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Abstract

Transformers have offered a new methodology of de-
signing neural networks for visual recognition. Compared
to convolutional networks, Transformers enjoy the ability
of referring to global features at each stage, yet the at-
tention module brings higher computational overhead that
obstructs the application of Transformers to process high-
resolution visual data. This paper aims to alleviate the
conflict between efficiency and flexibility, for which we pro-
pose a specialized token for each region that serves as a
messenger (MSG). Hence, by manipulating these MSG to-
kens, one can flexibly exchange visual information across
regions and the computational complexity is reduced. We
then integrate the MSG token into a multi-scale architec-
ture named MSG-Transformer. In standard image classi-
fication and object detection, MSG-Transformer achieves
competitive performance and the inference on both GPU
and CPU is accelerated. Code is available at https :
//github.com/hustvl/MSG-Transformer.

1. Introduction

The past decade has witnessed the convolutional neural
networks (CNNs) dominating the computer vision commu-
nity. As one of the most popular models in deep learning,
CNNs construct a hierarchical structure to learn visual fea-
tures, and in each layer, local features are aggregated using
convolutions to produce features of the next layer. Though
simple and efficient, this mechanism obstructs the commu-
nication between features that are relatively distant from
each other. To offer such an ability, researchers propose to
replace convolutions by the Transformer, a module which
is first introduced in the field of natural language process-
ing [50]. It is shown that Transformers have the potential to
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learn visual representations and achieve remarkable success
in a wide range of visual recognition problems including
image classification [13,39], object detection [4], semantic
segmentation [61], efc.

The Transformer module works by using a token to for-
mulate the feature at each spatial position. The features
are then fed into self-attention computation and each to-
ken, according to the vanilla design, can exchange infor-
mation with all the others at every single layer. This de-
sign facilitates the visual information to exchange faster but
also increases the computational complexity, as the compu-
tational complexity grows quadratically with the number of
tokens — in comparison, the complexity of a regular convo-
lution grows linearly. To reduce the computational costs,
researchers propose to compute attention in local windows
of the 2D visual features. However constructing local at-
tention within overlapped regions enables communications
between different locations but causes inevitable memory
waste and computation cost; computing attention within
non-overlapped regions impedes information communica-
tions. As two typical local-attention vision Transformer
methods, HaloNet [49] partitions query features without
overlapping but overlaps key and value features by slightly
increasing the window boundary; Swin Transformer [31]
builds implicit connections between windows by alterna-
tively changing the partition style in different layers, i.e.,
shifting the split windows. These methods achieve com-
petitive performance compared to vanilla Transformers, but
HaloNet still wastes memories and introduces additional
cost in the key and value; Swin Transformer relies on fre-
quent 1D-2D feature transitions, which increase the imple-
mentation difficulty and additional latency.

To alleviate the burden, this paper presents a new
methodology towards more efficient exchange of informa-
tion. This is done by constructing a messenger (MSG) to-
ken in each local window. Each MSG token takes charge
of summarizing information in the corresponding window
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and exchange it with other MSG tokens. In other words, all
regular tokens are not explicitly connected to other regions,
and MSG tokens serve as the hub of information exchange.
This brings two-fold benefits. First, our design is friendly
to implementation since it does not create redundant copies
of data like [39,49, 60]. Second and more importantly, the
flexibility of design is largely improved. By simply ma-
nipulating the MSG tokens (e.g., adjusting the coverage of
each messenger token or programming how they exchange
information), one can easily construct many different archi-
tectures for various purposes. Integrating the Transformer
with MSG tokens into a multi-scale design, we derive a pow-
erful architecture named MSG-Transformer that takes ad-
vantages of both multi-level feature extraction and compu-
tational efficiency.

We instantiate MSG-Transformer as a straightforward
case that the features of MSG tokens are shuffled and recon-
structed with splits from different locations. This can effec-
tively exchange information from local regions and deliv-
ered to each other in the next attention computation, while
the implementation is easy yet efficient. We evaluate the
models on both image classification and object detection,
which achieve promising performance. We expect our ef-
forts can further ease the research and application of multi-
scale/local-attention Transformers for visual recognition.

We summarize our contributions as follows.

* We propose a new local-attention based vision Trans-
former with hierarchical resolutions, which computes
attention in non-overlapped windows. Communica-
tions between windows are achieved via the proposed
MSG tokens, which avoid frequent feature dimension
transitions and maintain high concision and efficiency.
The proposed shuffle operation effectively exchanges
information from different MSG tokens with negligible
cost.

e In experiments, MSG-Transformers show promising
results on both ImageNet [10] classification, i.e.,
84.0% Top-1 accuracy, and MS-COCO [28] object de-
tection, i.e., 52.8 mAP, which consistently outperforms
recent state-of-the-art Swin Transformer [31]. Mean-
while, due to the concision for feature process, MSG-
Transformer shows speed advantages over Swin Trans-
former, especially on the CPU device.

* Not directly operating on the enormous patch tokens,
we propose to use the lightweight MSG tokens to ex-
change information. The proposed MSG tokens effec-
tively extract features from local regions and may have
potential to take effects for other scenarios. We be-
lieve our work will be heuristic for future explorations
on vision Transformers.

2. Related Works

Convolutional Neural Networks CNNs have been a pop-
ular and successful algorithm in a wide range of computer
vision problems. As AlexNet [26] shows strong perfor-
mance on ImageNet [10] classification, starting the bloom-
ing development of CNNs. A series of subsequent meth-
ods [17,21,42,44,45] emerge and persist in promoting CNN
performance on vision tasks. Benefiting from the evolv-
ing of backbone networks, CNNs have largely improved
the performance of various vision recognition scenarios in-
cluding object detection [3,29,30,40,4 1], semantic/instance
segmentation [6, 7, 16], etc. As real-life scenarios usually
involve resource-constrained hardware platforms (e.g., for
mobile and edge devices), CNNs are designed to take less
computation cost [19, 34, 46]. Especially, with NAS ap-
proaches [2, 14, 53, 62] applied, CNNs achieved high per-
formance with extremely low cost, e.g., parameter number,
FLOPs and hardware latency. A clear drawback of CNNs
is that it may take a number of layers for distant features to
communicate with each other, hence limiting the ability of
visual representation. Transformers aim to solve this issue.

Vision Transformer Networks Transformers, first pro-
posed by [50], have been widely used in natural language
processing (NLP). The variants of Transformers, together
with improved frameworks and modules [1, | 1], have occu-
pied most state-of-the-art (SOTA) performance in NLP. The
core idea of Transformers lies in the self-attention mecha-
nism, which aims at building relations between local fea-
tures. Some preliminary works [20,23, 39,52, 60] explore
to apply self-attention to networks for vision tasks and have
achieved promising effects. Recently, ViT [13] proposes
to apply a pure Transformer to image patch sequences,
which matches or even outperforms the concurrent CNN
models on image classification. Inspired by ViT, a series
of subsequent works [9, 15,47, 48, 58] explore better de-
signs of vision Transformers and achieve promising promo-
tion. Some works [27,43, 54, 56] integrated modules from
CNN s into vision Transformer networks and also achieve
great results. In order to achieve strong results on image
classification, many of the above ViT-based methods pro-
cess features under a constant resolution and compute at-
tentions within a global region. This makes it intractable
to apply vision Transformers to downstream tasks, e.g., ob-
ject detection and semantic segmentation, as multi-scale ob-
jects are hard to be represented under a constant resolution,
and increased input resolutions cause overloaded computa-
tion/memory cost for attention computation.

Downstream-friendly Vision Transformers To apply
vision Transformers to downstream tasks, two key issues
need to be solved, i.e., involving hierarchical resolutions to
capture elaborate multi-scale features and decreasing cost
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Figure 1. Structure of the MSG-Transformer block. The 2D features are split into local windows (by green lines), and several windows
compose a shuffle region (the red one). Each local window is attached with one MSG token. MSG tokens are shuffled to exchange information
in each Transformer block and deliver the obtained information to patch tokens in the next self-attention.

brought by global attention computation. PVT [51] pro-
posed to process features under multi-resolution stages and
down-samples key and value features to decrease the com-
putation cost. HaloNet [49] and Swin Transformer [31]
propose to compute attention in a local window. To over-
come the contradiction that non-overlapped windows lack
communication while overlapped windows introduce ad-
ditional memory/computation cost, HaloNet proposes to
slightly overlap features in the key and value tokens but
leave the query non-overlapped; Swin Transformer alterna-
tively changes the window partition style to implicitly build
connections between non-overlapped windows. A series of
subsequent works [8, 12,22, 57] explore new methods for
building local-global relations or connecting local regions.
We newly propose MSG tokens to extract information from
local windows, and use a lightweight method, i.e., shuffle,
to exchange information between MSG tokens. This con-
cise manner avoids direct operation on cumbersome patch
tokens and shows high flexibility.

3. The MSG-Transformer

This section elaborates the proposed approach, MSG-
Transformer. The core part is Sec. 3.1 where we introduce
the MSG token and explain how it works to simplify infor-
mation exchange. Then, we construct the overall architec-
ture (i.e., the MSG-Transformer) in Sec. 3.2 and analyze the
complexity in Sec. 3.3.

3.1. Adding MSG Tokens to a Transformer Block

The MSG-Transformer architecture is constructed by
stacking a series of MSG-Transformer blocks, through var-
ious spatial resolutions. As shown in Fig. 1, a MSG-
Transformer block mainly composes of several modules,
i.e., layer normalization (layer norm), local multi-head self-
attention (local-MSA), MSG token shuffling and MLP.

Fig. | presents how features from a local spatial region
are processed. First, the 2D features X € RH*WxC are
divided into non-overlapped windows (by green lines in
Fig. 1) as X, € RE X% X" xC yhere (H,W) denotes
the 2D resolution of the features, C' denotes the channel di-
mension, and w denotes the window size. Then R X R win-

dows compose a shuffle region (boxed in red lines in Fig. 1),
namely features are split as X, € R X g xR xw’xC
where R denotes the shuffle region. In vision Transform-
ers [13,47], image features are commonly projected into
patch tokens by the input layer. Besides the patch tokens,
which represent the intrinsic information of the images, we
introduce an additional token, named messenger (MSG) to-
ken, to abstract information from patch tokens in a local
window. Each local window is attached with one MSG to-
ken as X|, € R i X 7 X B X (w*+1)xC Thep a layer nor-
malization is applied on all the tokens. The multi-head self-
attention is performed within each local window between
both patch and MSG tokens. MSG tokens can capture in-
formation from the corresponding windows with attention.
Afterwards, all the MSG tokens Tysg € R X fiw X *xC
from a same local region R x R are shuffled to exchange in-
formation from different local windows. We name a region
with MSG tokens shuffled as the shuffle region. Finally, to-
kens are processed by a layer normalization and a two-layer
MLP.

The whole computing procedure of a MSG-Transformer
block can be summarized as follows.

X, = [Tusa; Xuw) (1)
X!, = Local-MSA(LN (X,,)) + X, )
TMSG = Shufﬂe(TMsg) (3)
X! =MLP(LN(X.)) + X/, 4)

Local Multi-head Self-Attention Different from previ-
ous vision Transformers [13, 47] which performer atten-
tion computation along the global region, we compute self-
attention within each local window. Taking a window of
w X w for example, the attention is computed on the to-
ken sequence of X = [tpsa;®1;...; Ty, Where tysa
denotes the MSG token associated with this window and
2;(1 < i < w?) denotes each patch token within the win-
dow.

Attention(Q, K, V) = softmax(Q - K /Vd+ B) -V, (5)

where Q, K,V € RW*+1)xd genotes the query, key and
value matrices projected from sequence X respectively, d
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Figure 2. Overall architecture of MSG-Transformer. Patches from the input image are projected into tokens, and token features are
partitioned into windows. Then each window is attached with one MSG token, which will participate in subsequent attention computation

with all the other patch tokens within the local window in every layer.
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Figure 3. Shuffling MSG tokens, where we inherit the example in
Fig. 1 for illustration.

denotes the channel dimension, and B denotes the relative
position biases. Following previous Transformer works [20,
, 38], the relative position biases between patch tokens in
B are taken from the bias parameter b"¢! € R(2w=1)x(2w=1)
according to the relative token distances. The position bi-
ases between patch tokens and the MSG token tyg is all set
as equal, which is the same as the manner dealing with the
[CLS] token in [24]. Specifically, matrix B are computed
as
bg,e,é, i#0,7#0
B=<6, 1=0 , 6)
02 i#0,j=0

where i’ = imodw—j modw+w—1,5" =i//w—7j//w+
w — 1, 61, 05 are two learnable parameters.

Exchanging Information by Shuffling MSG Tokens The
MSG tokens allow us to exchange visual information flex-
ibly. Here we instantiate an example using the shuffling
operation, while we emphasize that the framework easily
applies to other operations (see the next paragraph). In each
MSG-Transformer block, MSG tokens in a same shuffle re-
gion are shuffled to exchange information from different
local windows. Assuming the shuffle region has a size of
R x R, it means there exist R X R MSG tokens in this re-
gion and each MSG token is associated with a w x w local
window. As shown in Fig 3, channels of each MSG token
are first split into R x R groups. Then the groups from
R x R MSG tokens are recombined. With shuffle finished,
each MSG token obtains information from all the other ones.

With the next attention computing performed, spatial infor-
mation from the other local windows is delivered to patch
tokens in the current window via the MSG token. Denoting
MSG tokens in a R x R shuffle region as Tyisg € RR2Xd,
the shuffle process can be formulated as

Tssc = reshape(Tusa), Thisq € R <7<
Tissq = transpose(Tysc, dimg = 0,dimy = 1), (7)
Tusc = reshape(Tse), Tusa € R %4

where d denotes the channel dimension of the MSG token,
which is guaranteed to be divisible by the group number,
R%.

Though the shuffle operation has the similar manner with
that in convolutional network ShuffleNet [34, 59], the effect
is entirely different. ShuffleNet performs the shuffle oper-
ation to fuse separated channel information caused by the
grouped 1 x 1 convolution, while our MSG-Transformer
shuffles the proposed MSG tokens to exchange spatial infor-
mation from different local windows.

Extensions There exist other ways of constructing and
manipulating MSG tokens. For example, one can extend the
framework so that neighboring MSG tokens can overlap, or
program the propagation rule so that the MSG tokens are
not fully-connected to each other. Besides, one can freely
inject complex operators, rather than shuffle-based identity
mapping, when the features of MSG tokens are exchanged.
Note that some of these functions are difficult to implement
without taking MSG tokens as the explicit hub. We will in-
vestigate these extensions in the future.

3.2. Overall Architecture

Fig. 2 shows the overall architecture of MSG-
Transformer. The input image is first projected into patch
tokens T), € RT 7 *C by a 7 x 7 convolution with stride
4, where C denotes the channel dimension. The overlapped
projection is used for building better relations between
patch tokens. Similar manners have also been adopted in
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Table 1. Detailed settings for MSG-Transformer architecture variants. ‘cls’ denotes image classification on ImageNet. ‘det” denotes object
detection on MS-COCO. ‘dim’ denotes the embedding channel dimension. ‘#head’ and ‘“#blocks’ denote the number of self-attention heads

and MSG-Transformer blocks in each stage.

St Patch Token | Shuffle Size MSG-Transformer-T MSG-Transformer-S MSG-Transformer-B
8¢ | Resolution | cls | det | dim | #heads | #blocks | dim | #heads | #blocks | dim | #heads | #blocks
1 Ex ¥ 4 4 64 2 2 96 3 2 96 3 2
2 Ix¥ 4 4 128 4 4 192 6 4 192 6 4
3 B2 x ¥ 2 8 256 8 12 384 | 12 12 384 | 12 28
4 £ x ¥ 1 4 512 | 16 4 768 | 24 4 768 | 24 4
previous methods [8,54]. Then the tokens are split into win- total FLOPs are computed as
dows with the shape of w x w, and each window is attached FLOPs — FLOP FLOP
with one MSG token, which has an equal channel number $= SMsA T SMLP @®
; i i - HW HW
with the patch tol.<en. The.rest part of the architecture is con = x ( 4202 + 2w C)+2 a w? - 402,
structed by stacking a series of MSG-Transformer blocks as w w

defined in Sec. 3.1. To obtain features under various spa-
tial resolutions, we downsample features by merging both
patch and MSG tokens. Blocks under the same resolution
form a stage. For both patch and MSG tokens, we use an
overlapped 3 x 3 convolution with stride 2 to perform to-
ken merging and double the channel dimension in the next
stage'. For image classification, the finally merged MSG to-
kens are projected to produce classification scores. And for
downstream tasks like object detection, only patch tokens
are delivered into the head structure while MSG tokens only
serve for exchanging information in the backbone.

In our implementation, we build three architecture vari-
ants with different scales. As shown in Tab. 1, MSG-
Transformer-T, -S and -B represent tiny, small, and base ar-
chitectures with different channel numbers, attention head
numbers and layer numbers. The window size is set as
7 for all architectures. The shuffle region size is set as
4,4,2,1 in four stages respectively for image classification
and 4,4, 8, 4 for object detection. As demonstrated in sub-
sequent studies (Sec. 4.3), our MSG-Transformer prefers
deeper and narrower architecture scales than Swin Trans-
former [31].

3.3. Complexity Analysis

Though introduced one MSG token in each local window,
the increased computational complexity is negligible. The
local attention-based Transformer block includes two main
part, i.e., local-MSA and two-layer MLP. Denoting the in-
put patch token features as 7, € R X w Xw’*C where
H, W denote the 2D spatial resolution, w denotes the lo-
cal window size, and C denotes the channel number, the

IThe convolution parameters for merging tokens are shared between
patch and MSG tokens.

With the MSG tokens applied, the total FLOPs change to

FLOPs' :%(4@2 +1)C? +2(w? +1)20)
©)
+ 2HV2V(w2 +1) - 4C2.
w
The FLOPs increase proportion is computed as
FLOPs’ — FLOPs
FLOPs
2 (402 + 2(w? + 1)C) + 281 - 4C?
B }fu‘;V X (4w2C? 4 2wt C) + QI%QV x w2 x 4C2 (10)
6C +w? +1
~ w20 +wt

As the window size w is set as 7 in our implementations, the
FLOPs increase proportion becomes 2820%24. Taking the
channel number as 384 for example, the increased FLOPs
only account for ~ 2.04% which are negligible to the total
complexity.

For the number of parameters, all the linear projection
parameters are shared between patch and MSG tokens. Only
the input MSG tokens introduce additional parameters, but
they are shared between shuffle regions, only taking 42C =
16C, i.e., ~ 0.0015M for the 96 input channel dimension.
In experiments, we prove even with the input MSG tokens
not learned, MSG-Transformers can still achieve as high
performance. From this, parameters from input MSG tokens
can be abandoned.

It is worth noting that due to local region communica-
tion is achieved by shuffling MSG tokens, the huge feature
matrix of patch tokens only needs to be window-partitioned
once in a stage if the input images have a regular size. With
MSG tokens assisting, cost from frequent 2D-to-1D matrix
transitions of patch tokens can be saved, which cause addi-
tional latencies especially on computation-limited devices,
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Table 2. Image classification performance comparisons on
ImageNet-1K [10].

Input CPU |Top-1

Method size Params | FLOPs | Imgs/s latency | (%)

Convolutional Networks
RegY-4G [37] 2242 | 21M 4.0G | 930.1 | 138ms | 80.0
RegY-8G [37] 2242 | 39M 8.0G | 545.5 | 250ms | 81.7
RegY-16G [37] 2242 | 84M | 16.0G | 324.6 | 424ms | 82.9
EffNet-B4 [46] 380% | 19M 4.2G 345 | 315ms | 829
EffNet-B5 [46] 4562 | 30M 9.9G | 168.5 | 768ms | 83.6
EffNet-B6 [40] 5282 | 43M | 19.0G | 96.4 |1317ms| 84.0

Transformer Networks
DeiT-S [47] 2242 | 22M 4.6G | 898.3 | 118ms | 79.8
T2T-ViT;-14 [58] | 224% | 22M | 5.2G | 559.3 | 225ms | 80.7
PVT-Small [51] | 2242 | 25M 3.8G | 749.0 | 146ms | 79.8

TNT-S [15] 2242 | 24M 52G | 387.1 | 215ms | 81.3
CoaT-Lite-S [56] | 224% | 20M 4.0G - - 81.9
Swin-T [31] 2242 | 28M 45G | 692.1 | 189ms | 81.3
MSG-T 2242 | 25M 3.8G | 726.5 | 157ms | 82.4
DeiT-B [47] 2242 | 87M | 17.5G | 278.9 | 393ms | 81.8

T2T-ViT;-19 [58] | 2242 | 39M | 8.4G | 377.3 | 314ms | 81.4
T2T-ViT;-24 [58] | 2242 | 64M | 13.2G | 268.2 | 436ms | 82.2
PVT-Large [51] |224% | 6IM | 9.8G | 337.1 | 338ms | 81.7

TNT-B [15] 224% | 66M | 14.1G | 231.1 | 414ms | 82.8
Swin-S [31] 224? | 50M 8.7G | 396.6 | 346ms | 83.0
MSG-S 2242 | 56M 8.4G | 4225 | 272ms | 83.4

ViT-B/16 [13] 384% | 87IM | 554G | 81.1 |1218ms| 77.9
ViT-L/16 [13] 3842 | 307M |190.7G | 26.3 |4420ms| 76.5

DeiT-B [47] 3842 | 87M | 554G | 81.1 [1213ms| 83.1
Swin-B [31] 224% | 88M | 154G | 257.6 | 547ms | 83.3
MSG-B 2242 | 84M | 14.2G | 267.6 | 424ms | 84.0

" “Imgs/s” denotes the GPU throughput which is measured on one
32G-V100 with a batch size of 64. Noting that throughput on 32G-
V100 used in our experiments is sightly lower than 16G-V 100 used
in some other papers.

" The CPU latency is measured with one core of Intel(R) Xeon(R)
Gold 6151 CPU @ 3.00GHz.

e.g., CPU and mobile devices, but are unavoidable in most
previous local attention-based [ 1,39] or CNN-attention hy-
brid Transformers [9,27, 54].

4. Experiments

In experiments, we first evaluate our MSG-Transformer
models on ImageNet [10] classification in Sec. 4.1. Then
in Sec. 4.2, we evaluate MSG-Transformers on MS-
COCO [28] object detection and instance segmentation. Fi-
nally, we perform a series of ablation studies and analysis
in Sec. 4.3. Besides, we provide a MindSpore [35] imple-
mentation of MSG-Transformer.

4.1. Image Classification

We evaluate our MSG-Transformer networks on the
commonly used image classification dataset ImageNet-
1K [10] and report the accuracies on the validation set
in Tab. 2. Most training settings follow DeiT [47]. The

Table 3. Object detection and instance segmentation performance
comparisons on MS-COCO [28] with Cascade Mask R-CNN [3,

]. “X101-32” and “X101-64” denote ResNeXt101-32x4d [55]
and -64 x4d respectively.

Method |AP™™ APL* APISAP™* AP AP72**Params FLOPsFPS

DeiT-S 48.0 672 51.7| 414 642 443 | 80M 889G -

ResNet-50/ 46.3 64.3 50.5| 40.1 61.7 434 | 82M 739G 10.5
Swin-T | 50.5 69.3 54.9| 43.7 666 47.1 | 86M 745G 9.4
MSG-T |514 70.1 56.0| 446 674 481 | 83M 731G 9.1

X101-32 |48.1 66.5 524 | 41.6 639 452 | 10IM 819G 7.5
Swin-S 51.8 704 563 | 447 679 485 | 107M 838G 7.5
MSG-S |525 711 57.2| 455 684 495 | 113M 831G 7.5

X101-64 | 483 664 523| 41.7 64.0 451 | 140M 972G 6.0
Swin-B | 51.9 709 56.5| 45.0 684 487 | 145M 982G 6.3
MSG-B |52.8 71.3 57.3| 457 689 499 | 142M 956G 6.1

* FPS is measured on one 32G-V100 with a batch size of 1.

AdamW [25] optimizer is used with 0.05 weight decay. The
training process takes 300 epochs in total with a cosine an-
nealing decay learning rate schedule [33] and 20-epoch lin-
ear warmup. The total batch size is set as 1024 and the ini-
tial learning rate is 0.001. The repeated augmentation [ 18]
and EMA [36] are not used as in Swin Transformer [31].

We provide the ImageNet classification results in Tab. 2
and compare with other convolutional and Transformer net-
works. Compared with DeiT [32], MSG-Transformers
achieve significantly better trade-offs between accuracy and
computation budget. MSG-Transformer-T achieves 2.6
Top-1 accuracy promotion over DeiT-S with 0.8G smaller
FLOPs; MSG-Transformer-S promotes the accuracy by 1.6
with only 48.0% FLOPs; MSG-Transformer-B achieves
an 84.0% Top-1 accuracy, beating larger-resolution DeiT-
B by 0.9 with only 25.6% FLOPs. Compared with the
recent state-of-the-art method Swin Transformer [31], our
MSG-Transformers achieve competitive accuracies with
similar Params and FLOPs. It is worth noting, as fre-
quent 1D-2D feature transitions and partition are avoided,
MSG-Transformers show promising speed advantages over
Swin Transformers. Especially on the CPU device, the la-
tency improvement is more evident. MSG-Transformer-T
is 16.9% faster than Swin-T; MSG-Transformer-S is 21.4%
faster than Swin-S; MSG-Transformer-B is 22.5% faster
than Swin-B.

4.2. Object Detection

We evaluate our MSG-Transformer networks on MS-
COCO [28] object detection with the Cascade Mask R-
CNN [3, 16] framework. The training and evaluation are
performed based on the MMDetection [5] toolkit. For train-
ing, we use the AdamW [25] optimizer with 0.05 weight
decay, 1 x 10~* initial learning rate and a total batch size
of 16. The learning rate is decayed by 0.1 at the 27 and 33
epoch. The training takes the 3x schedule, i.e., 36 epochs
in total. Multi-scale training with the shorter side of the im-
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Table 4. Ablation studies about MSG tokens and shuffle operations
on ImageNet classification.

Row ‘ MSG Token ‘ Shuffle Op. ‘ Images /s ‘ Top1 (%)
MSG-Transformer-T (depth=12)

1 X X 720.3 80.2

2 v X 702.2 80.510.3

3 v v 696.7 81.140.9
MSG-Transformer-S (depth=24)

4 X X 412.9 81.2

5 v X 403.9 81.9¢0.7

6 v v 401.0 83.041.8

age resized between 480 and 800 and the longer side not
exceeding 1333 is also used. As the input image size is not
fixed for object detection, the patch tokens are padded with
0 to guarantee they can be partitioned by the given window
size for attention computation. And the shuffle region is
alternatively changed at the left-top and right-bottom loca-
tions between layers to cover more windows.

As shown in Tab. 3, MSG-Transformers achieve signif-
icantly better performance than CNN-based models, i.e.,
5.1 APY™* better than ResNet-50 [17], 4.4 APP™* better
than ResNeXt101-32x4d [55], and 4.5 APY* better than
ResNeXt101-64 x4d. Even though Swin Transformers have
achieved extremely high performance on object detection,
our MSG-Transformers still achieve significant promotion
by 0.9, 0.7, 0.9 AP and 0.9, 0.8, 0.7 AP™ for T, S, B
scales respectively.

4.3. Ablation Study

In this section, we perform a series of ablation studies
on ImageNet-1K about the shuffling operation, MSG tokens,
network scales, and shuffle region sizes?. We further visual-
ize the attention map of MSG tokens for better understanding
the working mechanism.

Effects of MSG Tokens & Shuffle Operations We study
the effects of MSG tokens and shuffle operations, providing
the results in Tab. 4. As shown in Row 1, with both MSG
tokens and shuffle operations removed, the performance de-
grades by 0.9. With MSG tokens applied in Row 2, the per-
formance is promoted by 0.3 compared to that without both.
Though without shuffle operations, MSG tokens can still ex-
change information in each token merging (downsampling)
layer, which leads to slight promotion. However, exchang-
ing information only in token merging layers is too limited
to expanding receptive fields. With the same ablation ap-
plied on a deeper network MSG-Transformer-S, the perfor-
mance gap becomes significant. The Top-1 accuracy drops

2Without specified, experiments for ablation study remove the
overlapped downsampling and follow the network scales in Swin-
Transformer [31] for clear and fair comparisons.

Table 5. Effects of input MSG/CLS token parameters on ImageNet
classification.

Row ‘ Training ‘ Evaluation ‘ Top1 (%)
MSG-Transformer-T (MSG Token)

1 learnable learned 80.9

2 learnable random 80.8,0.1
3 random random 80.8,0.1
Deit-S (CLS Token)

4 learnable learned 79.9

5 ‘ learnable random ‘ 77.7,2.2

by 1.8 with both modules removed, and drops by 1.1 with
shuffle removed. It is worth noting that both MSG tokens
and shuffle operations are light enough and cause no evi-
dent throughput decay.

Input Parameters of MSG Tokens To further understand
the role MSG tokens play in Transformers, we study impacts
caused by parameters of input MSG tokens. As shown in
Row 2 of Tab. 5, we randomly re-initialize parameters of
input MSG tokens for evaluation, which are learnable dur-
ing training, interestingly the accuracy only drops by 0.1%.
Then in Row 3, we randomly initialize input MSG tokens
and keep them fixed during training. It still induces neg-
ligible accuracy drop when input MSG token parameters
are also randomly re-initialized for evaluation. This im-
plies input MSG token parameters are not so necessary to be
learned. We speculate that if input parameters of CLS to-
kens in conventional Transformers need to be learned, and
perform the same experiment on Deit-S [47]. Then we find
randomly re-parameterizing input CLS tokens for evalua-
tion leads to severe degradation to the accuracy, i.e., 2.2%
in Row 5.

The above experiments show that the proposed MSG to-
kens play a different role from conventional CLS tokens,
which serve as messengers to carry information from dif-
ferent local windows and exchange information with each
other. The input parameters of their own matter little in lat-
ter information delivering as they absorb local features layer
by layer via attention computing. In other words, with unin-
terrupted self-attention and information exchanging, patch
tokens make what MSG tokens are and MSG tokens are just
responsible for summarizing local patch tokens and deliver
the message to other locations. Therefore, input parameters
of MSG tokens do not affect the final performance.

Network Scales Considering different types of architec-
tures fit different network scales, we study the scales of
both Swin- and MSG-Transformer as follows. As shown
in Tab. 6, two scales are evaluated where one is shallow and
wide with 96 input dimension and [2, 2, 6, 2] blocks in each
stage, while another one is deep and narrow with 64 dimen-
sion and [2, 4, 12, 4] blocks. We observe MSG-Transformer
achieves a far better trade-off between computation cost and
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Figure 4. Visualization of attention maps computed between each MSG token and patch tokens within the local window in different blocks.

Table 6. Network scale study on Swin- and MSG-Transformer.

Model ‘ Dim ‘ #Blocks Params FLOPs Topl (%)

Swin 96 [2,2,6,2] 28M 4.5G 81.3
64 [2,4,12, 4] 24M 3.6G 81.3

MSG 96 [2,2,6,2] 28M 4.6G 81.1
64 [2,4,12,4] 24M 3.7G 82.1

Table 7. Ablation studies about the shuffle region sizes on Ima-
geNet classification.

Shuffle Region Sizes | Images /s ‘ Top1(%)
2,2,2,1 695.1 80.6
4,2,2,1 696.1 80.8
4,4,2,1 696.7 80.9

accuracy with the deeper-narrower scale. We analyze the
reason as follows. In Swin Transformer, each patch to-
ken is involved in two different windows between layers,
which requires a wider channel dimension with more atten-
tion heads to support the variety. On the contrary, MSG-
Transformer uses MSG tokens to extract window-level in-
formation and transmit to patch tokens. This reduces the
difficulty for patch tokens to extract information from other
windows. Thus MSG-Transformer requires a smaller chan-
nel capacity to support variety in one window. A deeper
and narrower architecture brings a better trade-off for MSG-
Transformer.

Shuffle Region Sizes We study the impacts of shuffle re-
gion sizes on the final performance. As shown in Tab. 7,
with the shuffle region enlarged, the final accuracy in-
creases. It is reasonable that larger shuffle region sizes
lead to larger receptive fields and are beneficial for tokens
capturing substantial spatial information. Moreover, the
throughput/latency is not affected by the shuffle size chang-
ing.

Attention Map Visualization of MSG Tokens To under-
stand the working mechanism of MSG tokens, we visualize
attention maps computed between each MSG token and its
associated patch tokens within the local window in different
blocks. As shown in Fig. 4, local windows in attention maps
are split into grids. Though the local window size to the to-
ken features is constant, i.e. 7 in our settings, with tokens

merged, the real receptive field is enlarged when reflected
onto the original image. In shallower blocks, attention of
MSG tokens is dispersive which tends to capture contour in-
formation; in deeper layers, though attention is computed
within each local window, MSG tokens can still focus on lo-
cations closely related to the object.

5. Discussion and Conclusion

This paper proposes MSG-Transformer, a novel Trans-
former architecture that enables efficient and flexible infor-
mation exchange. The core innovation is to introduce the
MSG token which serves as the hub of collecting and prop-
agating information. We instantiate MSG-Transformer by
shuffling MSG tokens, yet the framework is freely extended
by simply altering the way of manipulating MSG tokens.
Our approach achieves competitive performance on stan-
dard image classification and object detection tasks with re-
duced implementation difficulty and faster inference speed.

Limitations We would analyze limitations from the per-
spective of the manipulation type for MSG tokens. Though
shuffling is an efficient communication operation, the speci-
ficity of shuffled tokens is not so well as shuffling integrates
token segments from different local windows equally on the
channel dimension. On the other hand, it is valuable to
explore other manipulation types with a better efficiency-
specificity trade-off which may further motivate the poten-
tial of MSG-Transformer.

Future work Our design puts forward an open problem:
since information exchange is the common requirement of
deep networks, how to satisfy all of capacity, flexibility, and
efficiency in the architecture design? The MSG token offers
a preliminary solution, yet we look forward to validating its
performance and further improving it in visual recognition
tasks and beyond.
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