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Abstract

Semi-supervised learning (SSL) is a method to make bet-
ter models using a large number of easily accessible un-
labeled data along with a small number of labeled data
obtained at a high cost. Most of existing SSL studies fo-
cus on the cases where sufficient amount of labeled sam-
ples are available, tens to hundreds labeled samples for
each class, which still requires a lot of labeling cost. In
this paper, we focus on SSL environment with extremely
scarce labeled samples, only 1 or 2 labeled samples per
class, where most of existing methods fail to learn. We pro-
pose a propagation regularizer which can achieve efficient
and effective learning with extremely scarce labeled sam-
ples by suppressing confirmation bias. In addition, for the
realistic model selection in the absence of the validation
dataset, we also propose a model selection method based on
our propagation regularizer. The proposed methods show
70.9%, 30.3%, and 78.9% accuracy on CIFAR-10, CIFAR-
100, SVHN dataset with just one labeled sample per class,
which are improved by 8.9% to 120.2% compared to the ex-
isting approaches. And our proposed methods also show
good performance on a higher resolution dataset, STL-10.

1. Introduction
Semi-supervised learning (SSL) is a machine learning

technique that trains a model using a small number of la-
beled data and a large number of unlabeled data. As it
can show comparable performance to supervised learning,
it is attracting more attention from researchers. Semi-
supervised learning techniques have shown remarkable
performances in various fields such as image segmenta-
tion [5, 8, 31], object detection [1, 11, 19], text classifica-
tion [4, 10, 20], and graph embedding [27, 29] as well as
image classification [17, 27].

*Corresponding author.

Most SSL methods [2,3,12,17,27,32] are based on con-
sistency regularization [14,26] and pseudo labeling [15,21].
Consistency regularization is a method developed under the
assumption that the prediction will not change significantly
even if a slight perturbation is applied to the sample. Pseudo
labeling is a special case of self-training [25,33], which uses
the predicted output of unlabeled samples as pseudo-labels
to train a model.

In SSL, maximum utilization of unlabeled samples is im-
portant, but it is also important learning with a small number
of labeled samples because labeled samples are usually at a
high cost. However, only a few researches focused on learn-
ing with scarce labeled samples. We need to study on how
SSL works and how to improve its performance in label-
scarce situations.

MixMatch [3], Unsupervised Data Augmentation for
Consistency Training (UDA) [32], and ReMixMatch [2]
showed good performances with relatively many labeled
samples such as 25, 50, 100, 200, and 400 labeled examples
per class for CIFAR-10 [13]/SVHN [22] dataset. Recent
approaches such as FixMatch [27], SelfMatch [12], Flex-
Match [35], and CoMatch [17] considered label-scarce sit-
uations. FixMatch, SelfMatch, and FlexMatch used at least
4 labeled examples per class and CoMatch used at least 2
samples per class. However, they were unstable and showed
a poor performance with a small number of labeled samples.

One of the serious problems of scarce-label situations is
confirmation bias [16, 18, 30] that can occur in the label
propagation [9]. Confirmation bias refers to a phenomenon
in which the model learns incorrect predictions for unla-
beled data, so that the confidence of the incorrect prediction
is increased and the model has resistance to new (correct)
information that can be corrected. If there are enough la-
beled data, the propagation of wrong information can be
canceled out by the correct information around the incorrect
prediction. SSL can avoid confirmation bias of the model.
On the other hand, if labeled data is few in number, incorrect
predictions can be propagated widely, and the probability of
not receiving appropriate correct information can increase.
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Confirmation bias makes a significant adverse effect on the
training of the model through SSL. This problem can be
more serious in the approaches based on hard pseudo labels
such as UDA, FixMatch, SelfMatch, FlexMatch.

Another serious problem in extremely label-scarce sit-
uations is the model selection. As in supervised learn-
ing, the stopping condition is very important in semi-
supervised learning environments. In supervised learning,
validation datasets are usually used to check the stopping
condition, but in semi-supervised learning, especially in
scarce-label environments, there are not enough labeled
samples for validation. However, previous SSL approaches
[2, 3, 12, 17, 27, 32] disregard about the stopping condi-
tion or the model selection. For performance evaluation,
they simply took the median of the last 20 model perfor-
mances [3, 28]. In scarce-label situations, the learning of
SSL can be very unstable because of confirmation bias. A
model with a low training loss does not guarantee a good
test accuracy.

We propose propagation regularizer to improve the per-
formance of SSL in extreme scarce-label environments
where just 1 or 2 labeled samples are available per class.
The propagation regularizer suppresses confirmation bias
that can propagate incorrect predictions due to the ex-
tremely small number of labeled data, allowing SSL learn-
ing to proceed stably. We also propose a model selection
method based on the loss of the propagation regularizer to
select a well-trained model in extremely label-scarce sce-
nario. These methods require very low additional compu-
tational cost and they are easy to adopt to the existing SSL
approaches.

We show that confirmation bias can easily occur and
make an adverse effect on model training in the extremely
label-scarce scenario through toy examples and CIFAR-10
dataset. We propose propagation regularizer and the model
selection method. We present the state-of-the-arts perfor-
mance in an extremely label-scarce scenario with 1 or 2 la-
beled examples per class.

2. Confirmation Bias in Extremely Label-
scarce Setting

Most SSL approaches have troubled with confirmation
bias. In extreme scarce-label situation, confirmation bias
problem is worsen. In this section, we evaluate how
much confirmation bias makes an adverse effect on semi-
supervised learning process in extreme label-scarce situa-
tions.

We conduct experiments with FixMatch [27], a represen-
tative pseudo-labeling method in SSL, and three datasets:
moon dataset, star dataset and CIFAR-10 [13]. The experi-
ments confirm that confirmation bias easily occurs in label-
scarce settings and can have a significant impact on perfor-
mance.

(a) Moon dataset with Rand2 (d) Star dataset with Rand2

(b) Moon dataset with Exp2 (e) Star dataset with Exp2

(c) Moon dataset with Rand20 (f) Star dataset with Rand20

Figure 1. Class boundaries by FixMatch. Labeled samples are in
colors and unlabeled samples are in grey. Each crescent is a class
in moon dataset and each wing is a class in star dataset.

2.1. Analysis with Toy Examples

In order to check confirmation bias occurring in SSL
with extremely scarce labeled samples, we train a 3-layer
neural network model with FixMatch on 2-dimensional
moon and star datasets. The moon dataset consists of two
classes, 1k unlabeled samples. The star dataset consists of
5 classes generated with a Gaussian distribution. Each class
has 200 unlabeled samples. In each dataset, three sets of
labeled examples, Rand2, Exp2 and Rand20, are given to
verity that the initial labeled samples have a significant ef-
fect on confirmation bias during training. Rand2 contains
two labeled samples per class, randomly selected from the
unlabeled samples; Exp2 consists of two labeled samples
per class selected by experts so that the labeled samples
represent the distribution of the unlabeled dataset well; and
Rand20 contains 20 labeled samples per class randomly se-
lected from the unlabeled samples. For FixMatch, Gaus-
sian noise with different strength are used for the weak and
strong augmentations.

Figures 1a to 1c show the moon datasets and the learn-
ing results of FixMatch, and Figs. 1d to 1f show the result
for the star datasets. It can be seen that the class boundaries
do not match the data distribution when 2 randomly cho-
sen labeled samples per class are given as shown in Figs. 1a
and 1d. As shown in Figs. 1c and 1f, when more labeled
samples are given, the class boundaries are properly gener-
ated. In Figs. 1b and 1e, we can notify that confirmation
bias has less effect on the models if labeled samples are
carefully chosen.

As shown in Figs. 1a and 1d, if labeled samples do not
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Method Fold
Class

Entropy Accuracy
0 1 2 3 4 5 6 7 8 9

FixMatch

Fold 1 0.11 0.09 0.02 0.00 0.45 0.00 0.09 0.01 0.11 0.11 0.72 62.29
Fold 2 0.11 0.10 0.02 0.08 0.26 0.00 0.10 0.09 0.10 0.13 0.90 67.18
Fold 3 0.22 0.01 0.08 0.00 0.36 0.00 0.07 0.08 0.00 0.17 0.72 53.05
Fold 4 0.00 0.09 0.01 0.00 0.19 0.01 0.36 0.10 0.11 0.11 0.77 51.31
Fold 5 0.10 0.09 0.01 0.00 0.01 0.17 0.13 0.30 0.10 0.09 0.84 66.23

Table 1. Class ratio and entropy of pseudo labels for CIFAR-10 dataset with 10 labeled samples.

well represent the distribution of each class, label propaga-
tion occurs in a skewed way during SSL learning process
and confirmation bias can be intensified. The label propa-
gation process is prone to bias because there are only two
labeled samples per class and the distributions of unlabeled
and labeled samples do not match each other.

Even in the case where the number of labeled samples
is very small, the confirmation bias can be suppressed if
the labeled samples can represent the class distribution, as
shown in Figs. 1b and 1e. However, it is not usually ex-
pected that a few randomly selected samples properly rep-
resent the data distribution. As seen in Figs. 1c and 1f, if
there are many randomly chosen labeled samples, they can
represent the class distribution, and the class boundaries are
learned properly.

2.2. Analysis with CIFAR-10 Dataset

In order to verify that real-world datasets are prone to the
confirmation bias problem, we conduct the experiment with
the CIFAR-10 dataset. In this experiment, we use 1 labeled
sample per class and train FixMatch with Wide Residual
Network 28-2 model [34]. The experiment was performed
in 5 folds and, in each fold, labeled examples are randomly
selected from the training data.

The performance is the median accuracy of the last 20
models, and it is averaged over 5 folds. The average ac-
curacy is 60.01%. The highest accuracy among 5 folds is
67.18%, and the lowest is 51.31%, showing a large variance
in performance.

In order to prove that each model of 5 folds does not
generate a good model due to confirmation bias, we observe
the class ratio of pseudo-labels in Tab. 1. If each model
is well trained without confirmation bias on the CIFAR-10
dataset, the ratio of each class in pseudo-labels will appear
as 0.1, and the entropy of the ratios will be 1.0. The entropy
is defined as follows:

Entropy = −
c∑
i

ri logc ri (1)

where ri is the ratio of class i and c is the number of classes.
We notice that the class ratios in each fold are not bal-

anced in Tab. 1. In detail, in the first fold, unlabeled sam-
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Figure 2. Training loss, entropy of pseudo-labels and test accuracy
of FixMatch on CIFAR-10 with 10 labeled samples (Fold 3).

ples are never pseudo-labeled as Class 3 or 5 and only small
number of unlabeled samples are pseudo-labeled as Class
7, which results in a low entropy of 0.72. Such tendency
is observed for all 5-fold. And even in Fold 2 with the
highest entropy of 0.90, the ratio of Class 3 is 0. The av-
erage of 5-fold entropy for pseudo-labeling of FixMatch on
CIFAR-10 with 10 labeled samples is 0.79. What is inter-
esting is that the entropy and the accuracy of the model has
a strong correlation of 0.69. Higher entropy means smaller
confirmation bias; thus, we surmise that confirmation bias
has a significant effect on a model’s performance. We also
run the same experiment with 25 labeled samples per class.
The average entropy is 0.99, which means that there is little
confirmation bias.

Through the experiment, we confirm that confirmation
bias is also easy to occur in real-world datasets, that the
smaller the number of labeled samples, the stronger effect
confirmation bias makes, and that the strength of confir-
mation bias, measured as entropy of pseudo-class ratios, is
strongly associated with the model performance.

We also observe the test accuracy, the training loss, and
the entropy of pseudo-labels by epoch. Figure 2 shows
the accuracy, the training loss, and the entropy of Fold 3
by epoch. We see that the training is very unstable. At
the beginning of training, the entropy of pseudo-labels in-
creases, and the test accuracy also increases. This shows
that consistency regularization performs beneficially along
with pseudo-labeling and the SSL model is being trained
well. However, the test accuracy drops sharply around 600

14403



Pearson’s Correlation Coefficient Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Training Loss-Accuracy 0.175 0.364 0.747 0.257 0.406 0.390
Entropy-Accuracy 0.835 0.807 0.950 0.841 0.846 0.856

Table 2. Pearson’s Correlation Coefficient of training loss-test accuracy and entropy-test accuracy during FixMatch training on the CIFAR-
10 with 10 labeled samples.

epochs and the same time the entropy also sharply drops.
Afterward, the performance of the model recovers to some
extent, but it hardly regains the previous best performance.

From the observation, we notice two things. The per-
formance of the model does not gradually improve as the
training progresses. The learning of the model is unstable,
showing the best performance in the middle of training, and
then rapidly dropping at some point. Therefore, choosing
the last updated model or the model with the lowest train-
ing loss does not guarantee the best model.

The second is more important. We perceive that the cor-
relation of test accuracy and pseudo-label class entropy is
much higher than that of test accuracy and training loss.
Table 2 shows the correlation coefficients between test ac-
curacy and entropy, and between test accuracy and training
loss. This observation gives us a hint on how to suppress
confirmation bias in training and how to better select a good
model.

3. Proposed Method

In pseudo-labeling process, the model learns the model
output, i.e., it repeatedly learns its own erroneous predic-
tion, resulting in confirmation bias [18, 30]. This phe-
nomenon can be amplified especially in an extremely scarce
labeled scenario with one or two labeled examples in each
class.

Based on our experimental observations, we propose a
propagation regularizer method to suppress confirmation
bias in an extremely scarce label environment, and a model
selection method that selects the optimal model without val-
idation data among models generated during the learning
process.

3.1. Propagation Regularizer

In pseudo-labeling process, incorrect predictions of the
model can be used for the next model training, which causes
confirmation bias. We may infer that we need to keep the
balance between pseudo-labels based on our observation
that the correlation between test accuracy and the entropy
of pseudo-classes is high as shown in Tab. 2. Learning im-
balanced pseudo-labeled sample will augment confirmation
bias.

For example, let us consider SSL learning with two
classes, A and B. If a model in the middle of SSL training

produces more pseudo-labels of class A than B, the imbal-
anced pseudo-labeled samples are used for the next model
training. Then, the next model is easy to be biased to class
A, and the confirmation bias will be inflated.

To solve this problem, a regularization term is designed
so that the pseudo-labeling for the unlabeled samples should
be balanced for each class as follows:

Lpr = 1− (−PU · logc(PU)) (2)

where c is the number of classes. PU is the masked aver-
aged probability distribution of unlabeled examples, unla-
beled samples U in a batch, defined as follows:

PU =
1

|U|
∑
u∈U

1 (max (p (u)) ≥ τ) p (u) (3)

where τ is the confidence threshold for pseudo-labeling and
p(u) is the softmax output of an unlabeled example u.

In Eq. (3), the average of predictions is obtained for sam-
ples having values greater than or equal to a threshold τ in a
batch of unlabeled examples. To convert this to a minimiza-
tion form, the entropy of PU is subtracted from 1. If the
pseudo-labels of unlabeled examples are evenly distributed,
the value of Lpr will converge to 0. By simply adding this
regularization term to the SSL loss, class-balanced pseudo-
labeling can be achieved. Through this, we can alleviate the
confirmation bias in extremely scarce example scenario.

3.2. Model Selection based on Propagation Regu-
larizer and Utilization

Model selection is crucial in semi-supervised learning.
As observed in Sec. 2, the performance of the model is not
stable during training, because it is affected much by confir-
mation bias. If we have a validation dataset, we may choose
the best model as we do in supervised learning. However,
there are not sufficient labeled samples to be used for vali-
dation in our case.

Some SSL approaches [14, 21, 24, 30, 32] simply select
the last model. Many recent SSL studies [2,3,12,17,27,32]
did not propose a model selection method. They took the
median of the performance of the last 20 models for model
evaluation. This may be acceptable as a model performance
comparison method [3,28] in plain environments. However,
as shown in Fig. 2, model performance is very unstable in
an extreme label-scarce environment. This makes model
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Method Fold
Class

Entropy Accuracy
0 1 2 3 4 5 6 7 8 9

FixMatch + Sel + Reg

Fold 1 0.10 0.12 0.07 0.08 0.18 0.11 0.12 0.03 0.11 0.09 0.97 68.60
Fold 2 0.09 0.12 0.06 0.06 0.09 0.09 0.18 0.10 0.10 0.11 0.98 59.47
Fold 3 0.07 0.17 0.04 0.09 0.13 0.08 0.12 0.03 0.09 0.17 0.95 72.89
Fold 4 0.17 0.11 0.02 0.05 0.10 0.15 0.13 0.07 0.12 0.08 0.95 78.81
Fold 5 0.12 0.11 0.01 0.10 0.03 0.10 0.12 0.21 0.12 0.08 0.94 74.58

Table 3. Class ratio and entropy of pseudo labels for CIFAR-10 dataset with 10 labeled samples. The proposed model selection and
propagation regularizer are applied.

selection very difficult and hinders SSL approaches from
being used in real-world applications.

To select an appropriate model, we propose a measure
based on confirmation bias and utilization of unlabeled sam-
ples. A good SSL model would utilize unlabeled samples as
much as possible and be less affected by confirmation bias.
To choose such models, we propose the utilization measure
of unlabeled samples and the influence measure of confir-
mation bias.

For the utilization measure of unlabeled samples, we
propose the following equation:

TU =
1

|U|
∑
u∈U

1(max(p(u)) ≥ τ) (4)

Equation (4) shows the ratio of pseudo-labeled examples
satisfying the confidence threshold for pseudo-labeling, τ .
If the model uses all unlabeled examples in a batch for train-
ing, the value of TU is 1; and if none of the unlabeled ex-
amples is used at all, it is 0. To measure the influence of
confirmation bias, we use Eq. (2), which is the proposed
propagation regularizer. By combining Eqs. (2) and (4), we
develop a metric for the model selection. It is defined as
follows:

Sel = (1− Lpr) + TU (5)

A good SSL model utilizes most unlabeled samples and is
less affected by confirmation bias, so the value will be max-
imized. In the training process, we evaluate Sel at each
epoch, and choose the model with the maximum value of
Sel as the final model.

The proposed model selection method does not use an
additional validation dataset. We can select an appropriate
SSL model without a validation dataset in scarce-label situ-
ations.

4. Experiment

To verify the proposed propagation regularizer and
model selection methods, we combine the proposed meth-
ods to each of UDA [32] and FixMatch [27], and we per-
form SSL image classification benchmarks. We compare

(a) Moon dataset with Rand2 (b) Star dataset with Rand2

Figure 3. Datasets and class boundaries by FixMatch with the
proposed method. In the dataset, labeled samples are in colors
unlabeled samples are in grey. In moon datasets, each crescent is
a class and in star datasets, each wing is a class.

the performance with the current SOTA approaches, Co-
Match [17] and FlexMatch [35], with SVHN [22], CIFAR-
10 and CIFAR-100 [13]. Also, we conduct experiments on
a higher resolution dataset, STL-10 [6], for FixMatch with
our proposed methods. We perform the SSL methods on the
datasets with a various number of labeled examples includ-
ing extremely label-scare scenarios. All experiments were
performed according to SSL evaluation protocols [2, 3, 23].
The experiment results show the superiority of the proposed
method. Our methods show the best performance in the ex-
tremely label-scarce scenario.

4.1. Propagation Regularizer with Toy Examples
and CIFAR-10 Dataset

To confirm that our proposed propagation regularizer
works effectively, we apply the proposed method to the ex-
periment in Sec. 2.

The experimental results for the moon and star dataset
are shown in Fig. 3. In Figs. 1a and 1d, the learned class
distribution are not well represented the data class distribu-
tion because confirmation bias can be intensified. When the
proposed propagation regularizer is applied to FixMatch, it
can be seen that the class distribution is properly learned as
Figs. 3a and 3b.

Table 3 shows the class ratio of pseudo-labels of unla-
beled examples, entropy, and accuracy when FixMatch with
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Method
CIFAR-10 CIFAR-100 SVHN

10 labels 20 labels 40 labels 100 labels 200 labels 400 labels 10 labels 20 labels 40 labels

UDA
51.82 83.53 90.06 24.96 37.76 48.98 24.02 67.84 96.51
±8.51 ±8.05 ±4.37 ±2.22 ±0.74 ±1.73 ±19.68 ±11.05 ±2.54

FixMatch
60.01 75.50 85.57 24.11 35.83 46.04 35.84 55.79 86.73
±7.41 ±10.93 ±5.21 ±1.50 ±1.63 ±1.41 ±10.12 ±30.83 ±21.70

CoMatch
65.10 88.26 92.16 24.19 32.51 41.72 25.36 45.62 76.07
±7.81 ±8.29 ±4.97 ±0.98 ±1.15 ±2.04 ±4.64 ±7.12 ±9.31

FlexMatch
59.06 94.62 94.86 4.47 30.59 46.11 11.02 34.93 77.04

±19.80 ±0.15 ±0.05 ±0.81 ±1.69 ±2.83 ±1.89 ±36.00 ±23.16

UDA 59.71 83.60 90.12 24.95 37.76 49.11 78.91 97.78 96.48
+ Sel ±16.01 ±8.09 ±4.35 ±2.23 ±0.84 ±1.77 ±12.30 ±0.27 ±3.24

UDA 69.87 84.33 91.54 30.30 42.34 50.61 77.98 96.01 97.46
+ Sel + Reg ±9.96 ±7.23 ±2.53 ±0.99 ±1.54 ±1.48 ±32.06 ±3.71 ±0.45

FixMatch 65.73 79.24 89.87 24.17 35.78 46.05 51.40 91.90 96.41
+ Sel ±10.32 ±10.00 ±4.96 ±1.55 ±1.58 ±1.28 ±26.66 ±5.77 ±3.06

FixMatch 70.87 88.20 91.52 27.97 38.96 48.01 69.61 96.26 97.61
+ Sel + Reg ±7.35 ±4.29 ±2.81 ±1.12 ±1.42 ±1.72 ±24.33 ±2.86 ±0.33

Table 4. Comparison of accuracy for CIFAR-10, CIFAR-100 and SVHN on 5 different folds with 1, 2 and 4 labeled samples per class.

Method
STL-10

10 labels 20 labels 40 labels

FixMatch
30.82 43.24 60.92
±6.73 ±6.32 ±5.60

FixMatch 30.07 45.45 63.93
+ Sel ±5.82 ±3.24 ±9.65

FixMatch 37.91 61.00 74.45
+ Sel + Reg ±6.66 ±15.87 ±13.50

Table 5. Comparison of accuracy for STL-10 on 5 different folds
with 1, 2 and 4 labeled samples per class.

the proposed method is applied to the CIFAR-10 dataset. In
Tab. 3, the class ratios in each fold are more balanced than
in Tab. 1, and the accuracy is also improved. The average of
entropy increases from 0.79 to 0.96, and the average perfor-
mance increases from 60.01% to 70.87%. It shows that the
proposed method is working effectively in extremely label-
scarce scenario.

4.2. Dataset and Implementation Details

We conduct experiments on CIFAR-10, CIFAR-100,
SVHN and STL-10. CIFAR-10/100 and SVHN datasets
consist of 3 channels of 32×32 size, and STL-10 consists of
3 channels of 96× 96. CIFAR-10,SVHN and STL-10 con-
sist of 10 classes, and CIFAR-100 consists of 100 classes.
CIFAR-10 consists of 50,000 training images and 10,000
test images. CIFAR-100 consists of 60,000 training images
and 10,000 test images. SVHN consists of 73,257 training
images, 26,302 test images, and 531,131 additional images.

STL-10 consists of 5,000 training images and 100,000 un-
labeled images, and 8,000 test images. In CIFAR-10 and
CIFAR-100, images to be used as labeled data are randomly
selected class-evenly from the training images and the re-
maining training images are treated as unlabeled data. In
SVHN and STL-10, images to be used labeled data are
chosen as the same way from the training and additional
images, and the remainders are treated as unlabeled data.
Unlike CIFAR-10/100 and STL-10, SVHN is not class bal-
anced dataset. The number of samples for each class varies
from 6.47% to 17.28% of the total data.

We set λU = 1, η = 0.03, β = 0.9, τ = 0.95, µ = 7, and
B = 64 for FixMatch, and λcls = 1, η = 0.03, τ = 0.95,
µ = 7, B = 64, α = 0.9, τ = 0.2, K = 2560, T = 0.8, and
λctr = 1 for CoMatch. Those hyperparameters are set based
on the original works [17, 27]. For UDA, we adopt the
same values used by Sohn et al. [27]: λU = 1, η = 0.03,
temperature τ = 1, confidence threshold β = 0.9, µ = 7, and
B = 64. We use RandAugment [7] as strong augmenta-
tion for CoMatch and CTAugment [2] for FixMatch and
UDA. The weight factor of the propagation regularizer, Lpr,
is set 1.0 for CIFAR-100, and 0.4 for CIFAR-10, SVHN,
and STL-10. We use a Wide ResNet-28-2 [34] for CIFAR-
10/100 and SVHN, and Wide ResNet-37-2 for STL-10.

4.3. Results for Extremely Label-scarce Scenario

Results for extremely label-scarce scenario are shown
in Tab. 4. The baselines are UDA, FixMatch and Co-
Match. MixMatch and ReMixMatch were excluded from
the baselines because of low performance with extremely
label-scarce scenario. Their performance of CIFAR-10
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Method
CIFAR-10 CIFAR-100 SVHN

40 labels 100 labels 250 labels 400 labels 1000 labels 2500 labels 40 labels 100 labels 250 labels

FixMatch
85.57 92.63 95.08 46.04 57.90 64.78 86.73 97.78 97.98
±5.21 ±3.21 ±0.08 ±1.41 ±1.21 ±0.48 ±21.70 ±0.20 ±0.21

FixMatch 89.87 93.72 94.13 46.05 57.96 64.71 96.41 97.81 97.95
+ Sel ±4.96 ±1.14 ±0.69 ±1.28 ±1.04 ±0.35 ±3.06 ±0.15 ±0.21

FixMatch 91.52 94.02 94.43 48.01 57.63 65.21 97.61 97.73 97.69
+ Sel + Reg ±2.81 ±0.98 ±0.62 ±1.72 ±0.96 ±0.49 ±0.33 ±0.44 ±0.56

Table 6. Comparison of accuracy for CIFAR-10, CIFAR-100 and SVHN on 5 different folds with 4, 10 and 25 labeled samples per class.

with 10 labeled samples was 17.48% and 31.00%, re-
spectively, which are very lower than the other baselines.
Our approaches are applied to UDA and FixMatch. For
example, FixMatch+Sel is the performance of the model
trained by FixMatch with our model selection, and Fix-
Match+Sel+Reg is for the model trained by FixMatch with
our propagation regularizer and model selection. We evalu-
ate the cases where the number of labeled samples per class
is 1, 2, and 4. The baseline approaches did not propose how
to select trained models, we evaluate them as the authors
did. We choose the median of the last 20 models.

The methods combined with the proposed propagation
regularizer and model selection show the best performance
in every case except CIFAR-10 with 20 and 40 labeled sam-
ples.

In CIFAR-10 with 10 labeled samples, the accuracy of
FixMatch+Sel+Reg is 70.87%, which shows an 8.9% im-
provement compared to CoMatch. With 20 and 40 labels,
CoMatch performs slightly better than models with our ap-
proaches. However, the variance of CoMatch is almost
twice of ours the best model. In 20 labels, the variance
of CoMatch is 8.29 but that of FixMatch+Sel+Reg is 4.29,
and they are 4.97 and 2.81 in 40 labels, respectively. Flex-
Match shows best performance with 20 and 40 labels, but
the performance drops sharply with 10 labels, showing the
second-worst performance.

The experiments with CIFAR-100 also interesting re-
sults. UDA+Sel+Reg is the best with 100, 200, and 400 la-
bels. The improvements over the best baselines are 21.4%,
12.1% and 3.3%, respectively. These results show the ef-
fectiveness of our approaches in large datasets.

The performance improvements with SVHN are 120.2%,
44.1% and 1.1% for 10, 20 and 40 labels, respectively. In
the most scarce case where there is 1 labeled sample per
class, our approaches improve the most. The proposed reg-
ularization and model selection methods effectively worked
on class imbalanced datasets, such as SVHN, as well as on
class balanced datasets, such as CIFAR-10 and CIFAR-100.

Our method most improves the performance on SVHN
than other class-balanced datasets. Our method main-
tains the class balance of pseudo-labels even in imbalanced

datasets. Performance can be improved by preventing the
confirmation bias in the early stage of learning that may oc-
cur due to the class imbalance. It helps suppressing confir-
mation bias as well as dealing with class imbalance.

Especially, our approaches improve much with 1 labeled
sample per class. In CIFAR-10 with 10 labeled samples, the
improvements of UDA+Sel and UDA+Sel+Reg over UDA
are 15.2% and 34.8%, respectively, and the improvements
of FixMatch are 9.5% and 18.1%, respectively. In SVHN
with 10 labels, the improvements of UDA are 228.5% and
224.6%, and those are 43.4% and 94.2% for FixMatch.

FlexMatch shows the best performance in CIFAR-10
with 20 and 40 labeled samples, but it shows the worst
or the almost worst performance in the other cases. Co-
Match shows similar performance patterns to FlexMatch.
FlexMatch and CoMatch showed good performances with
enough labeled samples, but they shows bad performances
in extremely scarce label scenarios.

We also perform experiments with higher resolution
datasets, STL-10, which has 96 × 96 images. Table 5
shows the experimental results. FixMatch+Sel+Reg shows
23%, 39.8%, and 22.2% performance improvement over
FixMatch, confirming that our methods are also effective
in STL-10 dataset.

Through the experiments, we verify that our propaga-
tion regularizer and model selection are very effective to
improve the performance of SSL approaches in extremely
label-scarce scenarios.

4.4. Results with More Examples

Table 6 shows the performance of the propagation regu-
larization and model selection methods for FixMatch with
more labeled examples. We can notice that our approaches
are still valid with large labeled datasets.

In the cases with 10 and 25 labeled samples per class, the
performance gain is reduced because confirmation bias will
also reduce if there are many labeled samples. When the
number of labeled samples is large enough, confirmation
bias can be easily suppressed and the model can be trained
stably. Also, in an environment with enough labeled exam-
ples, the propagation regularizer will lost its influence. Its
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value will be zero because there is little confirmation bias.
Through these experiments, we can conclude that our ap-

proaches effectively suppress confirmation bias regardless
of the number of labeled samples and are generally applica-
ble.

4.5. Computational Cost

Since the proposed model selection method is performed
after training, the training time does not increase. The pro-
posed propagation regularizer is performed on each training
batch, but it requires only a very small computation cost.
When comparing the actual training time, it increases only
by 0.64%. This makes practically no difference.

5. Related Work
Semi-supervised learning tries to make better models us-

ing a large number of easily accessible unlabeled data along
with a small number of labeled data obtained at a high cost.

In studies based on consistency regularization meth-
ods, which are one of the representative methods of semi-
supervised learning, there are many studies such as π
model [14], temporal ensembling [14], Mean Teacher [30]
and VAT [21]. These studies have been conducted using
hundreds to thousands of labeled data. After that, with the
continuous development of SSL studies, its performance
has been improved, and the number of labeled samples
required for semi-supervised learning has been reduced.
UDA [32] and ReMixMatch [2], which use a method of
applying consistency regularization, strong augmentation,
and sharpening to pseudo-labels, showed good performance
by performing semi-supervised learning with fewer samples
per class than previous studies.

Recently, FixMatch [27] and various studies based on
it are being conducted [12, 17, 35]. FixMatch has a rel-
atively simple structure based on UDA and ReMixMatch.
Consistency training is performed by applying strong aug-
mentation such as CTAugment [2], and pseudo-labeling
with threshold. Unlike the relatively simple structure, it
showed outperformed performance on various dataset with
a few labeled examples such as 4 label examples per class.
FlexMatch [35] used flexibly adjust thresholds for differ-
ent classes to consider different learning status and learn-
ing difficulties of different classes. SelfMatch [12] and
CoMatch [17] are SSL methods that adopt self-supervised
learning. SelfMatch showed that self-supervised learning
can serve rich information for SSL model initialization. Co-
Match jointly learns class probabilities and embeddings,
and adopt memory-smoothed pseudo-labeling to mitigate
confirmation bias. FixMatch, FlexMatch, SelfMatch, and
CoMatch showed good performance on small number of
samples. However, it is necessary to understand the prob-
lems that can occur in an extremely label-scarce environ-
ment. Also, most SSL studies are not focused on how to

select better models on training. But Model selection meth-
ods need to be studied in order to be applied to various ap-
plications in the real-world.

6. Conclusion

Many SSL approaches have been proposed, but they still
show low accuracy and instability in the extremely label-
scarce scenario.

We confirmed that confirmation bias had a serious im-
pact on performance degradation through experiments in an
environment with extremely small labeled data. We pro-
posed a propagation regularizer which led to efficient and
effective learning with extremely scarce labeled samples by
suppressing confirmation bias. We also proposed a model
selection method without the validation dataset based on
our propagation regularizer.

Our methods are easy to adapt to the existing SSL meth-
ods and showed high performance and stability, even though
it required very low additional computational cost.
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