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Abstract

Referring image segmentation is an advanced semantic
segmentation task where target is not a predefined class but
is described in natural language. Most of existing meth-
ods for this task rely heavily on convolutional neural net-
works, which however have trouble capturing long-range
dependencies between entities in the language expression
and are not flexible enough for modeling interactions be-
tween the two different modalities. To address these issues,
we present the first convolution-free model for referring im-
age segmentation using transformers, dubbed ReSTR. Since
it extracts features of both modalities through transformer
encoders, it can capture long-range dependencies between
entities within each modality. Also, ReSTR fuses features of
the two modalities by a self-attention encoder, which en-
ables flexible and adaptive interactions between the two
modalities in the fusion process. The fused features are fed
to a segmentation module, which works adaptively accord-
ing to the image and language expression in hand. ReSTR
is evaluated and compared with previous work on all public
benchmarks, where it outperforms all existing models.

1. Introduction
Throughout the recent years, there have been witnessed

remarkable advances in semantic segmentation in terms of

both efficacy and efficiency [4, 5, 15, 28, 33, 51, 52]. How-

ever, its application to real-world downstream tasks is still

limited. Since the task is designed to deal with only a pre-

defined set of classes (e.g., “car”, “person”), semantic seg-

mentation models are hard to address undefined classes and

specific entities of user interest (e.g., “a red Ferrari”, “a man

wearing a blue hat”).

Referring image segmentation [12] has been studied to

resolve this limitation by segmenting an image region cor-

responding to a natural language expression given as query.

As this task is no longer restricted by predefined classes, it

enables a large variety of applications such as human-robot

interaction and interactive photo editing. Referring image

segmentation is however more challenging than semantic

segmentation since it demands to comprehend individual
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Figure 1. Our convolution-free architecture for Referring image

Segmentation using TRansformer (ReSTR) takes a set of non-

overlapped image patches and that of word embeddings, and cap-

tures intra- and inter-modality interactions by transformers. Then,

ReSTR takes a class seed embedding to produce an adaptive clas-

sifier which examines whether each image patch contains a part

of target entity. Finally, a series of upsampling and linear layers

computes a pixel-level prediction in a coarse-to-fine manner.

entities and their relations expressed in the language expres-

sion (e.g., “a car behind the taxi next to the building”), and

to fully exploit such structured and relational information

in the segmentation process. For this reason, models for the

task should be capable of capturing interactions between se-

mantic entities in both modalities as well as joint reasoning

over the two different modalities.

Existing methods for referring image segmentation [3,

11, 12, 13, 14, 16, 22, 25, 31, 37, 46] have adopted convo-

lutional neural networks (CNNs) and recurrent neural net-

works (RNNs) to extract visual and linguistic features, re-

spectively. In general, these features are integrated into

a multimodal feature map through convolution layers ap-

plied to a concatenation of the two features, so-called

concatenation-convolution operation. On top of the multi-

modal feature map, recent methods [11, 13, 14, 16, 46] fur-

ther employ attention mechanisms [40, 43] so that the fea-
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ture map effectively captures interactions between semantic

entities. The final multimodal features are then fed as input

to a segmentation module.

Although these methods have shown remarkable results

on the challenging task, they share the following limitations.

First, they have trouble handling long-range interactions be-

tween semantic entities within each modality. Referring im-

age segmentation requires to capture such interactions since

language expressions often involve complicated relations

between entities to precisely indicate target region. In this

aspect, both of CNNs and RNNs are limited due to the lo-

cality of their basic building blocks. Second, existing mod-

els have difficulty in modeling sophisticated interactions be-

tween the two modalities. They aggregate visual and lin-

guistic features through the concatenation-convolution op-

eration, which is a fixed and handcrafted way of feature fu-

sion and thus could not be sufficiently flexible and effective

to handle a large variety of referring image segmentation

scenarios.

To overcome the aforementioned limitations, we propose

the first convolution-free model for Referring image Seg-

mentation using TRansformers, dubbed ReSTR. Its overall

pipeline is illustrated briefly in Fig. 1. First of all, ReSTR

extracts visual and linguistic features through transformer

encoders [40]. The two encoders, namely vision encoder
and language encoder, take a set of non-overlapped image

patches and that of word embeddings as input, respectively,

and extract their features while considering their long-range

interactions within each modality. By using transformers

for both modalities, we take advantage of capturing global

context from the beginning of feature extraction and unify-

ing network topology for the two modalities [32].

Next, a self-attention encoder aggregates the visual and

linguistic features into a patch-wise multimodal features.

This multimodal fusion encoder enables sophisticated and

flexible interactions between features of the two modalities

thanks to its self-attention layers. Moreover, the fusion en-

coder takes a class seed embedding as another input. The

class seed embedding is transformed adaptively by the fu-

sion encoder to a classifier for the target entity described in

the language expression.

Finally, the outputs of the multimodal fusion encoder,

i.e., the patch-wise multimodal features and the adaptive

classifier, are fed as input to the segmentation decoder. The

decoder computes the final segmentation map in a coarse-

to-fine manner. The adaptive classifier is first applied to

each multimodal feature as a classifier to examine whether

each image patch contains a part of target entity. The coarse,

patch-level prediction is then converted into a pixel-level

segmentation map by a series of upsampling and linear lay-

ers. Thanks to the powerful transformer encoders, this sim-

ple and efficient decoder is able to produce accurate seg-

mentation results, achieving the state of the art on four pub-

lic benchmarks for referring image segmentation.

In summary, the contribution of this work is three-fold:

• Our network is the first convolution-free architecture

for referring image segmentation. It captures long-

range interactions between vision and language modal-

ities and unifies the network topology for the two dif-

ferent modalities by transformers.

• To encode the fine comprehension of the two modal-

ities, we carefully design the multimodal fusion en-

coder with the class seed embedding which is trans-

formed to an adaptive classifier for referring image

segmentation.

• ReSTR achieves the state of the art on four public

benchmarks without bells and whistles.

2. Related Work
2.1. Semantic Segmentation

Semantic segmentation has been significantly improved

with the emergence of deep neural networks. Based on

a Fully Convolutional Network (FCN) [28] for pixel-level

prediction on an end-to-end framework, many approaches

are proposed to overcome the several limitations of the

network. Since FCN predicts a coarse output mask, the

early approaches [1, 4, 26, 54] focus on performing high-

resolution predictions. The former studies propose methods

to extend the receptive field of CNN by dilated convolu-

tions [5, 47] and to capture multiscale contexts by a fea-

ture pyramid pooling scheme [5, 44, 52]. The several ap-

proaches propose encoder-decoder structures [6, 23, 33, 36,

49] to model coarse-to-fine framework by multi-level fea-

ture fusion. Recently, semantic segmentation has been stud-

ied to capture contextual information by attention mecha-

nism [15, 50, 53].

However, the mentioned methods have used variants of

FCN architecture that limit local context encoding by con-

volutional layers. Moreover, since this task is defined to

predict segmentation masks within only a predefined set of

classes, semantic segmentation models have limitations to

apply to real applications.

2.2. Referring Image Segmentation
In contrast to predefined pixel-level classification as se-

mantic segmentation, referring image segmentation aims at

grouping the pixels as mask corresponded to a given nat-

ural language expression. The pioneering work [12] pro-

poses extracting visual and linguistic features from CNN

and RNN, respectively, and generating multimodal features

by concatenating tiled linguistic features and visual feature

maps. Based on this framework, the early approaches sug-

gest the methods to perform high-resolution prediction by

ConvLSTM [25] and the encoder-decoder architecture by

intermediate connections [22]. Follow-up studies propose
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Figure 2. (Left) Overall architecture of ReSTR. (a) The feature extractors for the two modalities are composed on transformer encoders,

independently. (b) The multimodal fusion encoder consists of the two transformer encoders: the visual-linguistic encoder and the linguistic-
seed encoder. (c) The coarse-to-fine segmentation decoder transforms a patch-level prediction to a pixel-level prediction. (Right) Trans-

former encoder used in all encoders and the composition of the coarse-to-fine segmentation decoder.

an attention mechanism to fuse the visual and linguistic fea-

tures and multi-level feature aggregation to produce high-

resolution segmentation maps [3, 11, 13, 46]. Recent stud-

ies [8, 19] suggest a multimodal fusion encoder using trans-

formers [40] to capture long-range interactions between vi-

sual and linguistic features.

Unlike the existing work, we propose a new convolution-

free architecture to encode contextual information at ev-

ery stage of our model and efficiently transform a patch-

level prediction to a high-resolution segmentation map in a

coarse-to-fine manner.

2.3. Vision Transformer
From the introduction of transformers by [40] as a self-

attention module for NLP, many approaches adopt this mod-

ule in computer vision tasks for the advantages of this

module including long-range dependencies, dynamic ker-

nel depended on input, and less visual inductive bias than

CNNs. Several studies employ transformers for an atten-

tion module in/on CNNs as a CNN-transformer hybrid net-

work [2, 35, 38, 41, 43, 51, 55]. Recent approaches re-

place CNNs with transformers as a convolution-free archi-

tecture in image classification [9, 17, 27, 42], object detec-

tion [27, 42], semantic segmentation [27, 39, 42, 55] and

multimodal learning [32]. In particular, transformers are

deployed to semantic segmentation tasks to overcome the

inherent limitation of FCN-like architecture. For example,

Zheng et al. [55] utilize transformer backbone as a global

context feature extractor and then convolutional layers for

a decoder in the hybrid manner. Strudel et al. [39] propose

a convolution-free architecture for semantic segmentation

by self-attention with visual features and a set of learnable

classes embeddings. Inspired by the paradigm, we adopt

transformers for referring image segmentation for the above

advantages and use an adaptive classifier as an extension of

the learnable class queries used in semantic segmentation

transformers [39, 41].

3. Proposed Method
This section elaborates on ReSTR, our convolutional-

free transformer network for referring image segmentation.

Its detailed architecture is illustrated in Fig. 2. To cap-

ture long-range interactions for each modality, ReSTR first

extracts visual and linguistic features by transformer en-

coders [40] independently (Sec. 3.1). Then, it forwards

visual and linguistic features in parallel to a multimodal

fusion encoder to capture fine relations across these two

modalities (Sec. 3.2). Finally, an efficient decoder for a

coarse-to-fine segmentation converts patch-level prediction

into high-resolution pixel-level prediction (Sec. 3.3).

3.1. Visual and Linguistic Feature Extraction
To extract visual and linguistic features, we choose trans-

formers [9] for both modalities. A transformer encoder is

M sequential transformers, each of which consists of Multi-

headed Self-Attention (MSA), Layer Normalization (LN),

and Multilayer Perceptron (MLP) blocks:

z̄i+1 = MSA(LN(zi)) + zi, (1)

zi+1 = MLP(LN(z̄i+1)) + z̄i+1, (2)

where zi ∈ R
N×D denotes input features of the i-th layer of

the transformer encoder, N is the input size of each modal-

ity, and D is the channel dimension of the features. LN is
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applied to the output of the transformer encoder. MSA is

composed of k Self-Attention (SA) operations on queries

q ∈ R
N×Dh , keys k ∈ R

N×Dh , and values v ∈ R
N×Dh ,

which are obtained by linear projections of input features z,

independently:

MSA(z) = [SA1(z), SA1(z), · · ·, SAk(z)]WMSA, (3)

SA(z) = Av, (4)

A = softmax(qk�/
√
Dh), (5)

where A ∈ R
N×N is dot-product attention, [·, ·] denotes

concatenation, and WMSA ∈ R
kDh×D is a linear projec-

tion. Dh is set to D/k following [9]. The transformer en-

coder, which is composed of transformers, is denoted by

Transformers(·).
Vision encoder. An input image xv ∈ R

H×W×Cv is

transformed to a set of patch embeddings xp ∈ R
Nv×Dv

by splitting the input image into the patches without over-

lapping and mapping them with a linear projection. Let

Nv = HW/P 2 be the number of patches, P be the patch

size, and Dv be the projected channel dimension. We add

learnable 1D positional encoding Ev
pos ∈ R

Nv×Dv to the

patch embeddings to obtain input to the vision encoder,

zv0 = xp + Ev
pos. We feed zv0 into the vision encoder to

produce the patch-wise visual features zv ∈ R
Nv×Dv :

zv = Transformers(zv0;θv), (6)

where θv are the parameters of the vision encoder.

Language encoder. We transform a natural language ex-

pression to a set of word embeddings xl ∈ R
Nl×Cl , where

Nl is the maximum length of sentence and Cl is the dimen-

sion of the word embeddings. We add a sinusoidal 1D po-

sitional encoding elpos ∈ R
Nl×Cl to the word embeddings,

as zl0 = xl + elpos. Linguistic features zl ∈ R
Nl×Dl are

generated by feeding zl0 into the language encoder which

consists of transformers.

3.2. Multimodal Fusion Encoder
The multimodal fusion encoder consists of two trans-

former encoders, namely visual-linguistic encoder and

linguistic-seed encoder as shown in Fig. 2 (b). In detail,

we use the visual features zv , the linguistic features zl and

a class seed embedding es ∈ R
1×D as input for the multi-

modal fusion encoder. es is the trainable parameters, initial-

ized randomly. We first normalize zv and zl and feed each

of them into a different linear layer to adjust their channel

dimension to be the same as D. Then, the visual-linguistic

encoder takes the visual and linguistic features as inputs to

produce patch-wise multimodal features z′v ∈ R
Nv×D:

[z′v, z
′
l] = Transformers([zv, zl];θvl), (7)

where θvl are the parameters of the visual-linguistic en-

coder, z′l ∈ R
Nl×D denotes visual-attended linguistic fea-

tures. Since the visual and linguistic features are fed into the

visual-linguistic encoder in parallel, we obtain the patch-

wise multimodal features by fine and flexible interactions

between the visual and linguistic features.

Then, we feed the class seed embedding es and the

visual-attended linguistic features z′l into the linguistic-seed

encoder:

e′s = Transformers([z′l, es];θls), (8)

where θls are the parameters of transformers for the

linguistic-seed encoder, and e′s ∈ R
1×D is an adaptive clas-

sifier. Since a single fixed classifier is not sufficient for re-

ferring segmentation where a target mask varies by a lan-

guage expression in hand, e′s acts as an adaptive classifier

that examines if each patch contains a part of a target entity.

The multimodal fusion encoder is designed to produce

the adaptive classifier that satisfies the following two re-

quirements demanded in referring image segmentation.

First, since referring image segmentation aims to segment a

region corresponding to a language expression, the adaptive

classifier should comprehend fine relations of the language

expression. Moreover, since an input image has regions ir-

relevant to the language expression (e.g., background), the

class seed embedding directly attending to the visual infor-

mation can lead to an adaptive classifier corrupted by the ir-

relevant regions. Nevertheless, since the appearance of the

target entity described in a language expression can differ

by images, it is beneficial to produce the adaptive classifier

using the visual-attended linguistic features.

Therefore, we build the multimodal fusion encoder us-

ing these two transformer encoders alternatively to generate

the adaptive classifier that meets the aforementioned con-

ditions. We empirically verify the superiority of our multi-

modal fusion encoder in Sec. 4.3.

3.3. Coarse-to-Fine Segmentation Decoder
A patch-level prediction ŷp ∈ R

Nv×1 is calculated by an

inner product between the patch-wise multimodal features

z′v and the adaptive classifier e′s:

ŷp = σ

(
z′ve

′�
s√
D

)
, (9)

where σ is the sigmoid function and
√
D is a normalization

factor [40].

We suggest an efficient segmentation decoder to com-

pensate for the low-resolution patch-level prediction (e.g.,
Nv = H/P × W/P ). First, the decoder produces masked

multimodal features zmasked ∈ R
Nv×D:

zmasked = z′v ⊗ ŷp, (10)
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where ⊗ denotes Hadamard product operation over the

channel dimension D. Then, before forwarding to the

segmentation decoder, we concatenate the patch-wise vi-

sual features and the masked multimodal features as

[zv, zmasked] ∈ R
Nv×2D to guide the segmentation de-

coder through visual semantics. The segmentation decoder

is composed of K sequential blocks, each of which consists

of upsampling with factor 2, linear projection with chan-

nel reduction by 1/2 of input dimension, and activation

function, where K = logP and P is the patch size. Fi-

nally, the output features of the decoder is fed into a linear

projection and reshaped to generate a pixel-level prediction

Ŷm ∈ R
H×W×1. At inference time, we only use the pixel-

level prediction Ŷm as the final prediction.

For patch-level classification, we generate patch-level la-

bels by splitting the ground-truth label Ym ∈ R
H×W×1 into

a set of patch labels whose number of patches is the same

as the patch-level prediction ŷp ∈ R
Nv×1 by following cri-

teria:

yi
p =

{
1, if h(pij) > τ

0, otherwise
, (11)

where yi
p denotes the patch-level labels of the i-th patch pi,

j is the number of pixels in a patch, h(·) indicates the aver-

age pooling over spatial dimension, and τ is a thresholding

hyperparameter.

The network is trained by the binary cross-entropy loss

Lb(Ŷ , Y ) on the patch-level prediction ŷp and the pixel-

level prediction Ŷm:

L(ŷp,yp, Ŷm, Ym) = λLb(ŷp,yp) + Lb(Ŷm, Ym), (12)

where λ is a balancing hyperparameter.

4. Experiments
4.1. Experimental Setting
Datasets. We conduct experiments on four datasets,

ReferIt [20], UNC [48], UNC+ [48], and Gref [30], which

are widely used in referring image segmentation task.

ReferIt [20] contains 19,894 images with 130,525 lan-

guage expressions for 96,654 masks which are collected

from IAPR TC-12 [10]. UNC, UNC+, and Gref are col-

lected from COCO [24] dataset. UNC and UNC+ consist

of 19,994 images with 142,209 language expressions for

50,000 masks and 19,992 images with 141,564 language

expressions for 49,856 masks, respectively. The difference

between UNC and UNC+ is that UNC+ does not contain

the words that indicate location properties (e.g., left, top,

front) in expressions and contains the only appearance ex-

pressions. Gref contains 25,711 images with 104,560 lan-

guage expressions for 54,822 objects.

Implementation details. We use ViT-B-16 [9] pretrained

on ImageNet-21K [7] for the vision encoder which has 12

layers, 16 patch size, 768 channel dimensions, 12 heads of

MSA, and 3,072 dimensions of channel expansion in MLP.

We use pretrained GloVe [34] embeddings for language ex-

pressions. The language encoder consists of 6 transformer

layers, and has 300 channel dimensions as GloVe embed-

dings, 12 heads of MSA and 3,072 dimensions of channel

expansion in MLP. The maximum length of a language ex-

pression Nl is set to 20 following previous work. The mul-

timodal fusion encoder consists of the same transformer as

the vision encoder. The number of layers of the segmen-

tation decoder is 4 since the patch size is 16. In all ex-

periments, the models are optimized by AdamW [29] with

weight decay of 5e−4; the initial learning rate is 1e−5 and

decreases with polynomial decay [4]. We set a batch size of

8 and train for 400,000 iterations with warm-up period for

40,000 iterations to reach the initial learning rate. We re-

size input images to 480× 480. We set τ in Eq. (11) and λ
in Eq. (12) to 0.8 and 0.1 for all experiments, respectively.

Evaluation protocol. Following previous work [12, 25],

we adopt the cumulative Intersection-over-Union (IoU)

metric, where total intersections are divided by the total

unions over all test samples. Then, we evaluate the accu-

racy at the {0.5, 0.6, 0.7, 0.8, 0.9} IoU thresholds.

4.2. Comparisons with the State of the Art

We compare ReSTR with other referring image segmen-

tation models on four benchmarks. As summarized in Ta-

ble 1, ReSTR achieves outstanding performance without

inefficient postprocessing (e.g., DenseCRF [21]) compared

with the previous arts on all public benchmarks except for

UNC+ testB set. Following [25], we discuss the relation-

ship between language expression length and performance

as summarized in Table 2. The results demonstrate the Re-

STR clearly outperforms previous methods on most groups

of expression length except for the 1-5 length group on Gref

val set. Moreover, the performance of ACM using an atten-

tion mechanism for long-range interactions between the two

modalities drops 13.71%p from 1-5 to 11-20 length group

on the Gref val set, while that of ReSTR drops by 6.81%p.

It demonstrates that our method is better to capture the long-

range interactions between the two modalities compared to

previous methods. Note that the recent methods [8, 18, 45]

use a visual backbone pretrained on COCO object detection

dataset and evaluate their models on only three benchmarks

based on COCO dataset. In contrast, our visual backbone is

pretrained for ImageNet classification, and ReSTR is eval-

uated on all benchmarks.

4.3. Analysis of Variants of Fusion Encoder

To verify our design choice for the multimodal fusion

encoder, we investigate variants of the fusion encoder. We

use 4 transformer layers, denoted as {f1, f2, f3, f4}, in all

variants of the encoder.
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Methods DCRF
ReferIt UNC UNC+ Gref

test val testA testB val testA testB val

LSTM-CNN [12] 48.03 - - - - - - 28.14

RMI [25] � 58.73 45.18 45.69 45.57 29.86 30.48 29.50 34.52

DMN [31] 52.81 49.78 54.83 45.13 38.88 44.22 32.29 36.76

RRN [22] � 63.63 55.33 57.26 53.95 39.75 42.15 36.11 36.45

CMSA [46] � 63.80 58.32 60.61 55.09 43.76 47.60 37.89 39.98

STEP [3] 64.13 60.04 63.46 57.97 48.19 52.33 40.41 46.40

BRINet [13] � 63.46 61.35 63.37 59.57 48.57 52.87 42.13 48.04

LSCM [16] � 66.57 61.47 64.99 59.55 49.34 53.12 43.50 48.05

CMPC [14] � 65.53 61.36 64.54 59.64 49.56 53.44 43.23 49.05

ACM [11] 66.70 62.76 65.69 59.67 51.50 55.24 43.01 51.93

BUSNet [45] � - 63.27 66.41 61.39 51.76 56.87 44.13 50.56

LTS [18] - 65.43 67.76 63.08 54.21 58.32 48.02 54.40

VLT [8] - 65.65 68.29 62.73 55.50 59.20 49.36 52.99

ReSTR (Ours) 70.18 67.22 69.30 64.45 55.78 60.44 48.27 54.48

Table 1. Quantitative results on four datasets in IoU (%). DCRF denotes using post-procession by DenseCRF [21]. The best results are in

bold, while second-best ones are underlined.

Length 1-5 6-7 8-10 11-20

Gref

R+RMI [25] 35.34 31.76 30.66 30.56

BRINet [13] 51.93 47.55 46.33 46.49

ACM [11] 59.92 52.94 49.56 46.21

ReSTR (Ours) 58.72 53.47 53.96 51.91

Length 1-2 3 4-5 6-20

UNC

R+RMI [25] 44.51 41.86 35.05 25.95

BRINet [13] 65.99 64.83 56.97 45.65

ACM [11] 68.73 65.58 57.32 45.90

ReSTR (Ours) 72.38 69.46 61.19 50.21

Length 1-2 3 4-5 6-20

UNC+

R+RMI [25] 35.72 25.41 21.73 14.37

BRINet [13] 59.12 46.89 40.57 31.32

ACM [11] 61.62 52.18 43.46 31.52

ReSTR (Ours) 65.72 54.81 47.65 37.02

Length 1 2 3-4 5-20

ReferIt

R+RMI [25] 68.11 52.73 45.69 34.53

BRINet [13] 75.28 62.62 56.14 44.40

ACM [11] 78.19 66.63 60.30 46.18

ReSTR (Ours) 80.82 69.78 63.66 50.73

Table 2. Performance according to variants of referring length on

Gref, UNC, UNC+ and ReferIt in IoU (%). The best results are in

bold, while second-best ones are underlined.

First, as illustrated in Fig. 3(a), we present a variant of

the fusion encoder which takes all features simultaneously

as inputs, denoted as Vanilla Multimodal Encoder (VME).

Since all inputs are given in parallel, VME can learn the

fine relations between all features. However, the adaptive

classifier can be undesirably biased to the visual features by

the imbalance of the length of features between visual and

linguistic features (Nv � Nl). As shown in Table 3(a),

we measure attention scores of the visual and linguistic fea-

tures to the class seed embedding. In detail, we split the

Layer av al

f1 82.4 16.8

f2 98.9 1.0

f3 98.7 1.2

f4 98.1 1.7

(a)

Encoder # params MACs IoU

VME 28.35M 31.36G 51.27

IME 28.35M 15.96G 45.89

CME 28.35M 15.96G 52.81
CME† 14.18M 15.96G 52.79

(b)

Table 3. (a) Averaged attention score (%) of the visual and lin-

guistic features to the class seed embedding at each transformer

layer of VME on Gref train set. (b) Performance of the variants

of the multimodal fusion encoder on Gref val set in IoU (%). †
denotes the fusion encoder with weight sharing. The best results

are in bold, while second-best ones are underlined.

attentions of the class seed embedding a ∈ R
1×(Nv+Nl+1)

in the attention matrix A in Eq. (5) into the visual and lin-

guistic attentions av ∈ R
1×Nv and al ∈ R

1×Nl , respec-

tively. Then, we sum each modality attention across feature

dimension to obtain aiv and ail as the attention score of VME

of i-th transformer layer. Finally, we average the attention

score of each layer over the dataset. The results demon-

strate that the attentions for the class seed embedding are

biased to the visual features. We hypothesize that the bias

of attentions results from the imbalance of the length of fea-

tures between the visual and linguistic features, which is

Nv : Nl = 900 : 20 in our experiments, that leads to the

adaptive classifier capturing less fine relations of a language

expression.

To resolve this problem, we consider disconnecting in-

teractions between the visual features and the class seed

embedding as illustrated in Fig. 3(b), denoted as Indepen-

dent Multimodal Encoder (IME). In other words, the class

seed embedding interacts with only the linguistic features.

Therefore, IME restricts the class seed embedding from be-

ing adaptively transformed to an adaptive classifier with the

visual information.
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(a) (b) (c)
Linguistic featuresVisual features Visual features Linguistic featuresVisual features

Transformer Encoder Transformer Encoder

Transformer Encoder
Transformer 

EncoderTransformer Encoder

Linguistic features

Figure 3. The variants of the multimodal fusion encoder based on transformer architecture. (a) Self-attention fusion encoder on all

sequences in parallel. (b) Independent fusion encoder between the visual features and the class seed embedding. (c) Indirect conjugating

fusion encoder between the visual features and the class seed embedding.

Encoder
Decoder Prec@0.5 Prec@0.6 Prec@0.7 Prec@0.8 Prec@0.9 IoU

# layers w share

2
52.60 45.59 36.59 23.54 5.23 48.12

� 52.86 36.61 38.93 26.37 7.90 48.43

4

61.77 55.86 46.86 30.88 8.18 52.81

� 64.91 59.94 51.73 37.70 12.23 54.48
� � 64.27 59.01 50.70 35.85 11.46 54.07

6
63.36 57.88 48.75 33.46 8.75 52.84

� 63.05 57.32 48.19 32.47 8.47 52.59

Table 4. Performance for ablation study of ReSTR on Gref val set. # layers denotes the number of transformer layers in the multimodal

fusion encoder. w share denotes weight sharing of the multimodal fusion encoder.

To this end, we propose a structure that indirectly con-

jugates the class seed embedding and the visual features

with the linguistic features as medium, denoted as indi-

rect Conjugating Multimodal Encoder (CME) as illustrated

in Fig. 3(c). As mentioned in Sec. 3.2, the design aims to

avoid interaction between the irrelevant visual features and

the class seed embedding by indirectly interactions via the

linguistic features. Furthermore, CME produces the adap-

tive classifier for the target entity described in the language

expression by fine interactions between the linguistic fea-

tures and the class seed embedding.

As summarized in Table 3(b), we compare the three

variants of the multimodal fusion encoder on performance,

computational cost (MACs), and the number for parame-

ters (# params) of these encoders without the segmenta-

tion decoder. These results demonstrate the superiority of

CME over the other variants of the fusion encoder in perfor-

mance and efficiency. In addition, we also experiment CME

with weight sharing (CME†) between transformer layers

of the visual-linguistic encoder and between those of the

linguistic-seed encoder. The result shows CME† is still bet-

ter performance with lower parameters and computational

cost than the other variants.

4.4. In-depth Analysis of ReSTR
We investigate our framework on the val set of Gref

dataset which contains the longer and more complicated

language expressions than the others.

Effect of the number of transformer layers in the multi-
modal fusion encoder. We study the impact of the number

of transformer layers in the multimodal fusion encoder by

varying the number of transformers to {2, 4, 6}. Since the

multimodal fusion encoder is composed of two transformer

encoders, the encoder always has an even number of the

transformer layers. As summarized in Table 4, the perfor-

mance is fairly increased until using 4 transformer layers

and marginally increased using 6 transformer layers.

Effect of the segmentation decoder. We investigate the

contribution of the segmentation decoder. As summarized

in Table 4, the decoder improves IoU by 1.67%p when used

along with the 4 transformer layers in the fusion encoder.

However, when with the fusion encoder with 2 transformer

layers, the improvement made by the segmentation decoder

is only 0.31%p. When coupled with the shallow fusion en-

coder that produces relatively larger potion of false patch-

level predictions, the effect of the segmentation decoder is

marginal since it is trained to refine the mask of the pos-

itive patches. The results demonstrate that the decoder is

specialized to refine a patch-level prediction to a fine pixel-

level prediction. Note that the analysis of the segmentation

decoder is examined except for the fusion encoder with 6

transformer layers due to the memory shortage.

Effect of weight sharing. In Table 4, we also present

the performance of the model with weight sharing. Us-

ing weight sharing, the number of parameters remains the

same regardless of the number of transformer layers that

the multimodal fusion encoder contains. The results show

that the performance degradation incurred by weight shar-

ing is marginal. It demonstrates that ReSTR could be used

in an efficient manner with little loss of performance using

weight sharing.
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(a) (b) (c) (d) (a) (b) (c) (d)

Query: “A man knealing down by a pond with his hand in the water”

Query: “A piece of cake with pink frosting next to a fork” Query: “The back half of the sandwich”

Query: “The very blurry wine glass in the background on the right side of the image”
Query: “Fingers in the hand holding the spoon handle”

Figure 4. Qualitative results of ReSTR on Gref val set. (a) Input image. (b) Patch-level prediction. (c) ReSTR. (d) Ground truth.

“A bookshelf on the top left”

“A man with a black tshirts” “A woman between two men”

“A couch that person sit” “A men wearing blue tshirts and beige pants”

“A coffeetable surrounded by people”

Input image

Figure 5. Visualization examples of ReSTR according to different language expression queries for an image on Gref val set.

Methods DCRF # params MACs IoU

BRINet [13] � 241.18M 367.63G 48.04

LSCM [16] � 127.91M 130.45G 48.05

CMPC [14] � 118.66M 126.66G 49.05

ACM [11] � 232.78M 124.68G 51.93

ReSTR (CME) � 122.87M 52.29G 54.48
ReSTR (CME†) � 108.70M 52.29G 54.07

Table 5. Comparison of computations and performance with re-

cent methods. Both are evaluated on Gref val set in IoU (%). †
denotes the multimodal fusion encoder with weight sharing and

MACs is computed with an input image of 320× 320.

Qualitative analysis. As illustrated on Fig. 4, the patch-

level predictions of ReSTR are roughly localized on the tar-

get patches and the boundaries of relational objects. Then,

the patch-level predictions are transformed to fine pixel-

level predictions by the segmentation decoder in a coarse-

to-fine manner. Moreover, in Fig. 5, we provide the visual-

ization examples of the predictions when varying language

expressions are given as queries. These visualizations show

that ReSTR is able to predict the segmentation masks cor-

responding to different language expressions on an image.

Computation cost analysis. In Table 5, we present the

number of parameters and MACs of ReSTR and recent

studies whose codes are publicly available. ReSTR achieves

the best accuracy with the least computation since it em-

ploys the efficient segmentation decoder. Also, the size of

the visual feature used in previous work is 4 times bigger

than ours.

5. Conclusion
We have proposed ReSTR, the first convolution-free

model for referring image segmentation. ReSTR adopts

transformers for both visual and linguistic modalities to

capture global context from feature extraction. It also in-

cludes the multimodal fusion encoder composed of trans-

formers to encode fine and flexible interactions between

these features of the two modalities. Also, the multimodal

fusion encoder computes an adaptive classifier for patch-

level classification. Furthermore, we have proposed a seg-

mentation decoder to refine the patch-level predictions to

the pixel-level prediction in a coarse-to-fine manner. Re-

STR outperformed the existing referring image segmenta-

tion techniques on all public benchmarks. The fact that

computational cost quadratically increases as patch size de-

creases is the potential limitation of our work. Since the

performance of the dense prediction tasks heavily depends

on the patch size when using the visual transformer [39],

it introduces an undesirable trade-off between performance

and computational cost. To alleviate this, integrating linear-

complexity transformer architectures would be a promising

research direction, which we leave for future work.
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