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Abstract

Quantization is an efficient network compression ap-
proach to reduce the inference time. However, existing ap-
proaches ignored the distribution difference between train-
ing and testing data, thereby inducing a large quantization
error in inference. To address this issue, we propose a new
quantization scheme, Alignment Quantization with ADMM-
based Correlation Preservation (AlignQ), which exploits
the cumulative distribution function (CDF) to align the data
to be i.i.d. (independently and identically distributed) for
quantization error minimization. Afterward, our theoreti-
cal analysis indicates that the significant changes in data
correlations after the quantization induce a large quanti-
zation error. Accordingly, we aim to preserve the relation-
ship of data from the original space to the aligned quanti-
zation space for retaining the prediction information. We
design an optimization process by leveraging the Alter-
nating Direction Method of Multipliers (ADMM) optimiza-
tion to minimize the differences in data correlations before
and after the alignment and quantization. In experiments,
we visualize non-i.i.d. in training and testing data in the
benchmark. We further adopt domain shift data to compare
AlignQ with the state-of-the-art. Experimental results show
that AlignQ achieves significant performance improvements
especially in low-bit models. Code is available at https :
//github.com/tinganchen/AlignQ.git.

1. Introduction

Convolutional neural networks (CNNs) have been
demonstrated as effective models in computer vision tasks,
such as image segmentation [2, 35] and object detection
[16,30,34]. However, CNNs are suffered from large com-
putation costs and memory storage when deployed on the
resource-limited mobile devices [7]. Therefore, various
model acceleration methods are proposed, including prun-
ing [20,22,27,29], quantization [6,42,43] and structure
simplification [10,45]. Quantization has recently received
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Figure 1. Motivation of AlignQ. Figure (a) presents an example of
quantization on non-i.i.d. training and testing data. A quantization
range learned from training data may induce a large quantization
error when applied in the testing data with different distributions.
Figure (b) and Figure (c) illustrate our motivation to address the
issue in Figure (a). In Figure (b), we propose to align the data
to the same space for quantization to minimize the quantization
error. In addition, as shown in Fig (c), we observe that the sig-
nificant changes in data correlations induce a large quantization
error. Accordingly, we aim to preserve the data correlations after
the alignment and quantization to retain the prediction information
in the original space for further reducing the quantization error.

increasing attentions due to the effectiveness of acceleration
on inference by reducing the bit widths of model weights
and activations.

In existing quantization research, quantization-aware
training (QAT) learned quantization parameters, including
clipping ranges and scale parameters, from the training data
and applied them to the testing data [3, 8, 1 1,28,47,48]. In
contrast, zero-shot quantization (ZSQ) adopted the concepts
of knowledge distillation and employed the batch normal-
ization means and variances from the full-precision model,
to learn a quantized model that can generate similar features
to reduce the quantization error [5,9,19,31,44]. The learned
batch statistics are also utilized in testing. However, the pre-
vious approaches ignored the difference between the train-
ing and testing data. As shown in Fig. 1 (a), the real-world
image data are usually collected under inconsistent quali-
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ties, such as different colors, brightness, and rotations, lead-
ing to non-i.i.d. (independently and identically distributed)
data [21]. Accordingly, it may induce a large quantization
error when using the trained parameters in testing.

To address this issue, we propose AlignQ to align the
data into the same domain for quantization to minimize the
quantization error (illustrated in Fig. 1 (b)). In this paper,
our idea is to exploit the cumulative distribution function
(CDF) as the alignment function since the CDF of an arbi-
trary continuous distribution follows the uniform distribu-
tion [24] (demonstrated in Sec. 3.1). The uniform space
is appropriate for uniform quantization that is hardware-
friendly with a few simple operations [3, 8,28]. In addition,
CDF retains the data order, i.e., larger values still exceed
small values after the transformation.

Furthermore, our theoretical analysis indicates that no-
table changes in data correlations after quantization induce
alarger quantization error. Therefore, as shown in Fig. 1 (c),
we aim to preserve the data correlations after the alignment-
quantization process. We leverage the Alternating Direc-
tion Method of Multipliers (ADMM) optimization to min-
imize the differences to reduce the quantization error. To
achieve the two goals in this paper, to minimize 1) the
prediction loss of the quantized models and 2) the differ-
ences of data correlations before and after the alignment-
quantization process, ADMM addresses this multi-goal op-
timization problem by dividing it into sub-problems and
solving them [4].

To verify that the proposed AlignQ can reduce the quan-
tization error derived from the non-i.i.d. in training and test-
ing data, we compare with the state-of-the-art not only on
the benchmark datasets, including CIFAR-10 [25], SVHN
[33], ImageNet [37], but also on domain shift benchmarks,
including digits [12, 13,26, 33] and Office-31 [38].

The contributions are summarized as follows:

1. We make the first attempt to design a new quantization
scheme, AlignQ, that aligns the non-i.i.d. data to be
i.i.d. to minimize the quantization error.

2. We prove that the changes in data correlation af-
ter quantization induce a large quantization error and
thereby leverage the ADMM optimization procedure
to minimize the differences of the data correlations be-
fore and after quantization to reduce the error.

3. We compare AlignQ with the state-of-the-art on
benchmarks and the domain shift datasets. Experimen-
tal results show that AlignQ achieves significant per-
formance improvements, especially at low bit widths.

2. Related works

Quantization-aware training (QAT). QAT is designed
to learn clipping ranges or scale parameters for quantization

during the training process [3, | 1,28, 46—48]. The trained
quantization statistics are then applied to quantize the infer-
ence data. DoReFa [48] and LSQ [ ] proposed an efficient
low-bit forward and backward procedure to estimate the
non-differentiable gradients. LLSQ [47] learned the shift
and scale factors on batch normalization layers to adjust the
quantization level for reducing the quantization error dy-
namically. ACIQ [3], OCS [46] and APoT [28] learned a
clipping function to determine the quantization space. How-
ever, the existing QAT approaches ignore the discrepancy
between training and testing data. The difference may lead
to a larger quantization error and performance degradation.

Zero-shot quantization (ZSQ). Recent research pro-
poses zero-shot quantization (ZSQ) to incorporate the
knowledge distillation [40] into quantization [5, 9, s

,46]. They utilize the knowledge derived from the full-
precision model to enhance the performance of the low-bit
model. OCS [46] used the KL-divergence to minimize the
clipping bounds between the full-precision and the quan-
tized model. In contrast, GDFQ [44], GZNQ [19], Ze-
roQ [5], Choi et al.’s work [9] and ZAQ [31] used differ-
ent knowledge distillation losses to minimize the predic-
tion results of the full-precision and the quantized model.
In particular, GZNQ [19] also distilled the knowledge from
other models in different compression approaches, includ-
ing pruning and low-rank models. ZeroQ [5] further learned
the batch statistics (means and variances) close to the full-
precision model. In addition, ZAQ [31] focused on learn-
ing the features (from the low-bit model) similar to the
floating-point model by examining the inter-channel dis-
crepancy. Since ZSQ employs the auxiliary information
from the pretrained full-precision model, they obtain larger
memory and computation costs in the training process. In
addition, ZSQ relies on the prediction results from the train-
ing data. Therefore, ZSQ is more sensitive in the discrep-
ancy of the distributions in training and testing data which
induces a larger quantization error as illustrated in Fig. 1.
Accordingly, in this paper, we proposed to address the is-
sue, non-i.i.d. (independently and identically distributed) in
training and testing data to minimize the quantization error.

3. AlignQ

In this section, we introduce AlignQ as shown in Fig.
2. Sec. 3.1 presents the CDF alignment quantization that
individually aligns the batches of the training and testing
data to the same domain to minimize the quantization error.
We also design a novel approach to update the weights of
the quantized model. In Sec 3.2, we focus on preserving
the data correlations during the alignment-quantization pro-
cess. We prove that significant changes in the correlations
after quantization induce a large quantization error. There-
fore, we propose an optimization process that leverages the
Alternating Direction Method of Multipliers (ADMM) [4]
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Figure 2. Overview of AlignQ. AlignQ is a quantization scheme
that considers 1) non-i.i.d. in training and testing data and 2)
the changes in data correlations during quantization to minimize
the quantization error. AlignQ first aligns the training and testing
batch data into the same uniform space (introduced in Sec. 3.1).
Afterward, the aligned data is uniformly quantized. In addition, to
preserve the data correlations during the alignment-quantization
process and minimize the performance degradation, we utilize the
Alternating Direction Method of Multipliers (ADMM) to mini-
mize the differences of the data correlations before and after the
quantization (detailed in Sec. 3.2).

to minimize the differences of the data correlations before
and after the quantization.

3.1. CDF alignment quantization

To diminish the quantization error on non-i.i.d. (in-
dependently and identically distributed) data as shown in
Fig. 1, we target transforming both training and testing data
to be i.i.d., i.e., aligning the data to the same domain, before
quantization (see Fig. 2).

3.1.1 CDF alignment

We propose a novel data alignment approach by leveraging
cumulative distribution function (CDF) [24]. In Theorem
3.1, we demonstrate that the CDF of an arbitrary continuous
distribution follows the uniform distribution.

Theorem 3.1. (Proved in Appendix A.1) Let X have the
cumulative distribution function (CDF) of the continuous
type that is strictly increasing on the support a < x < b.
Then the functionY = F(X) has a distribution Uniform(0,
1).

According to Theorem 3.1, we align the training and test-
ing data into the same uniform space by individual CDFs.
In addition, the CDF transformation will not change the or-
der of data, i.e., large values after CDF transformation are
still larger than the small values. Correspondingly, the in-
formation and property of data after the alignment can still
be retained.

The following challenge is which CDF should be
adopted for the alignment. Since previous research demon-
strates that the CNN weights and activations converge in
normal distribution [17, 28, 32, 48], which is also experi-
mentally validated on the benchmark datasets in this paper
(see Appendix D), we then adopt the CDF of the normal
distribution as the alignment function:

T —p
O_\/i):l’

F(a) = ®(a; p,0) = 5[1 +erf

where

erf(z) = % /Ow et dt. (1)

In Eq. (1), x is the CNN weight or activation (feature) value,
and p and o are the mean and standard deviation of the nor-
mal distribution. For weight quantization, we utilize the
batch data’s mean and standard deviation to estimate p and
o in each training iteration. On the other hand, we use the
CDF of the standard normal distribution instead for activa-
tion quantization, i.e., 4 = 0 and 0 = 1. However, the
aligned space is Uniform(0, 1), but the wights and acti-
vations are not always positive values. Thus, we scale and
shift F'(z) to Uniform(—o,a) by (2- F(x) — 1) -

3.1.2 Uniform quantization

After the alignment, data follows Uni form(—a, «) (i.i.d).
As shown in Fig. 2, we can then apply the uniform quanti-
zation [15]:

round(2F~1 . 2)

Q(z) = T ok-1 @

where z is the value after the shifted and scaled CDF align-
ment, i.e., z = (2-F(z)—1)-«, round denotes the rounding
operation, and k is the bit width.

3.1.3 Gradient approximation for the update of the
quantized weights

Since the quantized values are discrete, i.e., the quantization
function in Eq. (2) is non-differentiable, it is challenging to
access the gradients of weights for an update. Therefore,
we propose a gradient approximation approach to address
this issue. According to Eq. (1) and Eq. (2), we derive the
quantized weight w, from w, = Q((2 - F(w) — 1) - ),
where w is the original floating-point weight. Let the prob-
ability distribution function (pdf) of w be f(w) which is the
normal distribution with batch mean and standard deviation
(see Sec. 3.1.3). In addition, assume L is the training loss
of the quantized model. Therefore, the gradient of w is ob-
tained by the chain rule in Calculus:
oL 0L 0w, oL 0Q

ow  dw, Ow 787%'810

(2a- f(w)). (3)
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Eq. (3) shows that the gradient of w can be formulated as
the multiplication of three terms. The first term is the gra-

dient of wy, %, which can be directly accessed from the
q

back propagation. The following equation %Zf = % (2a-
f(w)) is 2« is derived from w, = Q((2 - F(w) — 1) - a).
However, the term g—g cannot be directly derived from its
first-order derivative since () is non-differentiable. Never-
theless, since Sigmoid function is distributed as "the stairs”

of the step function (), we then use the gradients of the con-

tinuous sigmoid function g—Q to estimate g—Q:
w w

0Q _ 0Q
0 S0 (i) (1 s(t(wy), @
where s(-) = H% is the sigmoid function, and its first-

order derivative is s(x) - (1 — s(z)). Notice that before
calculating the sigmoid gradient, we first transform the
quantized weight w, by the transformation function ¢ with
t(wg) = {2 [(wg + 0.5) - (28 — 1)] mod 1} to shift and
scale the quantized space to the space of the sigmoid func-
tion. k (also appears in Eq. (2)) that represents the bit
width, and mod denotes the operation of taking the remain-
ders. As a consequence, we adopt the approximate gradient

oL . 99 . (2a - f(w)) for the update of the model weights.

dwg Ow

3.2. Data correlation preservation by Alternating
Direction Method of Multipliers (ADMM)

3.2.1 Quantization error induced by the changes in
data correlations

During the alignment-quantization process, we aim to
preserve the data correlations as illustrated in Fig. 2 due to
the following observation.

Proposition 1. The significant changes in the data correla-
tions after quantization induces a larger quantization error
(proved in Theorem 3.2).

Theorem 3.2. (Proved in Appendix A.2) Let X; € R?
be the CNN representation of the i-th of n input image
data. The function @ quantizes the values to the discete
Uniform(—a, «), o > 0. The quantized representation
is denoted as Q(X;), and the total quantization error of
n data is Y-, ||X; — Q(X;)||1, where || - || represents
the ll1-norm. Now let the individual quantization error
b = X; — QX;), Vi = 1,2,...,n, and the tolerated
quantization error as €. Then P(31 | ||X; — Q(X;)|[1 <
€) > 1= HE[[6][3] = & 25 -1, 1<; BUIGi 11 +105]1) -
e% Zj:l; i<j E(|X;‘FXJ - Q(Xi)TQ(Xj)D«

Theorem 3.2 demonstrates that the total quantization er-
ror >, ||X; — Q(X;)||1 is not only relevant to the in-

dividual quantization error ||d;||; from each data 4, but
also tightly correlated to the discrepancy of the data

correlations before and after the quantization \XZTXJ —
Q(X:)TQ(X;)|,Vi < j. We first set a tolerated error €. The
probability that the total quantization error is smaller than e
will be large, i.e., the quantization error is limited in an ac-
ceptable (small) range in a high probability, if the changes
in the data correlations after quantization are minor.

3.2.2 Minimization the changes in data correlations

According to Theorem 3.2, a small quantization error
will be obtained when the discrepancy of the data cor-
relations before and after the quantization, E(|X! X; —
QXNTQX;)|), Vi < j = 1,2,...,n, is minimized. We
first define the discrepancy of the data correlations before
and after the quantization D € R™*" as follows:

D :=X"X - Q(X)"Q(X), (5)

where X € R?*" represents the n d-dimensional image rep-
resentations obtained after the CDF alignment (introduced
in Sec. 3.1), and Q(X) € RY*" stands for the quantized
representations (detailed in Eq. (2)). In order to minimize
the discrepancy D to avoid a large quantization error, we
target on the following objective function:

m“i/nﬁQ(W) + p| D[4, (0)

where L represents the loss function of the quantized net-
work under the CDF quantization (detailed in Sec. 3.1), W
denotes the set of the network weights, and D defined in
Eq. (5) is the discrepancy of the data correlations which is
minimized by the [;- norm regularization (denoted as |- ||1)
with the penalty p > 0.

In Eq. (6), our goals are two-fold: 1) to minimize the
prediction loss of the quantized model and 2) to minimize
the changes in data correlations. Since Alternating Di-
rection Method of Multipliers (ADMM) optimization has
been demonstrated outperforming SGD to solve a multi-
goal problem [4], we leverage ADMM to divide a com-
plicated problem into sub-problems and effectively solve
them. The ADMM constrained objective function is as fol-
lows:

W (M

which is equivalent to the objective function in Eq. (6). D
is a set of parameters as a proxy of the target D to be regu-
larized, and the difference between proxy and target is min-
imized in the constraint.

ADMM solves the constrained objective Eq. (7) by for-
mulating it as the augmented Lagrangian function:
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Algorithm 1: The quantization and optimization
process of AlignQ

Input: Training data X = {x1, Xa, ..., X, }, model
with initial weights W%, (k1, ko)-bitwidth
setting for (weight, activation) quantization,
and the parameters (I, u, p) for
optimization.

Output: Quantized model weights W*.

1 for k=1 to s steps do
/+ CDF alignment quantization */

2 Forward batch data through domain alignment
quantization process (Eq. (1) and Eq. (2)).

3 Approximate the gradients by Eq. (4).

/* ADMM correlation preservation */
4 Retrieve the representations of intermediate
layers.

5 Compute the discrepancy of the data
correlations D*} defined as Eq. (5).

6 Update wik} by minimizing Eq. (9) with SGD.
7 | Update DI*} with Eq. (11).

s | Update T'{¥} with Eq. (12).

return: W}

U(W,D,T) = Lo(W) + pl|D||;
+ Z trace(FlT(IN)l —-Dy))

] ®)
p ~
+ §Z|\Dz — Dy,
I

where D; is the discrepancy of the correlations for the
data features (extracted before and after the alignment-
quantization process as illustrated in Fig. 2) obtained from
the I-th network layer', and I'; denotes the dual variable,
i.e., the Lagrange multiplier, which works as an attention
mechanism that locally regularizes the change in correla-
tion of each pair of data to different extents. The last term
represents the global regularization on the primal residual in
Frobenius norm (denoted as || - || ) with the penalty p > 0.

To efficiently obtain the optimal solution (W*, lN)*,I‘*),
ADMM algorithm solves the decoupled sub-problems from
Eq. (8):

1. Optimization for the CDF alignment quantization:

W pmy )

Wikl — g mvéln U(W,D
The weights are updated with the stochastic gradient de-
scent (SGD) method [36, 41], where the gradients are ap-
proximated via Eq. (4).

D is the concatenation of D;, and D is the concatenation of ]~)l, Vvi.

2. Optimization for data correlation preservation:

~{k+1} . = P = k
D = arg.min Dl + 571D = ViV
l
(10)
where Vl{k} =D; + % Fi{k}. The solution is determined by
the thresholding operation,

(K 1— —£ )W, if|[VIH | > 2
plttt _ | (U= St Ve 10IV e > 4,
otherwise.

(11)
3. Update of the dual variable:

’ ~ (k1)
Fi{k+1} _ Fi{k} n p(Dl{kJrl} . Dl ) (12)

The proposed quantization and optimization processes of
AlignQ are summarized in Algorithm 1.

3.2.3 Convergence analysis

In this subsection, we analyze the convergence of ADMM
optimization. As illustrated Line 5 to Line 8 in Algorithm
1, we compute the data correlations and update the ADMM
parameters with the model weights in each training itera-
tion. In other words, we update the parameters once in each
iteration for an efficient training process. To ensure the con-
vergence, we examine the decremental of training loss on
data correlation preservation, i.e., the second term of Eq.
(8), during the quantization process (see Appendix E).

4. Experiments
4.1. Experiment settings

Benchmark datasets. We evaluate AlignQ on bench-
mark datasets: CIFAR-10, SVHN [33] and ImageNet
ILSVRC 2012 [37]. CIFAR-10 consists of 60K images for
10 classes. SVHN contains 600K images for 10 classes.
ImageNet has more than 1.2M images with 1000 classes.

Domain shift datasets. In addition to the benchmark
image classification datasets, we also evaluate AlignQ on
domain shift datasets, including Office-31 [38] which con-
tains three domains of data (each for 31 classes) and digit
datasets including four domains (MNIST [26], MINIST-
M [13], SynDigits [12] and SVHN [33]). The domain shift
data is a non-i.i.d. scenario, where the training and testing
data are derived from different domains.

Architectures. We evaluate AlignQ for the models
ResNets [18], DensNet-40 [23] and MobileNet-V2 [39] on
the benchmark datasets. In addition, we also implement
the quantized DANN [14] and DSAN [49], the benchmark
models in the domain shift tasks.

Training. We implement AlignQ with PyTorch [1] on an
NVIDIA Tesla V100 GPU and an NVIDIA GTX 2080Ti.
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Figure 3. Variances of features from training and testing data. Fig-
ure (a) presents the variances of CIFAR-10 features extracted from
ResNet-20. Figure (b) shows the variances of SVHN features ex-
tracted from MobileNet-v2. Figure (c) and Figure (d) show the
data variances after CDF alignment corresponding to Figure (a)
and Figure (b).

Hyperparameters. The batch size is 512 for ImageNet,
128 for CIFAR-10 and SVHN, 100 for Office-31, and 64 for
digits datasets during the training process. Training epochs
are 200. The learning rate is in [0.01, 0.1]. The quantized
space is U(—a, at), where « is set to 1. The penalties p and
p in the ADMM optimization are in [0, 0.3].

4.2. Non-i.i.d. in benchmark datasets and the effec-
tiveness of CDF alignment

Fig. 3 compare the distributions of training and testing
features of ResNet-20 (on CIFAR-10) and MobileNet-v2
(on SVHN) before and after the CDF alignment (introduced
in Sec. 3.1.1). Fig. 3 (a)-(b) present the variances of the
original data features. Therefore, we verify the distributions
of training and testing data are non-i.i.d. in the benchmark
datasets accordingly. In comparison, Fig. 3 (c)-(d) visualize
the variances after adopting the proposed CDF alignment.
The results show the discrepancy from the non-i.i.d training
and testing data distributions is notably reduced, validating
the effectiveness of the proposed CDF alignment.

4.3. Comparison results

In the following, we compare the quantization results of
AlignQ with QAT [11,28,47,48] and ZSQ [5,9,19,31,44].

4.3.1 Comparisons on benchmarks

CIFAR-10. Table | compares AlignQ with the state-of-
the-art under small (ResNet-20) and large architectures

2In this paper, AlignQ and the compared works are quantized to W/A
bits for each convolution layer.

Table 1. Quantization results on CIFAR-10. “W/A bit” means
quantization bitwidth for weights and activations.

Model |  Method W/Abit Acc(%) W/ADbit Acc(%)

LLSQ [47] 2/2 76.9 474 81.5

LSQ[11] 2/2 777 474 83.4

APoT [28] 272 65.2 474 81.0

OCS [46] 2/2 - 474 89.1

GZNQ[19] 2/2 - 474 89.1

ResNet-20 GDFQ [44] 2/2 - 474 90.3
ZeroQ [5] 2/2 87.9 474 91.8

Choietal [91 272 88.1 474 919

ZAQ [31] 2/2 88.9 474 92.1

AlignQ (Ours)  2/2 91.2 474 92.8

LSQ[11] 2/2 79.6 474 85.5

APoT [28] 272 683 474 84.8

ZeroQ [5] 272 88.1 474 9.5

ResNet-36 | cpoieral o] 272 88.7 474 9.7
ZAQ [31] 272 89.2 474 929

AlignQ (Ours)  2/2 91.7 474 932

LLSQ [47] 2/2 81.5 474 87.2

LSQ[11] 2/2 79.5 474 85.6

APoT [28] 2/2 59.4 474 85.6

DenseNet-40 ZeroQ [5] 2/2 91.3 4/4 92.6
Choietal [9] 272 91.5 474 9.5

ZAQ [31] 272 91.4 474 927

AlignQ (Ours) 2/2 93.0 4/4 93.1

Table 2. Quantization results on SVHN. * indicates the quantiza-
tion approach fails in the classification task.

Model | Method  W/Abit Acc(%) WAbit Ace(%)
LLSQ[7]  2/2 930  4/4 934
LSQI1] 2/2 87.5 474 91.7
APOT 28] 202 596 4/4 86
ResNet-20 ZeroQ [5] 2/2 94.3 4/4 95.6
Choietal 0]  2/2 947  4/4 956
ZAQ[31] 2/2 94.9 4/4 95.2
AlignQ (Ours)  2/2 955  4/4 956
DoReFa [48] 2/2 * 4/4 20.2
LLSQ [47] 2/2 * 4/4 62.5
LSQI1] 272 * 414 719
. APoT [28] 2/2 * 4/4 *
MobileNet-v2 | 7.10Q 5] 2/2 x 414 95.8
Choi et al. [9] 2/2 * 4/4 96.2
ZAQ 3] 202 836 4/4 963
AlignQ (Ours)  2/2 95.7 474 96.3

(ResNet-56 and DenseNet-40). Compared with QAT [!11,
,47], AlignQ achieves 5% to 10% accuracy increment at
4-bit quantization and 10% to 30% improvement at 2-bit
quantization. ZSQ [5,9, 19,31, 44] takes advantage of the
training statistics from the full-precision model to improve
the accuracy compared to QAT. In contrast, AlignQ with-
out the knowledge distilled from the full-precision model
also outperforms the baselines. Especially for 2-bit models,
AlignQ can obtain 1% to 3% accuracy improvements since
it addresses the issue of non-i.i.d. in training and testing
data by aligning the data to the same space for quantization
and then preserving the data correlations to effectively min-
imize the quantization error (detailed in Sec. 3.1 and 3.2).

SVHN. Table 2 indicates that ResNet architecture quantized
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Table 3. Quantization results on ImageNet.

Model ‘ Method W/A bit Acc (%) W/Abit Acc(%)
DoReFa [48] 2/2 - 4/4 332
ACIQ [3] 2/2 - 4/4 59.3
APoT [28] 2/2 - 4/4 58.2
OCS [46] 2/2 - 4/4 66.2
ResNet-50 GDFQ [44] 2/2 65.0 4/4 68.7
Choi et al. [9] 2/2 63.0 4/4 69.1
ZeroQ [5] 2/2 63.1 4/4 69.3
ZAQ [31] 2/2 65.5 4/4 70.1
AlignQ (Ours) 2/2 66.1 4/4 72.7
APoT [28] 2/2 - 4/4 443
ZeroQ [5] 2/2 - 4/4 26.0
ResNet-18 GDFQ [44] 2/2 - 4/4 60.6
GZNQ [19] 2/2 - 4/4 64.5
AlignQ (Ours) 2/2 61.1 4/4 65.7

by AlignQ also outperforms the state-of-the-art on SVHN.
Furthermore, we evaluate AlignQ on an efficient model
MobileNet-v2 [39] with lightweight architectures and fewer
model parameters. It is thereby more challenging to retain
the prediction accuracy during the quantization process. Ta-
ble 2 shows that most previous approaches fail in quan-
tizing such a lightweight model at low bitwidths, e.g., 2
bits. ZAQ achieves 83.6% accuracy since it considers the
inter-channel discrepancy in the quantized model and the
full-precision model to enhance the prediction performance.
However, the accuracy degradation is significant since ZAQ
mainly focuses on distilling knowledge from the pretrained
full-precision model but ignores the difference between the
training and testing data. AlignQ addresses this issue by
aligning data into the same domain and preserving the data
(see Sec. 3.1 and Sec. 3.2). Accordingly, AlignQ achieves
95.7% accuracy for 2-bit MobileNet-v2, outperforming the
state-of-the-art.

ImageNet. We further evaluate AlignQ and the state-
of-the-art on a large-scale dataset, ImageNet. Table 3
shows the quantization results on ImageNet under ResNet-
50 and ResNet-18 architectures. ResNet-50 quantized by
AlignQ achieves 72.7% accuracy at 4-bit quantization, su-
perior to ZAQ with 70.1%. In addition, ResNet-18 quan-
tized by AlignQ also obtains a higher prediction accuracy
than GZNQ. ZAQ utilizes the prediction results of the full-
precision model to enhance the performance. GZNQ fur-
ther employs the results of other lightweight models com-
pressed by pruning and low-rank approaches. However,
AlignQ, without knowledge distilled from the full-precision
model, can still outperform them. It indicates that despite a
minimal discrepancy of the generated features between the
quantized model and other teacher models, the quantization
error due to the non-i.i.d. training and testing data is not re-
duced. AlignQ with the idea of the data space alignment for
quantization can effectively reduce such errors and obtain
performance improvements.

Table 4. Accuracy (%) of quantized DANN (VGG-2) [14] on dig-
its datasets. The header A — B for an example indicates training
on the source A dataset and testing on the target B dataset. * indi-
cates the quantization approach fails in the classification task.

W/A bit Method MNIST — MNIST-M  MNIST — SVHN  SynDigits — MNIST

Source only 58.8 30.4 50.6
32/32 DANN [14] 91.3 30.6 58.0
AlignQ (Ours) 953 36.1 59.1
DoReFa [48] 83.5 36.5 554
LSQII1] 5271 24.1 545
LLSQ[47] 57.1 311 50.6
APoT [28] * * *
n Choi et al. [9] * 543 48.4
ZeroQ [5] * 56.2 4712
ZAQ[31] * 56.5 48.8
AlignQ (Ours) 95.5 59.5 58.2
DoReFa [48] 88.5 39.1 55.8
LSQ[!1] 54.6 24.1 538
LLSQ[47] 80.9 382 56.8
33 APoT [28] 852 29.0 *
Choi et al. [9] 715 574 46.9
ZeroQ [5] 76.9 574 474
ZAQ[31] 66.8 58.1 48.1
AlignQ (Ours) 95.8 59.5 59.0
DoReFa [48] 90.6 412 584
LSQ[I1] 55.5 232 534
LLSQ [47] 81.8 345 578
m APoT [28] 91.6 29.6 55.6
Choi et al. [9] 874 58.6 472
ZeroQ [3] 86.6 589 434
ZAQ[31] 88.3 59.5 485
AlignQ (Ours) 96.1 59.9 61.1

4.3.2 Comparisons on domain shift data

In addition to the benchmark datasets, we evaluate the ef-
fectiveness of AlignQ on domain shift datasets, where the
training and testing data are in different domains (non-i.i.d)
in transfer learning, including digits [12, 13, 26, 33] and
Office-31 [38].

Digits dataset. Table 4 presents the quantization results
of DANN [14] (benchmark model in transfer learning). The
quantized DANN model under AlignQ at 2-bit precision
achieves 10% to 40% accuracy improvements on MNIST
— MNIST-M, 3% to 40% accuracy increments on MNIST
— SVHN and 4% to 10% improvements on SynDigits —
MNIST, because the CDF alignment can effectively align
the non-i.i.d. data to i.i.d. (uniform space) to reduce the
quantization error (detailed in Sec 3.1). In addition, ADMM
optimization regularizes on the changes in data correlations
to further lower the error (illustrated Sec. 3.2). Table 4
also manifests that ZSQ approaches are not always supe-
rior to QAT (e.g., MNIST — MNIST-M and SynDigits —
MNIST), since ZSQ relies on the knowledge from the full-
precision model on the training data and thereby tends to
generate a larger prediction error in testing data.

Office-31 dataset. Table 5 presents the performances
of the quantized DANN [14] on Office-31. It shows that
AlignQ in the six domain shift classification tasks outper-
forms the state-of-the-art, especially in low bit widths. The
5-bit DANN model by AlignQ achieves 71.2% accuracy in
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Table 5. Accuracy (%) of quantized DANN (ResNet-50) [14] on
Office-31. Three data domains in Office-31 include Amazon (A),
Webcam (W), and DSLR (D), thereby indicating six combinations
of domain shift classification tasks. The average performance is
denoted as “Avg.”.

WI/A bit Method A-W D-W W=D A—-D D—=-A WA Avg

Sourceonly 784 947 99.1 821 589 610 790
3232  DANN[14] 789 953 982 821 591 618 792
AlignQ (Ours) 789 971 991 857 606 629 80.6
DoReFa [48]  59.6 825 902 625 382 455  63.

APoT [28] 58.5 88.3 857 518 444 467 626
Choieral [9] 123 117 152 10.7 95 87 114

4/4 ZeroQ [5] 117 123 134 938 8.0 99 109
ZAQ[31] 12.1 124 142 103 78 89 110

AlignQ (Ours) 649 942 973 652 456 497 695
DoReFa [48] 602 87.1 920 511 372 453 632

APoT [25] 63.7 942 929 607 467 483 678
Choieral [9] 678 866 902 679 455 508  68.1

5/5 ZeroQ [5] 67.2 86.6 884 672 416 501 669
ZAQ[31] 67.4 87.8 8905 681 432 502 677

AlignQ (Ours)  67.8 947 982 688 477 502 712
DoReFa [18] 649 91.2 938 571 402 472 657
Choieral [9] 672 942 955 728 462 585 724

o ZeroQ [5] 672 942 955 724 431 584 718
ZAQ[31] 67.7 94.7 99.1 727 458 629 738

AlignQ (Ours) 68.4 95.3 99.1 73.2 47.7 63.0 74.5

overall tasks (vs. Choi et al.’s work in 68.1% accuracy),
while the 4-bit model by AlignQ obtains 69.5% accuracy,
6% accuracy increment than DoReFa with 63.1% accuracy.
In particular, ZSQ (Choi et al.’s work, ZeroQ, and ZAQ) at
the 4-bit quantization has a significant performance decre-
ment. Accordingly, the results show the ZSQ is more sen-
sitive than QAT (DeReFa and APoT) in the domain shift
in training and testing data since ZSQ learns the quantized
model depending on the pretrained full-precision model in
training data. Moreover, AlignQ has a significant improve-
ment at 4-bit quantization since AlignQ can effectively re-
duce the quantization error from the discrepancy of the non-
ii.d. training and testing data. In addition to DANN, we
also implement the quantized DSAN [49] (the state-of-the-
art transfer learning model) on Office-31 in Appendix B.

5. Ablation study

This section evaluates the effectiveness of the proposed
CDF alignment and the ADMM-based correlation preserva-
tion in AlignQ. Table 6 presents the results of the quantized
ResNet models by AlignQ and the baseline uniform quan-
tization (see Eq. (2)). It shows that AlignQ only consid-
ers the ADMM correlation preservation (noted as ADMM
only) can improve the performance of uniform quantization,
since we minimize the changes in data correlations that re-
duce the quantization error (also proved in Proposition 1 in
Sec. 3.2). Furthermore, AlignQ with only the CDF align-
ment in quantization (noted as CDF only) obtains a signif-
icant improvement particularly at 2-bit quantization, since
the alignment process enables the training and testing data
to be i.i.d. (see Sec 3.1) to avoid a large quantization error
as illustrated in Fig. 1. After we adopt ADMM correlation

Table 6. Effectiveness of AlignQ components. Accuracy (%) of
quantized ResNets on CIFAR-10.

Model ‘ Method W/A bit  Acc (%) W/Abit Acc(%)
Uniform 2/2 86.9 4/4 915
Ours (ADMM only)  2/2 873 4/4 918
ResNet-20 |~ Gurs (CDF only) 22 08 44 922
Ours (CDF + ADMM)  2/2 91.2 4/4 9238
Uniform 212 88.5 4/4 89.5
Ours (ADMM only)  2/2 89.5 4/4 90.7
ResNet-36 |~ urs (CDF only) 212 91.2 4/4 9.7
Ours (CDF + ADMM)  2/2 91.7 4/4 9322

Table 7. Effectiveness of AlignQ components. Accuracy (%) of
quantized DANN (ResNet-50) [14] on Office-31.

WI/A bit Method A—-W D—-W W=D A—=-D D—=A WA Avg
Uniform 54.4 81.5 85.7 482 32.1 455 579

Ours (ADMM only) 55.5 82.2 86.4 50.1 322 46.1 58.8

515 Ours (CDF only) 64.9 94.7 97.3 67.9 474 50.2 70.5

Ours (CDF + ADMM) 67.8 93.6 98.2 68.8 455 50.2 70.7
Ours (Best of all) 67.8 94.7 98.2 68.8 474 50.2 71.2

preservation with the CDF alignment during the quantiza-
tion process (noted as CDF + ADMM), the results validate
that the quantization error is further reduced.

Table 7 presents the effectiveness of AlignQ components
on the data shift tasks, DANN model on Office-31. The uni-
form quantization considered with the correlation preser-
vation by ADMM (see Sec. 3.2) outperforms the baseline
uniform quantization in each domain shift recognition task.
Moreover, when regarding the CDF alignment, the overall
performance increases by 12% to 17%, i.e., from 57.9%
(uniform) to 70.5% (CDF only) and from 58.8% (ADMM
only) to 70.7% (CDF + ADMM). Appendix C the effec-
tiveness of AlignQ components for the quantized DSAN on
Office-31.

6. Conclusion

In this paper, we propose AlignQ to address non-i.i.d. in
training and testing data. We propose CDF alignment to
align the data to the same domain (i.i.d) for quantization to
minimize the quantization error. Moreover, we prove that
the significant changes in data correlations after quantiza-
tion also induce a larger quantization error. Thus, we design
an ADMM optimization process to minimize the discrep-
ancy of data correlations before and after the alignment-
quantization process to further lower the quantization error.
Experimental results manifest that AlignQ outperforms the
state-of-the-art on benchmarks and domain shift datasets es-
pecially at low bitwidths.
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