation Dot product

N

2

N

2NN
NN

(b) Iterative Homography Estimator (IHE)
1 Scale 2 Scales 

(c) Global Motion Aggregator (GMA)

C2;C
1
2

2C2;C
1
2

2

CNN

CNN

CNN

CNN

¢Dk¢Dk

NN

LkLk

...
MkMk

FkFkSkSk

112N2N NN
C;C

1
2C;C
1
2

N

2

N

2
N

2

N

2
N

2

N

2

FIS;1
FIS;1

FIT;1
FIT;1

FIT;2
FIT;2

FIS;2
FIS;2

H1H1

Iterative 
Homography 

Estimator (IHE)

Correlation
Computation

Correlation
Computation

Iterative 
Homography 

Estimator (IHE)

Image warpingWarping

GMA

GMA-mov

(a) Iterative Homography Network (IHN)

1-scale IHN 2-scale IHN

IHE

...

NN
NN

NN

NN 22

¢Dk¢Dk

...

NN
NN

NN

NN 22

FkFkSkSk

Figure 2. Schematics and detailed architectures of iterative homography network (IHN). (a) Overall schematic of IHN, including the
illustration of basic 1-scale IHN and 2-scale IHN. (b) Structure of the iterative homography estimator (IHE), which plays a leading role
of realizing the iterative homography refinement. (c) Architecture of the global motion aggregator (GMA) that directly estimates residual
homography with GMA designed for the static scenes and GMA-mov for the moving-objects scenes. Please refer to the text for details.

proposed an unsupervised learning method to improve the
network capacity on illumination variation. Zhao et al. [40]
proposed to extract intensity consistent DLKFM for cross-
modal inputs. They estimated the homography using multi-
ple cascaded VGG-style networks MHN [14] and refined it
using the IC-LK iterator. The second challenge comes from
the violation of the homography assumption. For example,
in scenes with moving objects, the matching between the
source and target images does not always satisfy a uniform
homography. Zhang et al. [39] proposed a mask predictor
network that weights the feature maps to achieve content-
aware homography estimation. However, as the masks are
separately computed on the source and target images, the
method cannot reject matching outliers. Le et al. [14] pro-
posed to teach the network a moving object mask produced
by the PWC-Net [31] optical flow. However, the mask can-
not be learned if the optical flow estimation fails.

Iterative Homography Estimation. The most widely
used iterative homography estimation framework is the
Lucas-Kanade (LK) algorithm [2, 19]. The objective func-
tion of the most widely adopted inverse compositional
Lucas-Kanade (IC-LK) algorithm is

min
∆H
‖IT(W (X; ∆H)− IS(W (X;H))‖22, (1)

where ∆H denotes the residual homography matrix, andW
denote the coordinate warping operation. By conducting a
first-order Taylor expansion on IT(W (X; ∆H), a closed-
form solution of ∆H can be computed as

∆H = (JTJ)−1JTr, (2)

where J denotes the Jacobian matrix of IT, JTJ is the
approximation of the Hessian matrix. r = vec(IT −

IS(W (X;H))) represents the vectorized residual image
that is updated in every iteration.

The IC-LK algorithm iteratively estimates homography
in 3 steps: (1) updating IS(W (X;H)) using local coordi-
nates, and thus updating local information in r; (2) aggre-
gating residual global homography using Eq. (2); (3) pro-
jecting updated global homography into local coordinates
for updating local information in the next iteration.

To the best of our knowledge, there isn’t any completely
iterative trainable deep homography estimation network be-
fore our IHN. The most related work is the deep iterative
optical flow estimation proposed in RAFT [33].

3. Method
The overview of our iterative homography network

(IHN) is illustrated in Fig. 2a. IHN takes in a pair of
source image IS and target image IT and outputs the es-
timated homography matrix H1 (1 scale) or H1 and H2 (2
scales). The main steps of IHN include feature extraction
using CNN, correlation computation, and recurrent homog-
raphy estimation using an iterative homography estimator
(IHE).

3.1. Feature Extraction

We extract the feature maps of the source and target im-
ages using a Siamese CNN. We take the combination of 1
max-pooling layer (stride 2) and 2 residual blocks as a ba-
sic unit. The images are first processed by 1 convolutional
block with kernel size 7 × 7. We then add q basic units
to produce the 1/2q × 1/2q resolution feature maps. The
feature maps are finally reprojected by 1 linear convolu-
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tional layer with kernel 1 × 1. Specifically, we set q = 2
in practical implementation. As illustrated in Fig. 2a, the
1-scale IHN uses the feature maps at 1/4× 1/4 resolution,
and the 2-scale IHN uses both feature maps at 1/4 × 1/4
and 1/2 × 1/2 resolution. For the 2-scale IHN, the first
basic units of both resolution feature maps share the same
weights. We found that the 1-scale IHN already achieves
considerable homography estimation performance, while
the 2-scale IHN can further improve the accuracy. The
Siamese CNN is also used for cross-modal data. We will
show in Section 4.4 that our IHN can produce promising
homography estimation without a specific feature extractor
setting (e.g., the pseudo-Siamese network in [40] for cross-
modal inputs).

3.2. Correlation

Different from most previous deep homography estima-
tion works [6,10,14,25,41], we explicitly compute the cor-
relation to enable iterative refinement. Let us denote the
feature maps of the source and target images as FIS ∈
RD×H×W and FIT ∈ RD×H×W . We set D = 256 for all
feature maps. We compute the pairwise correlation, namely
the correlation volume as

C(xS,xT) = ReLU(FIS(xS)TFIT(xT)), (3)

where xS and xT denote the coordinate position of the
source and target feature maps. The correlation volume C is
of sizeH×W×H×W . In one iteration, a fixed search win-
dow is sampled from C by the correlation updater, which is
described in detail in Section 3.3. As mentioned in [33], the
correlation volume can also be computed on demand during
the iteration, which can reduce the space complexity.

Correlation Pooling. To enlarge the perception range
within a feature scale, we conduct average pooling on C at
stride 2 at the last 2 dimensions to form another correlation
volume C

1
2 , which is of sizeH×W×H/2×W/2. For both

volumes, we use search windows of the same size, which
means that the sampling operation on C

1
2 has a 2× 2 larger

perception range compared to C.

3.3. Iterative Homography Estimator

We design our iterative homography estimator (IHE) un-
der the inspiration of the IC-LK iterator. IHE plays a lead-
ing role in the realization of the iterative homography re-
finement. As illustrated in Fig. 2a and 2b, IHE takes in
the correlation volume C,C

1
2 and outputs the estimated ho-

mography H. From the coordinate projector to the global
motion aggregator, local motion information is aggregated
into global homography estimation. From the global motion
aggregator back to the coordinate projector (in the next iter-
ation), global homography estimation is converted to local
coordinates for local information update. Similar essence
can be found in the IC-LK iterator.

xx
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)G(x0k+1
)
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Figure 3. Illustration of the iterative process of coordinate projec-
tor and correlation updater. Left: coordinate of FIS , denoted as
X. Right: coordinate of FIT , denoted as X′.

Coordinate Projector. Taking iteration k for exam-
ple, the point-wise correspondence between the source fea-
ture map FIS and the target feature map FIT is mapped
by the present homography matrix Hk. Let’s denote X
as the meshgrid coordinate set of FIS , and its correspond-
ing meshgrid coordinate set in FIT as X′. For each co-
ordinate position, we denote x = (u, v),x ∈ X and
x′ = (u′, v′),x′ ∈ X′. The point-wise correspondence
of X and X′

k is projected by Hk usingu′kv′k
1

 ∼
Hk

11 Hk
12 Hk

13

Hk
21 Hk

22 Hk
23

Hk
31 Hk

32 1

uv
1

 . (4)

We illustrate the coordinate projection in iteration k and k+
1 in Fig. 3. To further facilitate the learning of local motion
information, we also compute the homography flow Fk as

Fk = X′
k −X. (5)

Fk is then sent to the global motion aggregator.
Correlation Updater. The correlation updater samples

the correlation volume C using homography projected co-
ordinate X′

k and outputs updated correlation slice Sk. The
sampling process can be expressed as

Sk(x) = C(x,Gr(x′
k
)), (6)

where Gr(x′
k
) denotes a local square grid of fixed search

radius r. The square grid sampling is illustrated in Fig. 3.
Note that the correlation slice is also sampled on the pooled
correlation volume C

1
2 to make S

1
2 ,k that have 2× 2 larger

perception range.
Global Motion Aggregator. The residual homography

is estimated by the global motion aggregator, with the ho-
mography matrix parameterized by the displacement vec-
tors of the 4 corner points as in [6, 14, 28].

As illustrated in Fig. 2c, we design the GMA for static
scenes and the GMA-mov for moving-objects scenes. N
denotes the number of filters of convolutional kernels.

GMA is mainly composed of multiple basic units. Each
basic unit includes a 3 × 3 convolutional block, 1 group
normalization [36] + ReLU [22], and 1 max-pooling layer
(stride 2). We continually add the basic unit until the spatial
resolution of the feature map reaches 2× 2. Then a convo-
lutional block projects the feature map into a 2×2×2 cube
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∆Dk, which is the estimated residual displacement vectors
of the 4 corner points. In iteration k, GMA takes the con-
catenated correlation slice Sk and homography flow Fk as
input.

GMA-mov is specifically designed for scenes with mov-
ing objects. GMA-mov explicitly produces a mask Mk to
weight the matching inliers that meet the homography trans-
form assumption. It is worth noting that, different from [14]
that needs additional optical flow supervision or [39] that
relies on image content, our GMA-mov can produce an in-
lier mask based on the combined local and global motion
information as RANSAC. The mask can be generated with-
out supervision, yet can improve the homography estima-
tion accuracy. As illustrated in Fig. 2c, GMA-mov explic-
itly encodes the point-wise local motion information into
feature map Lk using 1 convolutional block. Lk is then
sent into multiple basic units as in GMA to preliminarily
extract theN×2×2 feature map containing the global mo-
tion information. Different from GMA, the extracted global
motion information is not directly used for the residual ho-
mography estimation, but the inlier mask prediction. The
latter half part of GMA-mov progressively upsamples the
feature map containing the global motion information and
combines it with the local motion information by skip con-
nections. The inlier mask Mk with the same size as Lk is
predicted by a sigmoid function. Mk and Lk are taken dot
product and sent into the same structure as GMA to pro-
duce the residual homography estimation. We note that the
basic units used for extracting the preliminary global mo-
tion information and residual homography estimation share
the same weights.

Homography Updater. As in [6, 14, 28], we parameter-
ize the homography matrix using the displacement vectors
of the 4 corner points of an image, namely the displacement
cube D. In iteration k, D is updated as

Dk+1 = Dk + ∆Dk. (7)

With Dk+1, it is convenient to get the homography matrix
Hk+1 by the least square method, the direct linear transform
[1] or other methods. The updated Hk+1 will be sent into
the coordinate projector in the next iteration. The initial
displacement cube is set to D0 = 0, which means identical
transform H.

3.4. Multiscale Strategy

We introduce a multiscale strategy that can further im-
prove the homography estimation accuracy. We note that,
according to our experiments, the 1-scale IHN can outper-
form most existing homography estimation methods. As
illustrated in Fig. 2a, another scale of IHN with its correla-
tion volume computed on the 1/2 × 1/2 resolution feature
maps is attached to the 1-scale IHN. The target image IT is
warped using the estimated homography H1 at 1/4 × 1/4

resolution. The bottom right subscript, namely 1 or 2, de-
notes the computed result at the 1/4× 1/4 resolution or the
1/2 × 1/2 resolution. The homography matrices H1 and
H2 from the 2 scales are composed to produce the final ho-
mography estimation for the 2-scale IHN as in [14, 28]. In
Section 4, we show that IHN only needs 2 scales to achieve
very high accuracy than the 3 or 4 scales IC-LK based meth-
ods [5, 40].

3.5. Loss Function

We apply supervision on the L1 distance between the
ground-truth displacement Dgt and the estimated displace-
ment D at each iteration. A weighted sum of all the iteration
is computed as the loss function

L =

K−1∑
k=0

α(K−k−1)|Dk+1 −Dgt|, (8)

where K denotes the total iteration at one resolution, and
k ranges from 0 to K − 1. If the multiscale strategy is ap-
plied, the loss of both resolutions is separately computed
and summed to make the final loss.

4. Experiments
4.1. Implementation Details

We implement our network using PyTorch. The network
is trained using AdamW [17] optimizer and the maximum
learning rate is set to 2.5 × 10−4. The network is trained
with a batch size of 16 and a training iteration of 120000.
The total iteration K at one resolution for training is set to
6. We set the search radius of correlation updater r = 4
and set α = 0.85 in the loss function. We set N = 128 for
the GMA in the basic 1-scale IHN, and set N = 80 for the
GMA in the extra scale of the 2-scale IHN. For the men-
tioned different network structures and scales, we employ
the same hyper-parameters.

4.2. Datasets

We evaluate IHN on both common and challenging
datasets. We test IHN for static scenes on common
MSCOCO dataset [15] as in [5,6,14,28,40]. We also evalu-
ate IHN on the cross-modal Google Earth and Google Map
& Satellite datasets [40]. For dynamic scenes, we test IHN
and IHN-mov on a challenging moving-objects scene gen-
erated based on the SPID surveillance dataset [35].

Part of the images in SPID are discarded due to cam-
era shake or overly low-quality. The images are processed
in two different ways: (1) For scenes with low resolution,
the original images are used directly. We randomly select
two images within the same scene to make an image pair.
(2) For scenes with high resolution, we randomly select one
image first, and then use the provided pedestrian annotation
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(a) Evaluation on MSCOCO.
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(b) Evaluation on Google Earth.
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(c) Evaluation on Google Map & Satellite.
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(d) Evaluation on SPID.
Figure 4. Evaluation of homography estimation methods on MSCOCO, Google Earth, Google Map & Satellite, and SPID datasets.
MSCOCO contains common RGB images. Google Earth and Google Map & Satellite are cross-modal datasets. SPID dataset provides
surveillance images with foreground moving objects.

Table 1. Comparison of concatenation and iterative framework on
MACE when using various network architectures.

DHN [6] MHN [14] UDHN [39] GMA

Concatenation 3.54 4.01 3.47 3.54
Iterative framework 0.19 0.20 0.20 0.19

Parameters 2.8 M 2.2 M 22.3 M 0.8 M

to determine the position of foreground moving objects. We
expand the pedestrian annotation to make the crop area con-
tain both object and background. We then randomly select
another image within the same scene, and crop at the same
position to obtain an image pair that contains different fore-
ground moving objects but the same background. We use
80% images as the training data and 20% the test data.

For a fair comparison, all methods included for evalua-
tion are trained and tested by the exact same corresponding
training and test splits within each dataset.

4.3. Evaluation and Ablation Study on MSCOCO

We evaluate our IHN on the MS-COCO dataset
[15] with LocalTrans [28], AffNet [23], CLKN [5],
LFNet [27], DHN [6], UDHN [39], MHN [14], PFNet
[38], PWC [31], SIFT+ContextDesc+RANSAC [20],
SIFT+GeoDesc+RANSAC [21], SIFT+MAGSAC [3], and
SIFT+RANSAC [18]. The experiment settings are the
same as in most deep homography estimation methods
[5, 6, 14, 40]. The corners of 128 × 128 images are ran-
domly shifted in the range of [−32, 32] pixels to make the
deformed image. Similar to most deep homography works
[5,6,14,28,40], we employ the average corner error (ACE)
as the evaluation metric. An ablation study of our proposed
iterative framework together with our network architecture
is then conducted. All ablation study are conducted on the

Table 2. Ablation study on the settings of IHN.

Experiment Setting MACE Parameters

Correlation pooling No pooling 0.23 1.2 M
Pooling 0.19 1.3 M

Parameterization Homography ∞ 1.3 M
Displacement 0.19 1.3 M

Homography flow No flow 0.21 1.3 M
Flow 0.19 1.3 M

Scale 1 scale 0.19 1.3 M
2 scales 0.06 1.7 M

Iteration

1 3.15 1.3 M
6 0.19 1.3 M
12 0.19 1.3 M
100 0.19 1.3 M

basic 1-scale IHN if not otherwise specifically mentioned.
Evaluation on MSCOCO. The statistical results on

MSCOCO are illustrated in Fig. 4a. It is observed that
the basic 1-scale IHN already outperforms most competi-
tors except CLKN and LocalTrans. We note that MHN is
conducted on 3 scales, which is surpassed by our basic 1-
scale IHN. Our 2-scale IHN outperforms all other homog-
raphy estimation methods by a large gap. The 2-scale IHN
produces over 90% ACEs lower than 0.1 pixels, which sig-
nificantly outperforms CLKN that adopt the traditional IC-
LK iterator.

Ablation Study on the Iterative Framework. To re-
veal the effectiveness of the iterative framework in IHE,
we specifically conduct a homography estimation perfor-
mance comparison on our iterative framework and the fea-
ture/image concatenation strategies in [6,14,25,39,41]. We
switch the global motion aggregator among the deep ho-
mography estimation architectures introduced in previous
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works including DHN [6], MHN [14], UDHN [39]. To
avoid the influence of the feature extractor, we uniformly
use the feature extractor introduced in Section 3.1. The
extracted feature maps are concatenated in the channel di-
mension to achieve the feature/image concatenation strat-
egy in [6, 14, 39]. Table 1 lists the mean average cor-
ner error (MACE) and parameters of network using dif-
ferent architectures. It is observed that compared to the
feature/image concatenation strategy, our iterative frame-
work in IHE significantly boosts the estimation accuracy by
about 95% error reduction with the same network design.
Also benefit from our iterative framework, our GMA can
achieve comparable high accuracy with much fewer param-
eters compared to previous homography estimation archi-
tectures, e.g., 36.4% of MHN [14] and 3.6% of UDHN [39].

Ablation Study on Settings of IHN. Table 2 lists the
mean average corner error (MACE) and parameters of IHN
under different settings. The parameter counting involves
the feature extractor introduced in Section 3.1, which dif-
fers from Table 1. The symbol∞ denotes the case that the
training doesn’t converge and the MACE falls into infinity.
It is observed that the correlation pooling, the parameteri-
zation using displacement, and the addition of homography
flow improve the accuracy with very few parameter costs.
The employment of another scale can improve the accuracy,
despite that the 1-scale version already achieves relatively
high accuracy. We further test the influence of inference it-
eration under the training iteration of 6. It is observed that
the network owns a significantly better performance at 6 and
12 iterations than 1 iteration, once again indicating that iter-
ation is vital for a high precision. Another interesting phe-
nomenon is that when we raise the iteration to 100, IHN is
still stable and doesn’t get into divergence. The bold setting
options in Table 2 are employed in the rest experiments.

4.4. Evaluation on Cross-Modal Datasets

We evaluate our IHN on cross-modal datasets [40], in-
cluding Google Earth of season change and Google Map
& Satellite images with large modality difference. It is
worth noting that we don’t specifically alter IHN for cross-
modal data as in [40], in which two separate feature ex-
tractors (namely pseudo-Siamese) are adopted. The orig-
inal LK [2], SIFT+RANSAC [18], SIFT+MAGSAC [3],
CLKN [5], DHN [6], MHN [14], DHN+DLKFM [40], and
MHN+DLKFM [40] are included for comparison. As il-
lustrated in Fig. 4b and 4c, our 1-scale and 2-scale IHN
outperform the competitors by a large gap. We note that
the recent MHN+DLKFM uses the combination of 3-scale
VGG-style networks and 3-scales LK iterator. Our supe-
riority over MHN+DLKFM further reveals the potential of
the deep iterative framework.

4.5. Evaluation on Moving-Objects Dataset

We further conduct an evaluation on the SPID dataset
that contains foreground moving objects. We compare our
IHN with SIFT+RANSAC [18], SIFT+MAGSAC [3], DHN
[6], MHN [14], and UDHN [39]. The foreground moving
objects usually occlude the background that satisfies the ho-
mography assumption, which makes accurate homography
estimation difficult. We specifically propose an architec-
ture for this scenario, called IHN-mov, which can produce
a mask that explicitly weights the matching inliers to im-
prove the estimation accuracy. We make UDHN into super-
vised for a fair comparison as its unsupervised training on
SPID doesn’t converge. As illustrated in Fig. 4d, 2 versions
of IHN with different scales all outperform other competi-
tors. 1-scale IHN-mov surpasses 1-scale IHN, with the frac-
tion of ACE less than 1 pixel increased by around 6%. We
further visualize the homography estimation of the above
methods in Fig. 5a. It is observed that SIFT+RANSAC
and SIFT+MAGSAC fail. The deep homography meth-
ods DHN, MHN, UDHN, and basic 1-scale IHN are af-
fected by foreground moving objects, while 1-scale IHN-
mov produces relatively more accurate homography esti-
mations. The 2-scale IHN ourperforms 1-scale IHN-mov,
meaning that the addition of extra scale can boost the es-
timation accuracy more. On the other side, the 2-scale
IHN-mov exceeds 2-scale IHN, indicating that the weight-
ing mask can boost the estimation within the same scale.

We further visualize the inlier mask produced by UDHN
[39], PWC-Net [31] optical flow, and our 1-scale IHN-mov
in Fig. 5b. As the ground-truth inlier mask is unavail-
able, we compute the difference of the source image IS and
the warped target image IT,W and reverse its intensity to
roughly illustrate the matching inliers. The mask of UDHN
is obtained by dot product the separate UDHN masks of
IS and IT,W. We separately demonstrate the optical flow
masks taking IS as reference PWCST, taking IT as refer-
ence PWCTS and their dot product PWCD. We reverse the
normalized magnitude of the optical flow masks to show
the weight of inliers. It is observed that the masks produced
by UDHN are affected by image content. The shadow area
in the left scene background is assigned with a very low
weight, but it should belong to the matching inliers. As
for the optical flow masks, the estimation fails as the mov-
ing objects vanish. On the contrary, our 1-scale IHN-mov
produces the inlier masks directly from the local and global
motion information like RANSAC, and thus is more reason-
able. It’s worth noting that we trained a version of UDHN
without the weight mask, namely UDHN(no mask), the ac-
curacy raises a little as shown in Fig. 4d.

4.6. Cross Dataset Evaluation

We conduct cross dataset evaluation of 1-scale IHN and
DLKFM [40] that uses untrainable IC-LK, with results
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ACE: >100 ACE: 97.83 ACE: 13.49 ACE: 1.80ACE: 6.93ACE: 8.00ACE: 19.00

1-scale IHN (Ours) 1-scale IHN-mov (Ours)ISIS

(a) Visualization of homography estimation.
Difference image UDHN PWCSTPWCST PWCTSPWCTS PWCDPWCD 1-scale IHN-mov (Ours)ISIS IT;WIT;W

(b) Visualization of inlier mask.

Figure 5. Visualization of results on the SPID dataset with moving objects. In (a), green polygons denote the ground-truth position of IS
on the target images. Red polygons denote the estimated position using different algorithms on the target images. The closer the 2 colors
of polygons are, the better estimation accuracy (also indicated by a lower ACE). In (b), the target images are warped to better illustrate the
inlier masks. The mask produced by UDHN [39] detects the image content but not the needed matching inliers. The 3 masks produced by
PWC-Net [31] fail to predict the correct inliers. Our IHN-mov produces a more reasonable inlier mask by excluding the moving objects.

Table 3. Cross dataset evaluation of 1-scale IHN and DLKFM.
Google Map means Google Map & Satellite.

Train
Test MSCOCO Google Earth Google Map

IHN DLKFM IHN DLKFM IHN DLKFM
MSCOCO 0.19 0.55 2.41 4.68 24.21 Fail
Google Earth 2.42 10.16 1.60 3.88 13.30 39.85
Google Map 1.72 37.30 3.06 39.72 0.92 4.41

listed in Table 3. It’s shown that the generalization abil-
ity of IHN is superior than the IC-LK based DLKFM. For
IHN, the model trained on hard datasets (e.g. Google Map
& Satellite ) generalizes better.

We evaluate our 1-scale IHN (trained on SPID) on a SfM
dataset EPFL [30]. We include MHN [14] and DPCP [7]
(a method designed for estimating camera pose in the SfM
pipeline). The mean errors of rotation and translation of
camera pose are reported in Table 4. It is observed that IHN
owns the best accuracy for a good generalization ability.

4.7. Inference Time

Table 5 lists the inference time of 1-scale IHN, 2-scale
IHN, 2-scale IHN-mov, conventional IC-LK iterator in
DLKFM [40], and MHN+DLKFM. The comparison is con-
ducted on an Intel Xeon Silver 4210R CPU @ 2.40GHz

Table 4. Cross dataset evaluation of 1-scale IHN, MHN, and DPCP
on the EPFL SfM dataset.

1-scale IHN MHN DPCP

Rotation 4.38 19.54 5.44
Translation 13.54 33.38 17.28

Table 5. Inference time comparison (in milliseconds) of different
types of IHN, DLKFM and MHN+DLKFM. ”s.” denotes scale.

1-s. IHN 2-s. IHN 2-s. IHN-mov DLKFM MHN+DLKFM

30.6 60.4 93.6 253.7 380.9

with 64GB memory and an NVIDIA Quadro RTX 8000.
It is observed that the 1-scale IHN takes significantly less
time. The speed of 1-scale IHN is 8× that of IC-LK itera-
tor. Furthermore, 1-scale IHN is able to process image pairs
in sequence at 32.7 fps.

5. Conclusions

We have proposed a new iterative deep homography esti-
mation architecture named IHN. Different from the iterative
framework in the traditional IC-LK iterator, IHN is com-
pletely trainable. IHN achieves state-of-the-art performance
on several challenging datasets, including cross-modal and
moving-objects scenes. We experimentally show that the it-
erative framework of IHN is vital for the error reduction and
parameter saving. IHN also has an advantage in speed over
the traditional IC-LK algorithm.

Limitations. The limitations of IHN are mainly 2 folds.
First, the correlation volume raises the demand for GPU
memory. Second, the resolution of the inlier mask produced
by IHN-mov is limited by the feature map size and thus can-
not be very clear.
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