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Figure 1. Reconstructions with Differentiable Stereopsis (DS) from
few input views and noisy cameras. We show input views (top) and
novel views of reconstructions (bottom).

Abstract

We propose Differentiable Stereopsis, a multi-view stereo
approach that reconstructs shape and texture from few input
views and noisy cameras. We pair traditional stereopsis
and modern differentiable rendering to build an end-to-end
model which predicts textured 3D meshes of objects with
varying topologies and shape. We frame stereopsis as an
optimization problem and simultaneously update shape and
cameras via simple gradient descent. We run an extensive
quantitative analysis and compare to traditional multi-view
stereo techniques and state-of-the-art learning based meth-
ods. We show compelling reconstructions on challenging
real-world scenes and for an abundance of object types with
complex shape, topology and texture. 1

1Project webpage: https://shubham-goel.github.io/ds/

1. Introduction
Binocular stereopsis [47], and its multi-view cousin,

Structure from Motion [14, 44], has traditionally been for-
mulated as a two stage process:

1. Find corresponding 2D points across views, which are
the 2D projections of the same 3D scene point.

2. Recover relative orientations of cameras, and the depths
of these points by triangulation.

In this work, we bypass the first stage of finding point cor-
respondences across images and directly estimate 3D shape
and cameras given multiple 2D views with noisy cameras.
We formulate this as an optimization problem that we solve
using newly developed differentiable rendering tools. We
name our approach Differentiable Stereopsis.

Our approach is linked to old work in multi-view geom-
etry, and in particular model-based stereopsis which was
explored by Debevec et al. [6] and related ideas in plane
plus parallax by Irani et al. [17]. The key observation in
model-based stereo is simple: two images of the same scene
which appear different become similar after projection onto
an approximate 3D model of the scene. Projecting the tex-
ture from one image onto the 3D model produces a warped
version of that view which when transformed from a second
view is directly comparable to the second image. Initially,
the 3D model and the estimated relative camera orientation
are inaccurate. But as shape and camera predictions improve,
the two images will start to look more similar and will even-
tually become identical – in the idealized case of Lambertian
surfaces and no imaging noise. Upon convergence, the shape
is expected to be an accurate representation of the scene.

An important step in traditional stereopsis is finding 2D
correspondences across views. We bypass this and directly
recover shape and cameras using modern optimization tech-
niques. We frame stereopsis as an optimization problem by
minimizing a differentiable objective with respect to shape
and cameras. To this end, we exploit advances in differ-
entiable rendering [4, 21, 30, 32, 40] to project shape and
texture onto image planes which we compare to scene views.
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Algorithm 1: Differentiable Stereopsis (2-view)

Input: I1,2, π1,2;
S ← Sphere();
while not converged do

points← rasterize(S, π1);
texels← sample(I2, π2(points));
Ir1 ← blend(texels);
loss← compute loss(Ir1 , I1);
S, π1,2← S, π1,2− lr * gradient(loss);

end
Outputs S, π1,2

We update shape and cameras via gradient descent. Algo-
rithm 1 illustrates our proposed Differentiable Stereopsis
(DS) for the case of 2 views. We rely on (i) object masks to
isolate and refine object topology; and (ii) noisy camera pose
initializations, which may still come from a correspondence
matching algorithm. Fig. 1 shows shape reconstructions with
DS when noisily posed views are given as input.

At the core of our approach is a novel and differentiable
texture transfer method which pairs rendering with the key
insight of texture warping via 3D unprojections. Our texture
transfer learns to sample texture from the input views based
on the shape estimate and noisy cameras. To allow for differ-
entiation, it composites the final texture in a soft manner by
weighing texture samples proportionally to their visibility
and direction from each view.

We test our approach on challenging datasets and on a
large variety of objects with complex and varying shapes.
Unlike prior works that assume several dozens of object
views, our experimental settings follow real-world practical
scenarios where only a few views are available. For exam-
ple, Amazon, eBay or Facebook Marketplace only contain a
handful of views for each listed item, and any 3D reconstruc-
tion has to originate from 10 views or less. We emphasize
on this harder, yet more realistic, setting and show empiri-
cal results with real product images from Amazon [5]. On
Google’s Scanned Objects [41] we perform an extensive
quantitative and qualitative analysis and compare to compet-
ing approaches under settings similar to ours. We also show
results on Tanks and Temples [24] which contains RGB
views of complex scenes, as shown on the right in Fig. 1.

2. Related Work
Extracting 3D structure from 2D views of a scene is a

long standing goal of computer vision. Classical multi-
view stereo methods and Structure from Motion tech-
niques [6, 9, 14, 17, 44] find correspondences across images
and triangulate them into points in 3D space. The result-
ing point clouds, if dense enough, can be meshed into sur-
faces [1, 22]. The culmination of a long line of classical

SfM and stereo approaches is COLMAP [42, 43] – a widely
used tool for estimating camera poses and reconstructing
dense point clouds from 2D input views. All aforementioned
techniques assume calibrated and accurate cameras and thus
are not very robust to camera noise.

Finding point correspondences, the first stage of stereop-
sis, is challenging especially in the case of sparse widely-
separated views. Debevec et al. [6] tackle this by proposing
model-based stereopsis wherein a coarse scene geometry
allows views to be placed in a common reference frame,
making the correspondence problem easier. We draw inspi-
ration from this work and pair it with new learning tools
to reconstruct textured 3D meshes from sparse views. We
frame stereopsis as an optimization problem and minimize
a differentiable objective which allows both shape and cam-
eras to self-correct. This increases robustness to camera
noise, in antithesis to classical techniques.

Recent work on multi-view stereo [48, 49] train deep neu-
ral nets (DNNs) with depth supervision. As expected, these
methods outperform COLMAP for point cloud reconstruc-
tion but are limited as they need ground truth. We rely solely
on image re-projection losses and no true depth information.

Work on unsupervised depth prediction [28, 52, 54, 55]
estimate depth via DNNs trained on monocular videos and
without ground truth depth. They exploit photometric and
depth consistency across multiple views, much like classical
stereo. However, they focus on forward-facing scenes like
KITTI [11] and do not reconstruct high-fidelity shape.

There is extensive work on recovering shape from images
using differentiable rendering [4, 13, 19, 21, 25, 27, 30, 32,
40, 45, 51]. These approaches focus on extracting object
priors by training on large datasets and test on images of
seen categories. We also use differentiable rendering [4, 21,
30,32,40] to frame stereopsis as a differentiable optimization
problem. Differentiating with respect to shape and camera
allows for both to self-correct during optimization.

Most relevant to our work are methods that learn shape
by fitting to a set of images. Early work on extracting shape
from silhouettes used a visual hull [26]. Gadelha et al. [10]
reconstruct voxels from silhouettes and noisy camera poses
via differentiable projection but don’t use any texture infor-
mation. However, shape details such as concavities cannot
be captured by silhouettes. We show in Fig. 5 in our exper-
iments (Sec. 4) that optimizing for shape without texture
information fails to reconstruct creases in shape. Some varia-
tional approaches for MVS [7, 8, 15, 39] exploit photometric
consistency to refine shape via gradient descent but they
require many images, initial shapes or accurate cameras. Re-
cently, IDR [50] and DVR [37] recover shape from multiple
posed images and masks using implicit volumetric represen-
tations. IDR shows superior results to DVR and claims to
work with few input views and slightly noisy camera poses;
a setting similar to ours. We compare to IDR in Sec. 4.
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Figure 2. Overview of Differentiable Stereopsis (DS). The shape
estimate is textured using source views, rendered from a target
view’s camera and compared against the target view. The loss is
backpropagated to update shape and cameras.

Recent novel-view-synthesis approaches [31, 34, 56] en-
code volumetric occupancy information in their internal rep-
resentations for the task of image synthesis from novel view-
points. While they don’t explicitly learn shape, their repre-
sentation can be processed to extract geometry. NeRF [34] is
one such approach which takes posed multiple views as input
and encodes occupancy and color for points in 3D space as
an implicit function. In Sec. 4, we compare to NeRF and
extend it with a variant that optimizes for noisy cameras by
enabling backpropagation to its parameters.

3. Approach

We tackle the problem of stereopsis using modern dif-
ferentiable rendering techniques. Our approach takes N
image views I1..N of an object with corresponding masks
A1..N and noisy camera poses π1..N as input, and outputs
the shape of the object as a textured mesh. We frame stere-
opsis as an optimization problem, outlined in Fig. 2. We
iteratively render a shape estimate from multiple cameras
using differentiable textured rendering and update the shape
and cameras by minimizing image reprojection losses.

We first provide some background on differentiable ren-
dering and then describe our approach in detail.

3.1. Background

We define a textured mesh M = (V, F, T ) as a set of
vertices V , faces F and a texture map T . Under a camera
viewpoint π, mesh M is rendered to image Ir = RT (M,π)
and mask Ar = RS(M,π), where RT denotes textured
rendering and RS silhouette rendering.

Both RS and RT perform mesh rasterization. Rasteriza-
tion computes which parts of the mesh are projected to a

pixel on the image plane. For each pixel p, we find the K
nearest faces that intersect with a ray originated at p [40].

In the case of silhouette rendering RS , rasterization is
followed by a soft silhouette shader. This shader assigns each
pixel an occupancy probability by blending the euclidean
distance of the pixel to each of the K faces [30, 40].

For textured rendering RT , we use a texture shader which
computes the RGB color for each pixel p in the image. This
shader blends the colors from the top K faces for each pixel,
as computed by the rasterizer. For the k-th face, the color
ck = T (x) is computed by sampling the texture map T at
the point of intersection x of the ray originating at p and the
k-th face. The set of colors c1..K , also known as texels, are
composited to get the final color for the pixel.

3.2. Texture Transfer

The goal of our approach is to find M = (V, F, T ) that
represents the object as seen from the noisily posed input
views. For each shape hypothesis (V, F ) we need to find
the optimal texture T . We introduce a novel texture shader
which relies on texture transfer from the inputs I1...N .

Our shader computes the texture map T as a function of
the shape hypothesis (V, F ) and the posed input views I1...N .
The texture map T : x → (r, g, b) assigns an RGB color
for each point x on the mesh surface. The color is directly
sampled from one or more input views. We build on a key in-
sight: for a correct shape (V, F ) and correct cameras π1...N ,
there exists one (or many) view i in which x is unoccluded,
or in other words, there is a clear line-of-sight to x. For all
such views, the projections πi(x) in the images correspond
to the same 3D point x and for Lambertian surfaces, all these
points will share the same color Ii(πi(x)). The color T (x)
assigned to point x is composited from the colors Ii(πi(x))
for all views with a clear line-of-sight to x. Formally, we
define the texture transfer as follows:

T (x) =
∑
i

wiIi(πi(x)) (1)

where weights are unit-normalized and defined as wi = σiγi.
σ encodes whether x has a clear line-of-sight from the

corresponding view. Formally, we compare the z-distance
of the camera transformed point πi(x) to the rendered depth
map Di at πi(x) as follows

σi = exp(−(πi(x)z −Di(πi(x)))/τvis) (2)

If there is a clear line-of-sight to x, then πi(x)z ≈ Di(πi(x))
and thus σi ≈ 1.0. If x is obstructed by other parts of the
shape, then πi(x)z > Di(πi(x)) and σi < 1.0. We set the
temperature τvis to 10−4.

γ is a heuristic that favours views that look at x fronto-
parallel with minimal foreshortening. If n̂i(x) is the outward
surface-normal at x in i-th view coordinates, then

γi = 1[n̂i(x)z < 0] exp(−(1 + n̂i(x)z)/τcos) (3)
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γi is highest when the normal points opposite the camera’s z-
axis, or n̂i(x)z = −1. γi decreases exponentially as n̂i(x)z
increases. We set the temperature τcos to 0.1. In addition, we
cull backward-facing normals (n̂i(x)z > 0) to correctly sam-
ple texture in thin surfaces where σ fails to capture visibility
information of points on the two sides of the surface.

Texture Rendering We described how to sample texture for
a point x on the mesh surface. To render the texture under
a viewpoint π, for each pixel p we sample texels c1..K for
all points x1..K with ck = T (xk), where xk is the point on
the k-th face that intersects the ray originating at p. We use
softmax blending [30] to composite the final color at p.

3.3. Optimization

We have explained how to define the texture map T for
an object shape (V, F ) given posed input views I1..N and
we have described how to render M = (V, F, T ) to images
and silhouettes. We now describe our objective and how we
optimize it w.r.t. vertices V and cameras π1..N .

Parametrization We parametrize a camera π = (r, t, f) as
rotation via an axis-angle representation r ∈ R3 (magnitude
|r| is angle, normalization r/|r| is axis), translation as t ∈
R3 and focal length f as half field-of-view.

We parametrize geometry as V = V0+∆V where ∆V ∈
R|V |×3 is the deformation being optimized and V0 are initial
mesh vertices which remain constant.

Objective Given a shape hypothesis M = (V, F, T ), cam-
eras π1..N and input views I1..N , we render silhouette
Ar

i = RS(M,πi) and image Iri = RT (M,πi) for each
view i = 1, ..., N . We define our total loss to be

Ltotal = Ltex + Lmask + Ledge + Llap (4)

The texture reconstructions loss Ltex is defined as the sum of
an L1 loss and perceptual distance metric Lperc [53]:

Ltex =
∑
i

|Iri − Ii|+ Lperc(I
r
i , Ii) (5)

The mask reconstruction loss combines an MSE loss and a bi-
directional distance transform loss (see details in Appendix).

Lmask =
∑
i

||Ar
i −Ai||22 + Lbi-dt(A

r
i , Ai) (6)

In addition to reprojection losses in Eq. 5 & 6, we employ
smoothness reguralizers on the mesh: Ledge = ||E − l||22
is an MSE loss penalizing edge lengths that deviate from
the mean initial edge length l, while Llap = ||LcotV ||2 is a
cotangent-laplacian loss that minimizes mean curvature [36].

Initialization and Warmup We initialize cameras with the
noisy input cameras, V0 with an ico-sphere and ∆V with
zeros. During an initial warmup phase of 500 iterations, we
freeze cameras and optimize shape without the texture loss.

We start with a very low-resolution sphere and subdivide it
twice during warmup, at 100 and 300 iterations respectively.

Texture Sampling We compute the texture map T after each
shape update during optimization. For each training view i,
and for each pixel p, we find the K closest faces intersecting
a ray originating at p and the corresponding points of inter-
section x1..K . We compute texels ck = T (xk), described in
Sec. 3.2, and set wi = 0 in Eq. 1 so that image Ii does not
contribute to the texture for pixel p in the rendered i-th view.
This ensures that image Iri for camera πi is generated by
sampling colors from all images I1..N but Ii to encourage
photometric consistency.

Handling Variable Topology Each gradient descent step
updates the vertex positions of the mesh and the camera
parameters. However, the topology of the shape is left intact.
To handle objects with varying topology and to deviate from
shapes homeomorphic to spheres, we update the topology of
our shapes during optimization. At intermediate steps during
training, we voxelize our mesh [35, 38], project voxels onto
the view plans and check for occupancy by comparing to
the ground truth silhouettes A1...N . We remove voxels that
project to an unoccupied area in any mask. We re-mesh
the remaining voxels using marching cubes, reset all shape-
optimization parameters and resume optimization.

4. Experiments
We test our differentiable stereopsis approach, which we

call DS, on three datasets: Google’s Scanned Objects [41],
Tanks and Temples [24] and the Amazon-Berkeley Ob-
jects [5]. We additionally evaluate on DTU MVS [18] in the
Appendix. We run extensive quantitative analysis on objects
of varying topology and shapes, for which 3D ground truth
is available. We also show qualitative results on real objects
and challenging real-world scenes.

4.1. Experiments on Google’s Scanned Objects

Google’s Scanned Objects (CC-BY 4.0) [41] consists of
1032 common household objects that have been 3D scanned
to produce high-resolution Lambertian textured 3D meshes.
From these, we pick 50 object instances with varying shape,
topology and texture for quantitative analysis including toys,
electronics, instruments, appliances, cutlery and many more.
For each object, we render 2048×2048 RGBA images from
12 random camera viewpoints. Camera rotation Euler angles
and field-of-view are uniformly sampled in [0°, 360°] and
[20°, 50°] respectively. To the cameras, we add rotation noise
θ ∼ N (0, σ2) about a uniformly sampled axis with varying
σ = {10°, 20°, 30°}.
Metrics We report a variety of metrics to quantitatively
compare the predicted with the ground-truth meshes. We use
L2-Chamfer distance, normal consistency and F1 score at
different thresholds, following [12]. Since predicted shapes
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Figure 3. Performance of DS and nerf-opt on Google’s Scanned Objects with varying number of views {4, 6, 8, 12} (x-axis) and camera
noise {10°, 20°, 30°}. Each plot reports the median across the 50 objects in our evaluation set. We report shape reconstruction metrics
(Chamfer, F1), normal consistency, and camera error. For Chamfer and camera error, lower is better. For everything else, higher is better.

don’t lie in the same coordinate frame as the ground-truth,
we align predictions to ground truth before benchmarking
via the iterative-closest-point (ICP) algorithm [2]. See
Appendix for more details. Lastly, we report the rotation
error (in degrees) between the ground truth and the output
cameras from DS optimization.

Comparison with baselines We extensively compare to
NeRF [34], as the state-of-the-art volumetric method, which
learns an implicit function from accurately posed input views.
While NeRF doesn’t explicitly output shape, we extract ge-
ometry from its implicit representation via voxelization and
run marching cubes to get a mesh. We compare to two NeRF
variants which use additional mask information: (a) nerf -
the original NeRF approach with an additional MSE loss on
rendered masks, and (b) nerf-opt - which is the same as (a)
but optimizes camera poses with gradients from the repro-
jection loss. nerf-opt uses the same camera parametrization
as our approach. To prevent NeRF from collapsing due to
large areas of white background in the input views, all NeRF
baselines sample 50% of their points inside the mask in ev-
ery iteration. We also compare qualitatively to IDR [50], a
volumetric method with an implicit representation that learns
geometry and appearance from sparse wide-baseline images
and masks with noisy camera poses. In the Appendix, we
also compare to COLMAP [42, 43] as the state-of-the-art
photogrammetry approach. Finally, we compare to variants
of our approach: (a) DS-notex, which does not use any tex-
ture information removing Ltex from Eq. 4; and (b) DS-naive,
which naively optimizes a UV texture image in addition to
shape/camera instead of using our texture-transfer. For tex-
turing, the texture image is mapped to the mesh surface
using a fixed UV map [16] that is automatically computed
with Blender [3]. Whenever the mesh topology changes, the
texture image is re-initialized and the UV-map recomputed.

Fig. 3 quantitatively compares DS to nerf-opt, the best

performing NeRF variant of the two. We train with vary-
ing number of views N = 4, 6, 8, 12 (x-axis) and varying
camera noise {10°, 20°, 30°}. Each plot reports the median
across the 50 instances selected from the dataset. For small
camera noise (10°), DS and nerf-opt (green lines) achieve
comparable Chamfer and F1, except for N = 4 views where
nerf-opt achieves higher F1. Undoubtedly, predicting shape
from 4 views is challenging for all methods, as indicated
by the absolute performance and is the only setting where
nerf-opt performs better than DS. For larger camera noise
(20°), DS performs better than nerf-opt (orange lines) under
all metrics for N ≥ 6 and on par for N = 4. For even
larger camera noise (30°), DS leads by a significant mar-
gin (blue lines) for all N and all metrics. We note that as
the number of views N increases, both methods converge
roughly to the same performance for 10° & 20° noise. For
30° noise, DS also converges to the above optimum with
increasing views N . On the other hand, nerf-opt is unable to
recover shape or cameras for 30° noise and achieves much
lower reconstruction quality. These results prove that DS can
learn better shapes and recover cameras even under larger
camera noise and fewer views. When given slightly more
views, DS reaches the same reconstruction quality as with
little camera noise proving its robustness to errors in cam-
eras. See Appendix for quantitative comparisons to IDR,
COLMAP, and DS-naive.

Fig. 4 qualitatively compares nerf, nerf-opt, IDR and
DS with 8 views and 30° noise. IDR and both NeRF variants
produce shapes with cloudy artifacts, with nerf-opt visibly
outperforming nerf. DS captures better shape under the
same settings proving its robustness to noisy cameras and
few views. We observe that in a few-view wide-baseline
setting, like ours, implicit volumetric approaches attempt
to explain the few input views without relying on accurate
shape geometry and appearance. However, meshes, which
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nerf-opt DS GTInput Views nerf IDR

Figure 4. Results of nerf, nerf-opt, IDR and DS with 8 views and
30° camera noise. nerf-opt and IDR outperform nerf but they fail
to capture good shape. DS captures better geometry illustrating its
robustness to high levels of camera noise.

explicitly represent surfaces, offer stronger surface regular-
ization and predict more precise geometry. Also, in the first
row of Fig. 4 we observe that DS is able to reconstruct dif-
ferent animals as disconnected components despite having
been initialized to a single sphere.

Fig. 5 compares DS to DS without texture (DS-notex)
and naive texture map optimization (DS-naive) with 8 input
views and 20° camera noise. DS-notex fails to capture shape
concavities, which are impossible to capture via just silhou-
ettes. DS-naive results in shapes with some concavities but
in the wrong place and of shape quality similar to DS-notex.
With naive texture optimization as in DS-naive, texture con-
verges to the mean texture from different images, providing
unreliable gradients to improve shape/cameras and leading
to suboptimal geometry. In contrast, DS accurately captures
creases in object shapes by exploiting texture.

Fig. 9 shows qualitative results on Google’s Scanned
Objects. For each object, we train with 8 input views and
20° camera noise. We show the input views (left) and the
output shape and texture for two novel views (right).

Fig. 7 shows the evolution of shape with time for two

Figure 5. DS without texture (DS-notex), DS-naive and DS with
8 views and 20° camera noise. DS-notex fails to capture shape
concavities, while DS-naive fails to recover accurate shape and
cameras. The ground truth shape (GT) is shown in the last column.

examples from Google’s Scanned Objects with 8 input views
and 20° camera noise. We remesh the shape by updating
its topology at three intermediate steps during optimization.
This brings the final shape close to the ground truth both in
terms of geometry and topology.

We also show failure modes in the Appendix.

4.2. Results on Amazon Products

We show results from images of 6 real-world objects from
the ABO dataset (CC-BY-NC 4.0) [5]. Pixel-thresholding
the white-background images gives masks. Camera poses
for these images are unknown and COLMAP fails to give
sensible estimates. We get rough initial cameras by manually
annotating a set of 40 keypoint correspondences across all
images of an object. We estimate the parameters for a weak-
perspective camera for each image using a orthographic rigid-
body factorization formulation [33] adopted in [19, 20, 46].
We initialize our perspective cameras using the computed
weak-perspective cameras and assume a 30° field-of-view.

Fig. 6 shows shape and texture reconstructions. Despite
very noisy cameras and few views, ranging from 4 to 9,
our approach reconstructs shape and texture reasonably well
even for challenging shape topologies like the lawnmower.
We also note that DS is able to reconstruct more specular
surfaces like the wristwatch in the last row.

4.3. Results on Tanks and Temples

Tanks and Temples (CC-BY-NC-SA 3.0) [24] is a 3D
reconstruction benchmark consisting of RGB videos of in-
door and outdoor scenes with corresponding laser-scanned
ground-truth 3D point clouds. The dataset comes with cam-
eras computed by COLMAP’s SfM pipeline [42]. We evalu-
ate on 7 scenes using only 15 input images and correspond-
ing SfM-reconstructed cameras as initialization. For Barn,
Ignatius, Caterpillar and Truck, we generate masks by ren-
dering the 3D point clouds from SfM-reconstructed cameras.
To stress test our approach without relying on 3D point

Figure 6. DS evaluated on real-world product images from Ama-
zon [5]. For each example, we show input views (left) and recon-
structed shape and texture for novel views (right).
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Figure 7. Evolution of shape over time for Garden Swing (top) and Breyer Horse (bottom) from Google’s Scanned Objects with 8 views and
20° camera noise. We visualize shape at key optimization steps: at the end of warmup (at 500 iterations), before and after the 1st/2nd/3rd

remesh (at 10k/20k/30k iterations) and final shape (at 50k iterations).

Figure 8. Reconstructions of DS on Ignatius, Truck, Caterpillar, Barn and Horse from Tanks and Temples with 15 input views and
SfM-generated camera poses. For each example, we show input views (left), shape and texture reconstructions from two novel views (right).
Silhouettes for Horse were generated by a pretrained off-the-shelf 2D object detector.

clouds to get masks, for Horse, Family and Train we use an
off-the-shelf object detector [23] pretrained on COCO [29].

Fig. 8 shows reconstructions for scenes from Tanks and
Temples with 15 input views and SfM-reconstructed cameras.
DS is able to produce good reconstructions and undoubtedly
has a harder time for Barn due to occlusions by trees. For
Family and Train, detected masks are poor leading to bad
reconstructions. In the Appendix, we compare to IDR,
NeRF-opt, and COLMAP.

5. Discussion
We propose Differentiable Stereopsis (DS) by pairing tra-

ditional model-based stereopsis with modern differentiable
rendering. We show results on a diverse set of object shapes
with noisy cameras and few input views. Even though
DS performs well, it has limitations. It assumes Lamber-
tian surfaces and consistent lighting. DS works for objects
– extending to complex scenes is future work. While DS is
robust to noisy masks (e.g. predictions from Mask R-CNN)
and inaccurate cameras provided at input, eliminating them
from the input alltogether is important future work.
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Figure 9. Qualitative results of DS on Google’s Scanned Objects with 8 input views and 20° camera noise. We show input views (left) and
reconstructed shape and texture from two novel views (right).
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