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Abstract

Continually learning new classes from fresh data with-
out forgetting previous knowledge of old classes is a very
challenging research problem. Moreover, it is imperative
that such learning must respect certain memory and com-
putational constraints such as (i) training samples are lim-
ited to only a few per class, (ii) the computational cost
of learning a novel class remains constant, and (iii) the
memory footprint of the model grows at most linearly with
the number of classes observed. To meet the above con-
straints, we propose C-FSCIL, which is architecturally com-
posed of a frozen meta-learned feature extractor, a trainable
fixed-size fully connected layer, and a rewritable dynami-
cally growing memory that stores as many vectors as the
number of encountered classes. C-FSCIL provides three
update modes that offer a trade-off between accuracy and
compute-memory cost of learning novel classes. C-FSCIL
exploits hyperdimensional embedding that allows to contin-
ually express many more classes than the fixed dimensions
in the vector space, with minimal interference. The qual-
ity of class vector representations is further improved by
aligning them quasi-orthogonally to each other by means of
novel loss functions. Experiments on the CIFAR100, mini-
ImageNet, and Omniglot datasets show that C-FSCIL out-
performs the baselines with remarkable accuracy and com-
pression. It also scales up to the largest problem size ever
tried in this few-shot setting by learning 423 novel classes
on top of 1200 base classes with less than 1.6% accuracy
drop. Our code is available at https://github.com/
IBM/constrained-FSCIL.

1. Introduction
Deep convolutional neural networks (CNNs) have

achieved remarkable success in various computer vision
tasks, such as image classification [15,24,26,47], stemming
from the availability of large curated datasets as well as
huge computational and memory resources. This, however,
poses significant challenges for their applicability to smart
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Figure 1. Overview of C-FSCIL which maps input images to
quasi-orthogonal prototypes such that the prototypes of different
classes encounter small interference.

agents deployed in new and dynamic environments, where
there is a need to continually learn about novel classes from
very few training samples, and under resource constraints.
We consider the challenging scenario of learning from an
online stream of data, including never-seen-before-classes,
where we impose constraints on the sample size, computa-
tional cost, and memory size.

Let us first focus on the sampling constraint of training
data. Inspired by human-like sequential learning, classi-
cal connectionist networks can be naively trained sequen-
tially, e.g., first on a set of old classes, and then on a set
of novel classes, whereby the training dataset of old classes
is no longer available. As a result, the new learning may
interfere catastrophically with the old learning by overwrit-
ing weights involved in representing the old learning (and
thereby forgetting) [33]. This effect is known as catas-
trophic interference, or catastrophic forgetting, and causes
the classification accuracy to deteriorate [12,33]. To address
the catastrophic forgetting problem, research efforts have
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been directed to, e.g., freezing parts of the network weights,
while simultaneously growing other parts of the network to
extend the learning ability. Among them, class-incremental
learning (CIL) [4,18,34,39,52] aims to learn a unified clas-
sifier in which the encountered novel classes—that were not
seen before in the continual data stream—are added into the
recognition tasks without forgetting the previously observed
classes. One step further, very recently, few-shot CIL (FS-
CIL) [2,5–7,40,44,48,56] algorithms have been proposed to
continually extend learning to novel classes with only a few
data samples. Requiring FSCIL to be trained with very few
novel training samples makes it more challenging compared
to CIL, which usually learns new classes from large-scale
training samples.

To facilitate few-shot learning, memory-augmented neu-
ral networks (MANNs) separate information processing
from memory storage [13, 14, 21, 23, 42, 46, 51]. MANNs
incorporate an explicit memory (EM) into an embedding
network such that the network can write the embedding of
few data samples to the memory as class prototypes, and
read from these individual entries during inference. This
separation enables the network to offload new prototypes to
the EM, where they do not endanger the previously learned
prototypes to be overwritten, leading to remarkable accu-
racy with few classes (typically 20 classes). However, this
neat feature of MANNs has not been exploited in CIL or
FSCIL. This is mainly due to the fact that the interference
between different class prototypes increases with a grow-
ing number of classes, as experienced in FSCIL. To allow
continual learning in MANNs, the representational power
of the embedding network should be naturally extensible to
a large number of classes with minimal interference. This
critical requirement can be met by exploiting hyperdimen-
sional computing [10, 19, 35], where classes can be repre-
sented by random high-dimensional vectors with a dimen-
sionality in the order of thousands. This new combination
of MANNs and hyperdimensional computing has been re-
cently developed in [21] for few-shot learning.

Hyperdimensional computing is characterized by the fol-
lowing properties: (i) A randomly chosen vector is quasi-
orthogonal to other random vectors with very high proba-
bility (the “curse” of dimensionality), therefore the repre-
sentation of a novel class is not only incremental to the old
learning but also causes minimal interference. This phe-
nomenon is known as concentration of measure [28], with
the peculiar property that pseudo-orthogonality converges
to exact orthogonality with increasing dimensionality. (ii)
The number of such quasi-orthogonal vectors grows expo-
nentially with the dimensionality, which provides a suffi-
ciently large capacity to accommodate novel classes over
time. (iii) Counterintuitively, quasi-orthogonal vectors can
still encode semantic information. We can describe a con-
cept in a scene (e.g., a black dog) with a vector by binding
quasi-orthogonal atomic vectors (xblack � xdog), which is
quasi-orthogonal to all other involved vectors (atomic and
composite). The bound vector can be decomposed to xblack

and xdog, revealing the semantic relation between a black
dog and a black cat (both include xblack) [9, 16]. In fact,
fixed quasi-orthogonal vectors have been successfully used
as class vectors achieving improved performance in the su-
pervised classification tasks [16, 17].

In this paper, we enhance MANNs by exploiting the rep-
resentational power of hyperdimensional computing to per-
form FSCIL. During FSCIL operations, it is constrained to
either no gradient updates or a small constant number of it-
erations for learning novel classes, and a linear growth in
the memory size with respect to the encountered classes.
The contributions of this work are summarized as follows:

First, we propose C-FSCIL, which is architecturally
composed of a frozen feature extractor, a trainable fixed-
size fully connected layer, and a rewritable dynamically
growing EM that stores as many vectors as the number of
classes encountered so far (See Fig. 1). The frozen part
is separated from the growing part by inserting the fully
connected layer, which outputs class vectors in a hyperdi-
mensional embedding space whose dimensionality remains
fixed, and is therefore independent of the number of classes
in the past and future. The feature extractor is a CNN that is
meta-learned by proper sharpened attention, which strives
to represent dissimilar images with quasi-orthogonal vec-
tors. The C-FSCIL architecture is presented in Section 4.1.

Second, C-FSCIL with three update modes offers a
trade-off between accuracy and the compute-memory cost
of learning a novel class. The simple yet powerful Mode 1
creates and updates an averaged prototype vector as the
mean-of-exemplars in the EM, without any gradient com-
putation (see Section 4.2.1). Mode 2 bipolarizes the pro-
totype vectors, and retrains the fully connected layer with-
out exceeding a small constant number of iterations; for re-
training it requires storing an averaged activation pattern for
every class in a globally averaged activation (GAA) mem-
ory (see Section 4.2.2). Mode 3 nudges the averaged proto-
type vectors to align them quasi-orthogonally to each other,
while remaining in close proximity to the original averaged
prototypes, using a combination of novel loss functions. It
then retrains the fully connected layer without exceeding
the constant number of iterations (see Section 4.2.3).

Third, C-FSCIL leads to higher accuracy, compute-
memory efficiency, and scalability compared to FSCIL
baselines, as shown in Section 5. Experiments on the CI-
FAR100, miniImageNet, and Omniglot datasets demon-
strate that C-FSCIL outperforms the baselines even in
Mode 1 where prototypes are simply obtained in one pass
without any gradient-based parameter updates. In Om-
niglot, C-FSCIL scales up to 1623 classes, whereby 423
novel classes are incrementally added to 1200 base classes,
with less than 2.6%, 1.4%, and 1.6% accuracy drops when
using Modes 1, 2, and 3, respectively. Thanks to the quasi-
orthogonality of the class prototypes in the EM, they can
be compressed by 2×, causing 1.7%–3.5% accuracy drop
during the course of FSCIL.
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2. Related Work
2.1. MANNs

MANNs have been used in one- and few-shot learning
tasks [21, 23, 42, 50, 51]. First, their embedding network is
meta-learned on a set of initial categories of so-called base
classes. After meta-learning, the network is ready to pro-
vide new representations for never-seen-before categories
(i.e., novel classes) that can be independently stored, or
retrieved via the EM. In these works, training is done on
the base classes and inference is done solely on the novel
classes, as opposed to the union of the two sets of classes as
required by FSCIL. Further, the size of the EM is set by c
vectors [42, 50], or c× k vectors [21, 53, 54] where c and k
represent the number of classes and training examples per
class, respectively. The contents of the EM can be com-
pressed using outer products with randomized labels [23].
In a similar vein, C-FSCIL superposes two class vectors to
store c/2 vectors in the EM, as described in the following.

2.2. Rehearsal and Pattern Replay
To address the catastrophic forgetting issue in CIL, re-

hearsal methods store some old training data, and replay
them while learning novel classes during the incremental
stage [1, 3, 31, 32, 36, 39]. For instance, a flexible num-
ber of exemplars per class are stored in an episodic mem-
ory. It provides the training data of the old classes as well
as the currently available classes to a classifier to incre-
mentally learn novel classes. The memory footprint of the
episodic memory is kept bounded by relying on entry/exit
criteria [1,3,31,36,39]. Alternatively, the exemplars of past
classes can be generated using GANs with extra computa-
tional cost [8]. The storage and computational overhead of
the rehearsal methods can be reduced by latent replay [34]
and its TinyML evolution [38]. Instead of storing a por-
tion of past exemplars in the input space, the latent replay
method stores the corresponding activation patterns from an
intermediate layer [34]. The stored activations are replayed
to retrain all the layers above the latent replay layer.

Our C-FSCIL avoids the rehearsal and pattern replay
overheads because it does not need any access to the pre-
vious data in any form. Instead, it maintains a highly com-
pressed, minimal amount of past knowledge, either in the
EM (Mode 1) or in the GAA memory (Modes 2-3), which
is similar or smaller than the compared methods. Note
that in Modes 2-3 only storing the GAA memory is suffi-
cient as it contains c compressed activations, from which
the EM can be rematerialized on the fly. For discriminating
c classes, one needs to maintain at least c prototypes (class
vectors); thus, a linear increase with the number of classes
is unavoidable. In addition, if the memory constraints be-
come even tighter, our quasi-orthogonal design comes to
rescue to further compress either of the memories by bind-
ing each vector with a randomly drawn key and superim-
posing two key-prototype pairs [35], yielding twofold com-
pression with moderate accuracy drop (See Appendix A.3).

2.3. Class Imbalance and Reparameterizations

Another issue in CIL is the class imbalance problem,
where the norm or the bias can be unbalanced for the classes
observed later in the incremental stage, causing the net-
work’s prediction to be biased towards novel classes [18,
52]. Learning novel classes might also interfere with the
past classes. To mitigate the impact of class imbalance, re-
cent CIL approaches adopt the cosine distance metric [18],
or add a bias correction layer [52] to avoid the norm and bias
imbalance. In a similar vein, a weight aligning method has
been proposed to align the norms of the weight vectors for
novel classes to those for past classes [57]. Another source
of perturbation is the gradient from novel class observations
that can affect past classes to change their weights. Regu-
larization strategies have been aimed at avoiding such for-
getting [22], but they have been recently shown to be insuf-
ficient in CIL [30]. Various maskings have been proposed
to apply the gradient only to a subset of classes during back-
propagation [29].

We avoid these issues systematically in C-FSCIL, where
hyperdimensional quasi-orthogonal vectors are assigned to
each and every class with the aim of reducing interference.
This cannot be achieved with other methods that replace the
fully connected layer with a fixed Hadamard [17] or iden-
tity [37] matrix, because they fail to support a larger number
of classes than the vector dimensionality of the layer they
are connected to. Our prototypes are stored in the EM, the
cosine similarity is used for their comparison, and they can
be selectively updated. The alignment to prototypes can be
improved by proper retraining of the fully connected layer
whose structure remains fixed and independent of the num-
ber of classes (See Fig. 1).

2.4. Few-shot Class-incremental Learning (FSCIL)

Very recently, FSCIL [5–7,44,48,56] has been proposed
for tackling CIL with very few training samples through
a number of incremental sessions. Various solutions have
been proposed, such as exploiting a neural gas network [48],
a graph attention network [56], semantic word embed-
dings [6], and vector quantization [5]. Specifically, a pre-
trained backbone is decoupled from a non-parametric class
mean classifier whose weights can be progressively adapted
across sessions by a graph attention network [56]. C-
FSCIL, even with the simple Mode 1, which does not need
retraining, sets a new state-of-the-art accuracy compared to
the previous FSCIL [5–7, 44, 48, 56], and demonstrates its
extensible representation by supporting the maximum num-
ber of encountered classes (1623) in this setting. In fact, all
previous works have used up to 200 classes. To be able to do
retraining in the other modes, C-FSCIL requires the GAA
memory to store as many compressed activation patterns as
there are encountered classes. It allows to stably retrain with
any combination of sessions or classes over time, and with
an improved accuracy compared to Mode 1.
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3. Notations and Preliminaries
3.1. Problem Formulation

FSCIL sequentially provides training sets D(1), D(2), ...,

D(s),...,D(S), where D(s) := {(x(s)
n , y

(s)
n )}|D

(s)|
n=1 with input

data x
(s)
n , e.g., an image, and corresponding ground-truth

labels y
(s)
n . The labels y

(s)
n ∈ C(s) are mutually exclusive

across different training sets, i.e., ∀i ̸= j, C(i) ∩ C(j) = ∅.
The training sets are denoted as sessions, whereby the first
training set is denoted as the base session, providing a larger
number of training examples and classes. The goal of the
base session is to learn a meaningful representation, where
we can distinguish between the ways (i.e., classes) in C(1).
The following sessions provide training sets D(s) of size
|D(s)| = c · k, where c = |C(s)| is the number of ways and
k the number of training samples per way, hence we call it
c-way k-shot. In a given session s, one only has access to
the corresponding training set D(s); the training sets of the
previous sessions 1, 2, ..., s − 1 are not available anymore.
The model is tested on a session-specific evaluation set E(s)

that contains samples from all previous sessions as well as
the current one, i.e., ∀j < i, E(j) ⊂ E(i). We denote the
set of classes that have to be covered during session s as
C̃(s) := ∪s

i=1C(i).

4. Proposed Method: C-FSCIL
4.1. Architecture

C-FSCIL consists of three main components: a feature
extractor, a fully connected layer, and an EM. It can also
have an auxiliary GAA memory, which will be described in
Section 4.2.1. The feature extractor maps the samples from
the input domain X to a feature space: fθ1 : X → R

df ,
where θ1 are the feature extractor’s learnable parameters.
As the feature extractor, we use a five-layer CNN, or a
ResNet-12, to map an input image to the feature space. To
form the embedding network with a hyperdimensional dis-
tributed representation, the feature extractor is connected
to a fully connected layer gθ2 : Rdf → R

d, containing
θ2 ∈ Rd×df trainable parameters where d ≤ 512. Note
that d should be large enough to ensure that the expected
similarity between randomly drawn d-dimensional vectors
is approximately zero with a very high probability [19], but
preferably d < |C̃(S)|. We denote the union of the trainable
parameters in the feature extractor and the fully connected
layer as θ = (θ1, θ2).

The fully connected layer produces a support vector for
every training input. These support vectors are combined
to compute a set of d-dimensional prototype vectors to be
stored in the EM (more details in Section 4.2). Besides stor-
ing the prototype vectors, the EM contains a value memory
of one-hot labels, and it is overall referred to as a key-value
memory. The prototype vectors stored in the EM are not
accessed by stating a discrete address, but by comparing
the cosine similarities between a query from the embed-
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Figure 2. The C-FSCIL architecture consists of a feature extrac-
tion (FE), a fully connected layer (FCL), and an explicit mem-
ory (EM). It also requires a globally average activation memory
(GAAM) only for Modes 2 and 3. It is shown how these compo-
nents will evolve during a) meta-learning, b) base session, and c)
novel sessions; the updated components are marked in gray while
the frozen ones are kept in white. The three update modes are
shown as well, with emphasis on which components they update
and for how many iterations (1, T , and U ), and which memory
they expand linearly with the number of classes. All three Modes
require meta-learning prior to their base session.

ding network and all the prototype vectors. Given a query
x ∈ E(s) and prototypes P(s) := (p1,p2, ...,p|C̃(s)|), we
compute the score li for class i ∈ C̃(s) as follows:

li = cos(tanh(gθ2(fθ1(x))), (tanh(pi))), (1)

where tanh(·) is the hyperbolic tangent function and
cos(·, ·) the cosine similarity. The hyperbolic tangent has
proven to be a useful non-linearity in the hyperdimen-
sional MANNs [21], limiting the norm of activated proto-
types and embedding outputs. Moreover, the cosine sim-
ilarity resolves the norm and bias issues usually encoun-
tered in FSCIL by focusing on the angle between the ac-
tivated prototypes and embedding outputs, while ignoring
their norm [18, 29]. Overall, this forms a content-based at-
tention mechanism between the embedding network and the
EM by computing a similarity score for each memory entry
with respect to a given query. This attention vector is sharp-
ened by a soft absolute sharpening function ϵ(·) leading to
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quasi-orthogonality [21]. See Appendix A.2.2. The result-
ing attention vector serves to read out the value memory.

The embedding network (θ1, θ2) and the EM are meta-
learned by solving various few-shot problem sets that grad-
ually enhance the quality of the mapping (see Fig. 2a).
This is done by gradually learning to assign nearly quasi-
orthogonal vectors to different image classes, and mapping
them far away from each other in the hyperdimensional
space. This space does not run out of such dissimilar vectors
for newly encountered classes. To improve inter-class sep-
aration, C-FSCIL builds on top of the meta-learning setup
and offers three modes for updating that are described in the
following section.

4.2. Update Modes

C-FSCIL does not need to keep track of all class repre-
sentations in a centralized fashion. Rather, it relies on the
hyperdimensional embedding space to incrementally cre-
ate maximally separable classes with three different tech-
niques that trade off memory-compute cost for improved ac-
curacy. In the first mode, the embedding network is already
enforced (during meta-learning) to provide a valid quasi-
orthogonal vector for a novel class, as described in Sec-
tion 4.2.1. This mode learns online without any gradient-
based parameter update. In the second mode, the aver-
aged prototypes are bipolarized to achieve better quasi-
orthogonality, followed by the retraining of the fully con-
nected layer (Section 4.2.2). In the third mode, the quality
of separation is further improved by prototype nudging and
fine-tuning of the fully connected layer (Section 4.2.3). The
three modes are illustrated in Fig. 2. None of them update
the weights in the feature extractor after the meta-learning.

4.2.1 Mode 1: Averaged Prototypes

Earlier works on few-shot learning networks [45, 50] have
proposed the use of class means as a single prototype per
class, and then classified a query to the nearest prototype.
Inspired by these networks, we also represent each class
by a single prototype vector by computing the class-wise
average over all the support vectors that belong to a class.
The prototypes are stored in the EM, which continuously
expands over time as new prototypes are computed in the
new sessions (see Fig. 2b and c; Mode 1). The EM stores
prototypes P(s) = (p1,p2, ...,p|C̃(s)|),P

(s) ∈ R
d×|C̃(s)|

of all classes that have been exposed to the model so far,
whereby a prototype for class i is determined as follows:

pi(D(s), θ) =
1

k

|D(s)|∑
n=1

s.t. y(s)
n =i

gθ2

(
fθ1

(
x(s)
n

))
(2)

= gθ2

1

k

|D(s)|∑
n=1

s.t. y(s)
n =i

fθ1

(
x(s)
n

) (3)

= gθ2

(
ai(D(s), θ1)

)
,∀i ∈ C(s). (4)

The linearity of gθ2(·) enables the step from (2) to (3).
Each ai, as a df -dimensional compressed vector, repre-
sents the globally averaged activations of class i, and al-
lows the determination of the corresponding prototype us-
ing gθ2(·). The globally averaged activation (GAA) mem-
ory keeps track of all past averaged activations A(s) :=(
a1,a2, ...,a|C̃(s)|

)
,A(s) ∈ Rdf×|C̃(s)|. Mode 1 does not

need the GAA memory, because the GAA memory main-
tains the compressed activations of the past classes that will
be needed for retraining in the next two modes.

4.2.2 Mode 2: Retraining on Bipolarized Prototypes

As the number of prototypes increases with the new ses-
sions, they fall short in discriminating between different
classes due to insufficient inter-class separability. To this
end, we adjust the prototypes and the fully connected layer
to better guide the activations that are provided by the
frozen feature extractor. We follow a two-stage strategy,
where we first adjust the prototypes and then retrain the
fully connected layer to align the averaged activations with
the newly adjusted prototypes.

The first step tries to create separation between nearby
prototype pairs, which optimally yields close to zero cross-
correlation between the prototypes pairs. A computation-
ally cheap yet effective option is to add some sort of noise
to the prototypes, e.g., quantization noise. We propose to
quantize the prototypes to bipolar vectors by applying the
element-wise sign operation, defined as K∗ = sign(P(s)).

Next, the embedding has to be retrained such that its
output aligns with the bipolarized prototypes. Instead of
attempting to optimize every training sample, we aim to
align the globally averaged activations available in the GAA
memory, defined in (2), with the bipolarized prototypes
(K∗). The final fully connected layer of the embedding
network has the task of mapping localist features from the
feature extractor to a distributed representation. Hence, we
find that exclusively updating the parameters of the fully
connected layer θ2 is sufficient, while the parameters of the
feature extraction θ1 are kept frozen during retraining. Due
to the averaged prototype-based retraining and the linearity
of the fully connected layer, it is sufficient to pass the av-
eraged activations from the GAA memory through the fully
connected layer.

The fine-tuning of the fully connected layer is based on
iterative updates using a loss function that strives to maxi-
mize the similarity between the averaged activations and the
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bipolar prototypes:

LF

(
θ
(t)
2 ,K∗,A

)
= −

|C̃(s)|∑
i=1

cos
(
tanh(k∗

i ), tanh(gθ(t)
2
(ai))

)
(5)

θ
(t+1)
2 = θ

(t)
2 − β

∂LF

(
θ
(t)
2 ,K∗,A

)
∂θ

(t)
2

(6)

where β is the update rate.
After T iterations of parameter updates, the final proto-

types P∗ are determined by passing the globally averaged
activations through the fully connected layer one last time.
The fully connected layer was already fine-tuned on the
quasi-orthogonal bipolarized prototypes and therefore these
final generated prototypes also tend to be quasi-orthogonal.
Moreover, the final prototypes provide a better alignment
than the earlier bipolarized prototypes. Fig. 2 illustrates this
process in Mode 2.

4.2.3 Mode 3: Retraining on Nudged Prototypes

This mode proposes an improved prototype alignment strat-
egy based on solving an optimization problem instead of
simply bipolarizing the prototypes. Given a set of initial
prototypes, generated by the meta-learned embedding net-
work, C-FSCIL first optimizes them to yield the nudged
prototypes. C-FSCIL then fine-tunes the fully connected
layer to align it with the nudged prototypes.

We aim to find the nudged prototypes that simultane-
ously a) improve the inter-class separability by attaining
a lower similarity between the pairs of nudged prototype
vectors, and b) remain close to the initial averaged proto-
types generated by the meta-learned embedding network.
We set the initial nudged prototypes to the current proto-
types stored in the EM, i.e., K(0) := P(s). The nudged
prototypes are then updated U times in a training loop to
find an optimal set of prototypes unique to the given A(s)

available in the GAA memory (see Fig. 2 Mode 3).
The updates to the prototypes are based on two distinct

loss functions that aim to meet the two aforementioned ob-
jectives. The first main objective is to decrease the inter-
class similarity, which is achieved by minimizing the cross-
correlation between the prototypes:

LO(K
(u)) =

|C̃(s)|∑
i,j=1
i ̸=j

σ
(
cos

(
tanh(k

(u)
i ), tanh(k

(u))
j )

))
,

(7)

The activation function σ(·) penalizes prototype pairs with
large absolute cross-correlations:

σ(c) := eα·c + e−α·c − 2,∀c ∈ R, (8)

where α = 4 controls the steepness of the loss. Optimally,
all of the prototypes would be orthogonal due to having zero
cross-correlation, which is not possible when the growing
number of classes exceeds the number of dimensions. In-
stead, we focus on finding the quasi-orthogonal vectors that
can meet the constraint of d < |C̃(s)|. There is a large num-
ber of quasi-orthogonal vectors that can be found by mini-
mizing the proposed loss function LO.

The second objective is to keep the updated prototypes
similar to the initial prototypes K(0). This avoids signifi-
cant deviations from the original representations of the ini-
tial base categories on which the embedding network was
trained during meta-learning. We retain high similarity be-
tween the currently updated and the initial prototypes by
adding the following loss function:

LM(K(u),K0) = −
|C̃(s)|∑
i=1

cos
(
tanh(k

(u)
i ), tanh(k

(0))
i )

)
.

(9)

Finally, the nudged prototypes are updated for U itera-
tions, whereby one update is defined as:

K(u+1) = K(u) − γ
∂(LO(K

(u)) + LM(K(u),K(0)))

∂K(u)
,

(10)

where γ denotes the update rate. The final nudged proto-
types K∗ := K(U) will be used to retrain the fully con-
nected layer for T iterations using the loss (5) and the up-
date rule (6). Akin to Mode 2, the final prototypes are deter-
mined by passing the globally averaged activations through
the fully connected layer after retraining.

5. Experiments
5.1. Datasets

We evaluate our methods on miniImageNet [41], CI-
FAR100 [25], and Omniglot [27]. For the evaluation on
miniImageNet and CIFAR100, we follow the same FSCIL
procedure as in [48], dividing the dataset into a base session
with 60 classes and eight novel sessions with a 5-way 5-shot
problem each. For Omniglot, we propose a new split that
follows the common practice in FSCIL [48]. It contains a
base session with 1200 classes and nine novel sessions with
a 47-way 5-shot problem each, yielding 423 novel classes
overall. See Appendix A.1 for more details.

5.2. Experimental Setup
miniImageNet and CIFAR100. For the natural image
datasets, we use a Resnet-12 architecture as feature extrac-
tor [11,55]. It consists of four residual blocks with block di-
mensions [64, 160, 320, 640], each containing three convo-
lutional layers with batchnorm and ReLU activation. After
the final global average pooling, we get output activations
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Table 1. Classification accuracy (%) on miniImageNet in the 5-way 5-shot FSCIL setting. [∗]: Upper bound based on the visual illustration
in the corresponding work.

Session (s) 1 2 3 4 5 6 7 8 9
No. of classes |C̃(s)| 60 65 70 75 80 85 90 95 100

AL-MML [48] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42
IDLVQ-C [5] 64.77 59.87 55.93 52.62 49.88 47.55 44.83 43.14 41.84
Semantic KD∗ [6] <62 <59 <54 <50 <49 <45 <42 <40 <39
VAE∗ [7] <62 <60 <54 <52 <50 <49 <46 <44 <43
F2M [44] 67.28 63.80 60.38 57.06 54.08 51.39 48.82 46.58 44.65
CEC [56] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63

C-FSCIL Mode 1 d=512 (ours) 76.37 70.94 66.36 62.64 59.31 56.02 53.14 51.04 48.87
C-FSCIL Mode 2 d=512 (ours) 76.45 71.23 66.71 63.01 60.09 56.73 53.94 52.01 50.08
C-FSCIL Mode 3 d=512 (ours) 76.40 71.14 66.46 63.29 60.42 57.46 54.78 53.11 51.41

Table 2. Classification accuracy (%) on CIFAR100 in the 5-way 5-shot FSCIL setting. [∗]: Upper bound based on the visual illustration in
the corresponding work.

Session (s) 1 2 3 4 5 6 7 8 9
No. of classes |C̃(s)| 60 65 70 75 80 85 90 95 100

AL-MML [48] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37
Semantic KD∗ [6] <64 <57 <51 <46 <43 <41 <39 <37 <35
VAE∗ [7] <62 <58 <57 <52 <51 <49 <46 <45 <42
F2M [44] 64.71 62.05 59.01 55.58 52.55 49.96 48.08 46.67 44.67
CEC [56] 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14

C-FSCIL Mode 1 d=512 (ours) 77.47 72.20 67.53 63.23 59.58 56.67 53.94 51.55 49.36
C-FSCIL Mode 2 d=512 (ours) 77.50 72.45 67.94 63.80 60.24 57.34 54.61 52.41 50.23
C-FSCIL Mode 3 d=512 (ours) 77.47 72.40 67.47 63.25 59.84 56.95 54.42 52.47 50.47

Table 3. Classification accuracy (%) on Omniglot in the 47-way 5-shot FSCIL setting. [∗]: Reproduced baselines.

Session (s) 1 2 3 4 5 6 7 8 9 10
No. of classes |C̃(s)| 1200 1247 1294 1341 1388 1435 1482 1529 1576 1623

ProtoNet∗ [45] 70.61 70.20 70.01 69.68 69.48 68.99 68.74 68.07 67.60 67.41
CEC∗ [56] 78.91 79.07 78.74 78.60 77.94 77.55 77.18 76.77 76.39 76.11

C-FSCIL Mode 1 d=512 (ours) 84.16 83.82 83.69 83.32 83.22 82.78 82.70 82.32 81.77 81.56
C-FSCIL Mode 2 d=512 (ours) 86.87 86.77 86.57 86.44 86.40 86.20 86.25 85.96 85.63 85.49
C-FSCIL Mode 3 d=512 (ours) 87.21 87.03 86.89 86.60 86.43 86.32 86.13 85.98 85.59 85.70

of dimension df = 640. The fully connected layer has di-
mension d = 512. Motivated by [49] to derive good visual
representations in the embedding, we pretrain the feature
extractor in the standard supervised classification on the
base session by replacing the EM with an additional aux-
iliary fully connected layer of dimension d× 60. The addi-
tional fully connected layer is discarded and replaced by the
EM after the pretraining. This pretraining step improved the
overall accuracy on the base session by up to 15%. Next, the
meta-learning is attained by drawing a new 60-way 5-shot
problem in every iteration and updating the model based on
ten queries per way. The model is trained for 70,000 iter-

ations using a stochastic gradient descent (SGD) with mo-
mentum 0.9 and weight decay 5×10−4. The learning rate is
initially set to 0.01 and reduced by 10× at iterations 30,000
and 60,000.

In Mode 2, the fully connected layer is retrained for
T = 10 iterations at an update rate β = 0.01. In Mode 3,
the prototype nudging is done for U = 100 iterations at
an update rate γ = 0.01, and the fully connected layer is
retrained for T = 50 iterations at an update rate β = 0.01.

Omniglot. For the Omniglot dataset, we use a feature
extractor which involves 4 convolutional layers with 128

9063



channels and 2×2 maxpooling at the end of the second and
fourth layer, followed by a fully connected layer that resizes
the flattened embedding to df = 512 before feeding to the
retrainable fully connected layer (d = 512) that outputs the
prototypes. During the meta-learning the model is trained
for 70,000 iterations with an Adam optimizer with a learn-
ing rate of 10−4. In Mode 2, the fully connected layer is re-
trained for T = 20 iterations with a learning rate β = 10−4.
In Mode 3, the prototype nudging is done for U = 20 iter-
ations with an update rate γ = 0.01, followed by a similar
setting for retraining the final fully connected layer.

5.3. Comparative Results

miniImageNet and CIFAR100. We compare our perfor-
mance on the two natural image datasets with different
state-of-the-art methods [5–7, 44, 48, 56], as shown in Ta-
ble 1 and Table 2. Our method sets the new state-of-the-
art on both datasets. Notably, even the simple prototype
averaging (Mode 1) outperforms all other methods on both
miniImageNet and CIFAR100. Note that Mode 1 does not
involve any retraining or the use of auxiliary GAA memory.
The EM can also be compressed as shown in Table A9.

In the other two modes, the prototype quasi-
orthogonalization consistently improves the accuracy.
The prototype bipolarization (Mode 2) is more effective for
a lower number of classes (sessions s ≤ 3 on miniImagenet
and sessions s ≤ 8 on CIFAR100), whereas the prototype
nudging (Mode 3) outperforms all other methods for a large
number of classes. Hence, the experimental results suggest
that the classification of relatively simple problems (low
number of ways) requires computationally cheap updates
(e.g., Mode 1 or 2) for the best performance. On the other
hand, harder problems (large number of ways) benefit from
more sophisticated update mechanisms (i.e., Mode 3).

Omniglot. Table 3 compares the accuracy on the Om-
niglot dataset. As no prior works evaluated their methods on
Omniglot in the FSCIL setting, we adapted ProtoNet [45]
and CEC [56] as additional baselines. See Appendix A.4
for more details. C-FSCIL starts with 84.16% accuracy in
the base session and ends with 81.56% in the last session
using Mode 1. This small accuracy drop is further reduced
by the other modes. In Mode 3, C-FSCIL achieves an accu-
racy of 87.21% in the base session and of 85.70% in session
10, outperforming both the ProtoNet and CEC baselines by
a large margin of ≥16.99% and ≥8.30%, respectively.

For an additional comparison on Omniglot, we consider
an alternative continual incremental learning setting devel-
oped by [2], that arranges 600 instead of the previous 423
classes in the novel sessions, but does not consider the eval-
uation on the base classes. As shown in Appendix A.4.3, we
find that all modes of C-FSCIL performs consistently better
than the best baseline, ANML [2].

5.4. Ablation study

We conduct extensive ablation experiments on the di-
mension d, the attention function, and the feature extractor.
Here, we list the main findings of the ablation. Detailed
results and discussions are available in Appendix A.2.

Dimension. We analyze the effect of reduced dimen-
sions in Tables A1–A3. We find that C-FSCIL in Mode 3
allows to reduce the dimension below the number of classes
(d < |C̃(S)|), e.g., d = 64 for miniImageNet and CIFAR100
or d = 128 for Omniglot, yielding marginal accuracy degra-
dation while still outperforming all baseline methods.

Attention function. We compare the soft absolute [21]
attention with the exponential attention, which is commonly
used in softmax. Tables A4–A6 show the superiority of
the soft absolute attention function, which particularly im-
proves the accuracy when novel classes are encountered.
Feature extractor. Most baseline methods on miniIma-
geNet and CIFAR100 use a ResNet-18 as feature extrac-
tor [5–7, 44, 48], requiring slightly fewer parameters com-
pared to our ResNet-12 (12.4 M vs. 11. 2M). Tables A7–A8
show that a reduced ResNet-12 (8.0 M parameters) main-
tains a high accuracy (<1% drop) and still outperforms all
baseline methods.

6. Conclusion and Outlook

We propose C-FSCIL for few-shot class-incremental
learning in which the model is either built rapidly in one
pass without gradient-based updates (Mode 1), or retrained
with a small constant number of iterations (Modes 2 and
3). The C-FSCIL memory grows at most linearly with
the number of encountered classes. The simple averaged
prototypes in Mode 1 outperform all other methods for CI-
FAR100, miniImageNet, and Omniglot. In Modes 2 and 3,
the optimization of the prototypes and the fixed-sized fully
connected layer, through a maximum of 50 iterations, leads
to higher accuracy (up to 4%) when the maximum number
of classes is encountered.

Moreover, simply training with class prototypes having
large inter-class separation provides robustness against ad-
versarial perturbations, without requiring any adversarial
training [43]. In a similar vein, C-FSCIL naturally pushes
the meta-learned prototypes towards quasi-orthogonality.
Furthermore, the precision of such robust prototypes can
be reduced, as confirmed by the bipolarization in Mode 2,
which makes them ideal for implementation on emerging
hardware technologies exploiting non-volatile memory for
in-memory computation [20, 21].
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