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Abstract

Blind-spot network (BSN) and its variants have made

significant advances in self-supervised denoising. Never-

theless, they are still bound to synthetic noisy inputs due

to less practical assumptions like pixel-wise independent

noise. Hence, it is challenging to deal with spatially corre-

lated real-world noise using self-supervised BSN. Recently,

pixel-shuffle downsampling (PD) has been proposed to re-

move the spatial correlation of real-world noise. However,

it is not trivial to integrate PD and BSN directly, which

prevents the fully self-supervised denoising model on real-

world images. We propose an Asymmetric PD (AP) to ad-

dress this issue, which introduces different PD stride factors

for training and inference. We systematically demonstrate

that the proposed AP can resolve inherent trade-offs caused

by specific PD stride factors and make BSN applicable to

practical scenarios. To this end, we develop AP-BSN, a

state-of-the-art self-supervised denoising method for real-

world sRGB images. We further propose random-replacing

refinement, which significantly improves the performance of

our AP-BSN without any additional parameters. Extensive

studies demonstrate that our method outperforms the other

self-supervised and even unpaired denoising methods by a

large margin, without using any additional knowledge, e.g.,

noise level, regarding the underlying unknown noise.

1. Introduction

Image denoising is one of the essential topics in the

computer vision area, which aims to recover a clean image

from the noisy signal. Due to its practical usage in several

vision-related applications, several learning-based denois-

ing algorithms [28, 36, 43, 44] have been proposed with the

advent of convolutional neural networks (CNNs). Conven-

tional methods usually adopt additive white Gaussian noise

(AWGN) to acquire large-scale training data by synthesiz-

ing clean-noisy image pairs for supervised learning. Never-

Code is available at: https://github.com/wooseoklee4/AP-BSN

(a) DnCNN [43]

( Supervised )

(b) C2N [19] + DIDN [40]

( Unpaired )

(c) NAC [39]

( Self-supervised )

(d) AP-BSN + R3 (Ours)

( Self-supervised )

Figure 1. Visual comparison between different denoising meth-

ods on the DND benchmark [34]. (a) DnCNN is trained on real-

world noisy-clean pairs from the SIDD [1] dataset. (b) C2N uses

clean SIDD [1] and noisy DND [34] samples to simulate real-

world noise distribution in an unsupervised manner. (c–d) Self-

supervised methods can be trained on the DND [34] noisy im-

ages directly. We mark PSNR(dB) and SSIM with respect to the

ground-truth clean image for the quantitative comparison.

theless, models learned on the synthetic noise do not gener-

alize well in practice since the characteristics of real-world

noise differ much from AWGN. To overcome the limita-

tion, several attempts have been made to construct pairs of

real-world datasets like SIDD [1] and NIND [4]. Using

the real-world training pairs, supervised denoising meth-

ods [8, 16, 21, 41, 42] can be trained to restore clean images

from the noisy real-world input. However, constructing the

real-world dataset requires massive human labor, strictly

controlled environments, and complicated post-processing.

In addition, it is difficult to generalize the learned model

toward diverse practical scenarios as the characteristic of

noise varies much for the different capturing devices.
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Recently, several self-supervised approaches [3, 17, 23,

24, 31, 38, 39] have been introduced, which do not rely

on paired training data. Such methods require noisy im-

ages only for training instead of clean-noisy pairs. Among

them, Blind-Spot Network (BSN) [23] is one of the rep-

resentative methods motivated by Noise2Noise [25]. Un-

der the assumption that noise signals are pixel-wise inde-

pendent and zero-mean, BSN reconstructs a clean pixel

from the neighboring noisy pixels without referring to the

corresponding input pixel. Based on BSN, several ap-

proaches [15, 24, 37] have achieved better performance on

synthetic noise while ensuring strict blindness w.r.t. the cen-

ter pixel. However, real-world noises are known to be

spatially-correlated [6, 20, 32], which does not meet the ba-

sic assumption of BSN: noise is pixel-wise independent.

To break spatial correlation of real-world noise, Zhou et

al. [45] utilize pixel-shuffle downsampling (PD). PD cre-

ates a mosaic by subsampling a noisy image with a fixed

stride factor, and thereby increases an actual distance be-

tween noise signals. Nevertheless, integrating PD to BSN

is nontrivial when handling real-world noise in a fully self-

supervised manner, where it cannot stand alone without

knowledge from additional noisy-clean synthetic pairs [37].

We identify that the principal reason for such limitation is

the trade-off between the pixel-wise independent assump-

tion and reconstruction quality. For example, a large PD

stride factor (> 3) ensures the strict pixel-wise independent

noise assumption and benefits BSN during training. How-

ever, it also destructs detailed structures and textures from

the noisy image. In contrast, a small PD stride factor (≤ 3)

preserves image structures but cannot satisfy the pixel-wise

independent assumption when training BSN.

Inspired by these observations, we propose Asymmet-

ric PD (AP), which uses different stride factors for train-

ing and inference. For real-world noise, we systematically

validate that a specific combination of training and infer-

ence strides can compensate shortcomings of each other.

Then, we integrate AP to BSN (AP-BSN), which can learn

to denoise noisy real-world inputs in a fully self-supervised

manner, without requiring any prior knowledge of under-

lying noise. Furthermore, we propose random-replacing

refinement (R3), a novel post-processing method that im-

proves the performance of our AP-BSN without any addi-

tional training. To the best of our knowledge, our AP-BSN

is the first attempt to introduce self-supervised BSN for real-

world sRGB noisy images. Extensive studies demonstrate

that our method outperforms not only the state-of-the-art

self-supervised denoising methods but also several unsuper-

vised/unpaired approaches by a large margin. We summa-

rize our contributions as follows:

• To handle spatially correlated real-world noise in a blind

fashion, we propose a novel self-supervised AP-BSN.

Our framework employs asymmetric PD stride factors for

training and inference in conjunction with BSN.

• We propose random-replacing refinement (R3), a novel

post-processing method that further improves our AP-

BSN without any additional parameters.

• Our AP-BSN is the first self-supervised BSN that cov-

ers real-world sRGB noisy inputs and outperforms the

other self-supervised and even several unpaired solutions

by large margins.

2. Related Work

Deep image denoising for synthetic noise. Beyond

the classical non-learning based approaches [2, 9, 12, 18],

DnCNN [43] has introduced a CNN-based architecture to

remove AWGN from a given image. Following DnCNN,

several learning-based approaches have been proposed such

as FFDNet [44], RED30 [28], and MemNet [36], with ad-

vanced network architectures. Nevertheless, the methods

trained on AWGN suffer from generalization toward the

real-world denoising due to domain discrepancy between

real and synthetic noises. Specifically, Guo et al. [13] have

demonstrated that AWGN-based denoisers do not perform

well when input noise signals are signal-dependent [10] or

spatially-correlated [6, 20, 32].

Real-world image denoising. To reduce the gap between

synthetic and real-world denoising, CBDNet [13] simulates

in-camera ISP with gamma correction and demosaicking

process. Then, synthetic heteroscedastic Gaussian noise

can be transformed into realistic noise signals, which can

be used to generate training pairs for supervised learn-

ing. Zhou et al. [45] have proposed pixel-shuffle down-

sampling (PD) to cover spatially-correlated real-world noise

with conventional AWGN denoisers. In contrast, there have

been a few attempts to capture the noisy-clean training

pairs from real-world [1, 4]. Using the real-world pairs,

it is straightforward to train supervised denoising meth-

ods [8, 16, 21, 41, 42], which generalize well on the cor-

responding real-world inputs. However, constructing real-

world pairs require huge labor and is not always available.

Unpaired image denoising. When sets of unpaired clean

and real-world noisy images are available, several methods

leverage generative approaches [11] to synthesize realistic

noise from the clean samples [5, 7, 14, 19]. Among them,

GCBD [7] selectively uses plain regions from noisy images

for stable learning. Recently, C2N [19] explicitly consid-

ers various noise characteristics to simulate real-world noise

more accurately. Using the generated noisy-clean pairs,

the following supervised denoising model [40, 43] can be

trained to deal with real-world noise. On the other hand,

Wu et al. [37] distill knowledge from a self-supervised de-

noising model while adopting synthetic noisy-clean pairs.

Still, it is important to match the scene statistics of clean

and noisy datasets even in the unpaired configuration [19],

which can be difficult in practice.
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Self-supervised denoising. A major bottleneck for real-

world denoising is the absence of appropriate training

data. Therefore, several approaches have been proposed

to train their model using noisy images only. Motivated

by Noise2Noise [25], Noise2Void [23] and Noise2Self [3]

have introduced novel self-supervised learning frameworks

by masking a portion of noisy pixels from the input image.

Notably, the concept of BSN [23] has been later extended

to more efficient architectures in the form of four halved re-

ceptive fields [24] or dilated and masked convolutions [37].

While Noise2Same [38] does not use BSN, a novel loss

term is used to satisfy J -invariant property [3] in the de-

noising network. Neighbor2Neighbor [17], on the other

hand, acquires the noisy-noisy pair for self-supervision

by subsampling the given input. Nevertheless, the above

self-supervised methods heavily rely on assumptions that

noise signals are pixel-wise independent. Therefore, they

usually end up learning identity mappings when applied

to real-world sRGB images as noise signals are spatially-

correlated [6, 20, 32].

Recent Noisier2Noise [29], NAC [39], and R2R [31] add

different synthetic noise signals to the given input to make

auxiliary training pairs. However, Noisier2Noise requires

prior knowledge regarding the underlying noise distribu-

tion, and Noisy-As-Clean relies on weak noise assumptions.

R2R also requires several prior information such as noise

level and ISP function, which may not be available in real-

world scenarios.

3. BSN and PD

Blind-spot network. BSN [23] is a variant of the conven-

tional CNN that does not see the center pixel in the recep-

tive field to predict the corresponding output pixel. Several

studies [3, 23] have demonstrated that BSN B (·) can learn

to denoise a noisy image IN ∈ R
H×W in a self-supervised

manner. We note that the image has a resolution of H ×W ,

and color channels are omitted for simplicity. To train BSN,

the following two assumptions must be satisfied: noise is

spatially, i.e., pixel-wise, independent and zero-mean. Un-

der such assumptions, it is known [3, 38] that minimizing

the self-supervised loss Lself w.r.t. BSN is equivalent to con-

ventional supervised learning as follows:

Lself = EIN
∥B (IN)− IN∥

2

2

= EIN,IC
∥B (IN)− IC∥

2

2
+ c = Lsuper + c,

(1)

where IC ∈ R
H×W is a clean ground-truth for the noisy

input IN, Lsuper is a supervised denoising loss function, and

c is a constant, respectively.

Therefore, several types of BSN [24, 37] are constructed

under the pixel-wise independent noise assumption. How-

ever, real-world noise is spatially correlated due to the im-

age signal processors (ISP). Specifically, demosaicking on
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Figure 2. Analysis of spatial correlation on real-world noise.

(a) As the relative distance d between two noise signals increases,

their correlation decreases. We note that different camera devices,

e.g., Motorola Nexus 6 (N6) or LG G4, in the SIDD [1] dataset

show similar noise behaviors in terms of spatial correlation, as il-

lustrated with dotted lines. (b) x and y axis represent a relative

distance along with horizontal and vertical directions, respectively.

Bayer filter [6, 20, 32] involves interpolation between noisy

subpixels. Fig. 2 demonstrates that in real-world, noise in-

tensities between neighboring pixels show non-negligible

correlation based on their relative distance. Since the neigh-

boring noise signals can be clues for inferring the unseen

center pixel, we have identified that BSN operates as an ap-

proximately identity mapping on real-world sRGB images.

Pixel-shuffle downsampling. Zhou et al. [45] have intro-

duced a novel concept of PD to break down the spatial cor-

relation in the real-world noise. Specifically, PDs can be

regarded as an inverse operation of the pixel-shuffling [35]

with a stride factor of s. Since real-world noise signals

are correlated with few neighboring pixels, subsampling

in PD process may break the dependency between them.

Then, conventional denoising algorithms can be applied to

the downsampled images, where the PD-inverse operation

PD−1

s follows to reconstruct a full-sized output. To pre-

serve image textures and details, Zhou et al. [45] set the

stride factor to 2, i.e. PD2, for the best performance.

4. Method

Our goal is to generalize BSN on real-world sRGB im-

ages in a self-supervised manner. To this end, we adopt PD

and minimize the following loss LBSN to train BSN:

LBSN =
∥

∥PD−1

s (B (PDs (IN)))− IN

∥

∥

1

= ∥IsBSN − IN∥1 ,
(2)

where IsBSN is an output from PDs and BSN pipeline,

namely PDs-BSN. Instead of widely-used L2 loss, we use

L1 norm for better generalization [26]. In brief, we first

decompose the given noisy image IN into s2 sub-images.

We note that PDs (IN) is a tiling of those sub-images [45]

Issub ∈ R
H/s×W/s, as shown in Fig. 4. Then, we apply BSN

to the sub-images and reconstruct the output IsBSN using the

PD-inverse operation PD−1

s .
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(a) Real-world noisy image IN (b) Clean image IC

(c) PD2-BSN (d) PD5-BSN

(e) Zhou et al. [45] (f) AP-BSN + R3 (Ours)

Figure 3. Issues on PDs-BSN when handling real-world noise.

(c) With a small stride factor, PD-BSN cannot remove noise from

the input IN. (d) With a large stride factor, PD-BSN destructs

edge structures. (e) When AWGN denoiser meets PD [45], the

model cannot completely remove real-world noise. (f) Our self-

supervised approach delivers an accurate denoising result by over-

coming the limitation of combining PD and BSN.

However, it is not straightforward to apply PD-BSN di-

rectly on real-world sRGB images. While Wu et al. [37]

have also tried to integrate PD and BSN, they resort to

knowledge distillation combined with additional synthetic

noisy-clean pairs. We have also observed that PD-BSN is

not applicable to real-world noisy images when trained with

the self-supervised loss in Eq. (2). Figs. 3c and 3d demon-

strate that PD2-BSN and PD5-BSN cannot restore a clean

and sharp image from the given noisy input, regardless of

the PD stride factor s.

4.1. Trade­offs in PD­BSN

When applying the AWGN-based denoiser on real-world

images, Zhou et al. [45] use PD2. However, we have ob-

served that PD exhibits different behaviors as the stride fac-

tor s varies. Therefore, we first describe two important as-

pects of PD-BSN regarding the stride factor s.

Breaking spatial correlation. Originally, PD has been

proposed to reduce spatial correlation between neighboring

noise signals in real-world images. While Zhou et al. [45]

resort to the stride factor of 2, our analysis in Fig. 2a demon-

strates that the stride factor should be at least 5 to minimize

the dependency in the given noise signal. In other words,

noise signals in the sub-images I2sub are still spatially cor-

Figure 4. Comparison between PD2 and PD5. Each operation

decomposes the given image into 4 and 25 sub-images, respec-

tively. In sub-images from PD5, we mark the aliasing artifact, i.e.

a black dot, with red, which can be interpreted as noise for BSN.

We note that the artifact does not appear in the blue sub-image.

related, where the pixel-wise independent noise assumption

for BSN does not hold.

Aliasing artifacts. Nevertheless, the sub-images Issub from

PDs suffer stronger degree of aliasing as the stride factor s

becomes larger. From the perspective of signal processing,

it is well-known that a downsampled image suffers aliasing

when the original signal is not properly bandlimited [30].

Since the PD process does not leverage a low-pass filter be-

fore subsampling, we have identified that aliasing occurs as

a form of noise when applying large-stride PD, e.g., s = 5,

as shown in Fig. 4.

4.2. Effective training stride factor for PD­BSN

We next establish a strategy to train PDs-BSN. For such

purpose, the correlation between noise signals in the train-

ing input images IN has to be minimized [23]. However, as

discussed in Section 4.1, PD2 is not enough to break spa-

tial correlation of real-world noise. Since the underlying

assumption of BSN is not satisfied, the model cannot learn

to denoise with PD2. By setting s = 5 to suppress the spa-

tial correlation between noise signals in training samples,

we can train BSN on the smaller sub-images I5sub.

We note that BSN also learns to remove the aliasing ar-

tifacts induced by the large PD stride factor. The aliasing

happens when high-frequency signals are not removed be-

fore subsampling [30]. As the high-frequency components

change rapidly in the original noisy image IN, we can ignore

the spatial correlation of aliasing artifacts in the sub-images

I5sub. The artifacts also satisfy the zero-mean constraint, i.e.,

their statistical mean is approximately the same as that of

the noisy image IN, since they are random samples of the

observed signal. As the aliasing artifacts satisfy two precon-

ditions of BSN, our PD-BSN also learns to remove them.

4.3. Asymmetric PD for BSN

Several studies [7,19] have already identified that match-

ing data distribution between training and test samples play

a critical role in accurate image denoising. Therefore, it is
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Figure 5. Overview of the proposed AP-BSN and R3 post-processing. We visualize the proposed AP5/2-BSN. To apply BSN on real-

world sRGB images, we introduce APa/b to maximize synergies of using different stride factors for training and inference. We use a large

stride factor, e.g., a = 5, to ensure pixel-wise independence between noise signals for training. During the inference, we use a minimum

stride factor of b = 2 to avoid aliasing artifacts while breaking down the spatial correlation of noise to some extent. Our random-replacing

refinement (R3) further improves the performance of AP-BSN without any additional parameters.

natural to use the same stride factor for training and infer-

ence when applying PD-BSN. However, we have found that

the learned BSN recognizes aliasing artifacts from PD5 as

noise signals to be removed during inference. Since those

artifacts contain necessary information to reconstruct high-

frequency details, PD5-BSN destructs image structures dur-

ing inference while removing noise as shown in Fig. 3d.

Instead, we propose an asymmetric stride factor during

the inference of PD-BSN, which we refer to as Asymmetric

PD (APa/b). We note that a and b are stride factors for train-

ing and inference, respectively. Specifically, we set b = 2
so that the sub-images I2sub contain minimum aliasing arti-

facts during inference, while the correlation between neigh-

boring noise signals can be decreased. In Section 5, we

demonstrate how each trade-off, i.e., spatial correlation and

aliasing artifacts, affects the denoising performance of our

method. Our BSN with the proposed AP5/2 (AP-BSN) can

learn to remove real-world noise in a self-supervised man-

ner, while preserving image structures as shown in Fig. 3f.

We also note that our AP-BSN does not require any clean

samples for training and is directly applicable to sRGB

noisy images in practical scenarios. Fig. 5 illustrates our

asymmetric training and inference schemes for AP-BSN.

4.4. Random­replacing refinement

Even with the smallest stride factor, PD and the fol-

lowing denoising step may remove some informative high-

frequency components from the input, resulting in visual

artifacts [45]. Therefore, Zhou et al. [45] propose PD-

refinement to suppress artifacts from the PD process and

enhance details of the denoising result. In PD-refinement,

(a) Expected correlations (b) Replacement strategies

Figure 6. Comparison between PD-refinement and our R3.

While PD-refinement adopts regular binary masks Mi with a

stride of 2, our R3 uses randomized masks Ri. (a) We compare

the expected spatial correlation of noise signals in the replaced

image IMi
and IRi

. (b) Each gray box represents a pixel from the

original noisy image IN, which replaces the denoised pixel in IsBSN.

an i-th replaced image IMi
is formulated as follows:

IMi
= Mi ⊙ IN + (1−Mi)⊙ IsBSN, (3)

where Mi ∈ {0, 1}
H×W

is a binary mask indicating pix-

els to be replaced and ⊙ denotes element-wise multiplica-

tion. Here, Mi is a structured binary matrix where ones

are placed with a fixed stride of 2 and
∑

i Mi = 1. Af-

ter the replacement, each image IMi
is denoised again and

averaged to reconstruct the final result IDN as follows:

IDN =
1

T

T
∑

i=1

D (IMi
), (4)

where D is the denoising model targeting pixel-wise inde-

pendent noise and T is the number of masks, i.e., 22 = 4,

for the original PD-refinement.
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However, the deterministic strategy in PD-refinement

leaves a non-negligible correlation between the replaced

noise signals. Specifically, a replaced noisy pixel in IMi

is always correlated with some of its neighbors, as visual-

ized in Fig. 6a. Such correlation negatively affects the per-

formance of the following denoising method D, which as-

sumes spatially uncorrelated noise. Therefore, we propose

an advanced random-replacing refinement (R3) strategy

to mitigate the limitation of PD-refinement.

In our R3, we adopt T randomized binary masks Ri in-

stead, which are defined as follows:

Ri (x, y) =

{

1, with a probability of p,

0, otherwise,
(5)

where (x, y) denotes an index of the element in a H × W

matrix. For Eq. (3) and Eq. (4), we adopt the randomized

mask Ri rather than the fixed one Mi to acquire the final

output. Since noisy pixels are randomly placed in the i-th

replaced image IRi
, an expected correlation between two

noise signals is multiplied by p, as shown in Fig. 6a. Hence,

our R3 significantly reduces the expected correlation com-

pared to the previous PD-refinement. When we combine R3

with AP-BSN, we do not perform PD and feed the replaced

image IRi
to BSN directly because spatial correlation of

noise in the input is almost negligible. Fig. 6 highlights ma-

jor differences between PD-refinement and our R3.

5. Experiment

5.1. Experimental configurations

Dataset. To train and evaluate our AP-BSN, we adopt

widely-used real-world image denoising datasets: SIDD [1]

and DND [34]. SIDD-Medium consists of 320 real-world

noisy and clean image pairs for training. For validation

and performance evaluation, we adopt SIDD validation and

benchmark datasets, respectively. Both contain 1,280 noisy

patches with a size of 256 × 256, where the corresponding

clean images are also provided for the validation set.

The DND dataset does not include training images and

consists of 50 real-world noisy inputs only for evaluation.

Rather than using the SIDD-Medium training dataset for

this case, we enjoy the advantage of a fully self-supervised

learning framework and use the same data for training and

performance evaluation. In other words, we train our AP-

BSN on 50 noisy DND images and reconstruct the final de-

noising results from the same inputs.

Metric. To evaluate our AP-BSN and compare it with

the other denoising methods, we introduce widely-used

peak signal-to-noise ratio (PSNR) and structural similar-

ity (SSIM) metrics. For SIDD and DND benchmarks, we

upload our results to the evaluation sites to calculate the

metrics. On the SIDD validation dataset, we use the cor-

32.00

33.00

34.00

34.86

PSNR(dB)

1 2 3 4 5 6

Inference stride factor b

26.00

27.00
a = 2 a = 3

a = 5
a = 4
a = 6

(a) Effects of asymmetric a/b

1 2 3 4 5 6

Inference stride factor b

31.00

33.00

35.00

Fig. 8a
Fig. 8b

24.00

26.00

28.00

30.00

PSNR(dB)
(8a)

(8b)

(b) Effects of aliasing artifacts

Figure 7. Ablation study of APa/b-BSN on the SIDD validation

dataset. We note that the proposed R3 post-processing is not ap-

plied in these ablation studies. (a) Our APa/b-BSN consistently

achieves the best performance when b = 2. (b) We validate AP5/b-

BSN on two representative images displayed in Figs. 8a and 8b.

(a) Plain region (b) Textured region

(c) AP5/1 (d) AP5/2 (e) AP5/5 (f) AP5/1 (g) AP5/2 (h) AP5/5

Figure 8. Visual comparison of the trade-off in APa/b-BSN. (c–

e) For a plain region in (a), performance of AP-BSN gradually

increases as the inference stride factor b becomes larger. (f–h) For

a textured region in (b), AP-BSN performs the best when b = 2 but

shows decreased performance for larger b. Please refer to Fig. 7b

for more details.

responding functions in skimage.metrics library and

RGB color space for comparison.

Implementation and optimization. We use PyTorch

1.9.0 [33] for implementation. By default, we adopt AP5/2

and set p and T to 0.16 and 8, respectively, for the pro-

posed R3. For BSN, we modify the architecture from Wu et

al. [37] for efficiency. AP-BSN is trained using Adam [22]

optimizer, and the initial learning rate starts from 10−4.

More details are described in our supplementary material.

5.2. Analyzing Asymmetric PD

We first validate the effect of AP for real-world sRGB

denoising. To this end, we conduct an extensive study

on all possible combinations of feasible stride factors, i.e.,

a ∈ {2, 3, 4, 5, 6} and b ∈ {1, 2, 3, 4, 5, 6}, in Fig. 7a. We

note that BSN cannot be trained when a = 2 due to the

spatial correlation of real-world noise. With larger training

stride factors a, the input noise of BSN follows pixel-wise

independent assumption more strictly. Therefore, the model

can learn the denoising function better, where the perfor-

mances are maximized with a = 5. When a = 6 is used,
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Method
SIDD DND

PSNR↑(dB) SSIM↑ PSNR↑(dB) SSIM↑

Non-learning based
BM3D [9] 25.65 0.685 34.51 0.851

WNNM [12] 25.78 0.809 34.67 0.865

Supervised

(Synthetic pairs)

DnCNN [43] 23.66 0.583 32.43 0.790

CBDNet [13] 33.28 0.868 38.05 0.942

Zhou et al. [45] 34.00⋄ 0.898⋄ 38.40 0.945

Supervised

(Real pairs)

DnCNN [43] 35.13⋄ 0.896⋄ 37.89⋄ 0.932⋄

AINDNet (R)∗ [21] 38.84 0.951 39.34 0.952

VDN [41] 39.26 0.955 39.38 0.952

DANet [42] 39.43 0.956 39.58 0.955

Unsupervised

(Unpaired)

GCBD [7] - - 35.58 0.922

C2N [19] + DIDN∗ [40] 35.35 0.937 37.28 0.924

D-BSN [37] + MWCNN [27] - - 37.93 0.937

Self-supervised

Noise2Void [23] 27.68R 0.668R - -

Noise2Self [3] 29.56R 0.808R - -

NAC [39] - - 36.20 0.925

R2R [31] 34.78 0.898 - -

AP-BSN (Ours) 34.90 0.900 37.46 0.924

AP-BSN + R3 (Ours) 35.97 0.925 38.09 0.937

AP-BSN†
+ R3 (Ours) 36.91 0.931 - -

Table 1. Quantitative comparison of various denoising methods on the SIDD and DND benchmarks. We note that several supervised

methods leverage SIDD noisy-clean pairs for training and perform much better than our AP-BSN, while we use noisy sRGB images only for

training. By default, we report official evaluation results from SIDD and DND benchmark websites. ⋄ and R indicate that the performances

are evaluated by ourselves, or reported from R2R [31], respectively. We also mark methods with ∗ which adopt self-ensemble strategy [26].

† denotes that the model is trained on SIDD benchmark images in a fully self-supervised fashion.

AP6/b-BSN performs slightly worse since the noise in the

SIDD [1] dataset show increasing correlation as shown in

Fig. 2a. Interestingly, a = 6 is slightly better than a = 5 on

the NIND [4] dataset, as the correlation gradually decreases

w.r.t. to the relative distance between pixels. More analysis

on the NIND dataset is reported in our supplementary ma-

terial. During the inference, BSN cannot remove real-world

noise without PD, i.e., b = 1, as it is learned on pixel-wise

independent noise. The performances are maximized when

b = 2, as the trade-off between spatial correlation and alias-

ing can be optimized. With larger inference stride factors,

i.e., b > 2, AP-BSN performs worse because more image

details are removed in the form of aliasing artifacts.

In Fig. 7b, we justify that the existence of aliasing ar-

tifacts is a critical factor for our denoising framework.

When applying AP5/b-BSN to the plain region illustrated in

Fig. 8a, the model performs better as the inference stride

factor b becomes larger. Since the region does not con-

tain high-frequency information, aliasing artifacts do not

appear in Figs. 8c, 8d, and 8e. Rather, the spatial cor-

relation of noise signals becomes smaller with a larger b,

which results in better performance. For a general image in

Fig. 8b, our AP5/b-BSN shows a similar behavior to that of

Fig. 7a, while the performance drop is much severe due to

the stronger aliasing artifacts as shown in Fig. 8h.

0.0 0.1 0.2 0.3
35.20

35.40

35.60

35.76
PSNR(dB)

p

T = 8

T = 4

T = 2

(a) Ablations on p

2 4 6 8

35.50

35.63

35.70

35.76

PSNR(dB)

T

R3

PD-refinement

(b) Ablations on T

Figure 9. Ablation study of AP-BSN + R3 on the SIDD valida-

tion dataset. We note that AP-BSN without R3 achieves 34.86dB

on the same dataset. (a) We investigate the effect of different p for

T = 2, 4, 8. (b) We fix p = 0.16 to see the effect of T in our R3.

5.3. Analyzing Random­Replacing Refinement

Fig. 9 shows a detailed ablation study on hyperparame-

ters for the proposed R3. We first set T = 2, 4, 8 to find the

optimal replacement probability p. As shown in Fig. 9a, our

R3 shows a consistent behavior where the maximum perfor-

mance is achieved with p ≈ 0.16. We note that a larger

p increases the expected spatial correlation of noise signals

which degrades the performance. Due to the stochastic be-

havior, the number of randomized masks T is not limited in

our R3, while PD-refinement can only use T = 4. Fig. 9b

demonstrates that the proposed R3 performs better than PD-

refinement even with T = 2, and the performance increases

as the number of randomized masks T goes higher. Since
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(d) NAC [39]

(a) DnCNN [43]

Supervised - Real SIDD

(b) Zhou et al. [45]

Supervised - Synthetic noise

(c) C2N [19] + DIDN [40]

Unpaired

(e) R2R [31]

Self-supervised

(f) AP-BSN + R3 (Ours)

Self-supervised

Figure 10. Qualitative comparison between different denoising methods on DND [34] and SIDD [1] benchmarks. (a) DnCNN is

trained on the paired SIDD-Medium dataset. (b) Zhou et al. train their method on synthetic AWGN and impulse noise. The learned

denoising model is then combined with PD to handle real-world noise. (c) C2N generates a realistic noisy image from the clean input,

where the following denoising model, i.e., DIDN, is trained on the generated pairs. (d–e) Recent self-supervised approaches are trained on

noisy images only. (f) Our method is directly learnable on the practical sRGB images. We note that the DND benchmark (Upper) provides

per-sample PSNR/SSIM, while SIDD benchmark (Lower) does not, i.e., Not available.

the computational complexity of R3 is proportional to T , we

set T = 8 to balance the performance and runtime.

5.4. AP­BSN for real­world denoising

Our AP-BSN aims to denoise real-world sRGB im-

ages in a self-supervised manner. Table 1 compares var-

ious image denoising models on widely-used SIDD and

DND benchmark datasets. Using noisy images only for

training, the proposed AP-BSN + R3 achieves the best

performance among several unpaired [19, 37] and self-

supervised approaches. Especially, we note that self-

supervised NAC [39] and R2R [31] are constructed on less

practical assumptions like noise level is weak or ISP func-

tion is known. On the other hand, our approach adopts

BSN with several observations regarding the properties of

PD and real-world noise. Therefore, we do not rely on

specific assumptions and show better generalization on sev-

eral real-world datasets. In addition, the proposed R3 post-

processing further improves the evaluation PSNR more than

1dB on the SIDD benchmark track without any additional

parameters. Fig. 10 provides visual comparisons between

several methods addressed in Table 1.

Furthermore, AP-BSN can be trained on noisy samples

directly, without using any clean images. Since several

un-/self-supervised methods are trained on auxiliary im-

ages [31] or generated noise [19], the discrepancy between

training and test distributions may result in sub-optimal so-

lutions. In contrast, our approach can use target sRGB noisy

images directly during training phase. To validate the merit

of our framework, we train AP-BSN on the SIDD bench-

mark and evaluate on the same dataset. The last row of Ta-

ble 1 shows that the fully self-supervised strategy improves

the denoising performance by about 1dB without making

any modifications. Although SIDD-Medium contains about

×60 more pixels than the benchmark split, such an improve-

ment highlights that AP-BSN can also generalize well on

practical cases where there exist noisy test samples only.

6. Conclusion

In this paper, we first identify several trade-offs re-

garding different PD stride factors in perspective of BSN.

Rather than directly integrate PD and BSN, we propose

asymmetric PD between training and inference to satisfy

pixel-wise independent assumption while preserving image

details. To this end, we propose AP-BSN, a fully self-

supervised approaches for real-world denoising. We also

propose random-replacing refinement R3, which removes

visual artifacts of AP-BSN without any additional parame-

ters. The proposed AP-BSN + R3 does not require any prior

knowledge on real-world noise and outperforms recent self-

supervised/unsupervised denoising methods.
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L Andrea Dunbar. Efficient blind-spot neural network archi-

tecture for image denoising. In SDS, 2020. 2

[16] Xiaowan Hu, Ruijun Ma, Zhihong Liu, Yuanhao Cai, Xi-

aole Zhao, Yulun Zhang, and Haoqian Wang. Pseudo 3D

auto-correlation network for real image denoising. In CVPR,

2021. 1, 2

[17] Tao Huang, Songjiang Li, Xu Jia, Huchuan Lu, and

Jianzhuang Liu. Neighbor2Neighbor: Self-supervised de-

noising from single noisy images. In CVPR, 2021. 2, 3

[18] Samuel Hurault, Thibaud Ehret, and Pablo Arias. EPLL:

an image denoising method using a Gaussian mixture model

learned on a large set of patches. IPOL, 8:465–489, 2018. 2

[19] Geonwoon Jang, Wooseok Lee, Sanghyun Son, and Ky-

oung Mu Lee. C2N: Practical generative noise modeling for

real-world denoising. In ICCV, 2021. 1, 2, 4, 7, 8

[20] Qiyu Jin, Gabriele Facciolo, and Jean-Michel Morel. A re-

view of an old dilemma: Demosaicking first, or denoising

first? In CVPR Workshops, 2020. 2, 3

[21] Yoonsik Kim, Jae Woong Soh, Gu Yong Park, and Nam Ik

Cho. Transfer learning from synthetic to real-noise denoising

with adaptive instance normalization. In CVPR, 2020. 1, 2,

7

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015. 6

[23] Alexander Krull, Tim-Oliver Buchholz, and Florian Jug.

Noise2Void-learning denoising from single noisy images. In

CVPR, 2019. 2, 3, 4, 7

[24] Samuli Laine, Tero Karras, Jaakko Lehtinen, and Timo

Aila. High-quality self-supervised deep image denoising. In

NeurIPS, 2019. 2, 3

[25] Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli

Laine, Tero Karras, Miika Aittala, and Timo Aila.

Noise2Noise: Learning image restoration without clean data.

In ICML, 2018. 2, 3

[26] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for single

image super-resolution. In CVPR Workshops, 2017. 3, 7

[27] Pengju Liu, Hongzhi Zhang, Kai Zhang, Liang Lin, and

Wangmeng Zuo. Multi-level Wavelet-CNN for image

restoration. In CVPR Workshops, 2018. 7

[28] Xiaojiao Mao, Chunhua Shen, and Yu-Bin Yang. Image

restoration using very deep convolutional encoder-decoder

networks with symmetric skip connections. In NIPS, 2016.

1, 2

[29] Nick Moran, Dan Schmidt, Yu Zhong, and Patrick Coady.

Noisier2Noise: Learning to denoise from unpaired noisy

data. In CVPR, 2020. 3

[30] Alan V Oppenheim, Alan S Willsky, Syed Hamid Nawab,

Gloria Mata Hernández, et al. Signals & systems. Pearson

Educación, 1997. 4

[31] Tongyao Pang, Huan Zheng, Yuhui Quan, and Hui Ji.

Recorrupted-to-Recorrupted: Unsupervised deep learning

for image denoising. In CVPR, 2021. 2, 3, 7, 8

[32] Sung Hee Park, Hyung Suk Kim, Steven Lansel, Manu Par-

mar, and Brian A Wandell. A case for denoising before de-

mosaicking color filter array data. In ACSSC, 2009. 2, 3

[33] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in PyTorch. In NIPS Workshops, 2017. 6

[34] Tobias Plotz and Stefan Roth. Benchmarking denoising al-

gorithms with real photographs. In CVPR, 2017. 1, 6, 8

[35] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,

Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan

Wang. Real-time single image and video super-resolution

using an efficient sub-pixel convolutional neural network. In

CVPR, 2016. 3

17733



[36] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Mem-

Net: A persistent memory network for image restoration. In

ICCV, 2017. 1, 2

[37] Xiaohe Wu, Ming Liu, Yue Cao, Dongwei Ren, and Wang-

meng Zuo. Unpaired learning of deep image denoising. In

ECCV, 2020. 2, 3, 4, 6, 7, 8

[38] Yaochen Xie, Zhengyang Wang, and Shuiwang Ji.

Noise2Same: Optimizing a self-supervised bound for image

denoising. In NeurIPS, 2020. 2, 3

[39] Jun Xu, Yuan Huang, Ming-Ming Cheng, Li Liu, Fan Zhu,

Zhou Xu, and Ling Shao. Noisy-As-Clean: Learning self-

supervised denoising from corrupted image. IEEE TIP,

29:9316–9329, 2020. 1, 2, 3, 7, 8

[40] Songhyun Yu, Bumjun Park, and Jechang Jeong. Deep iter-

ative down-up CNN for image denoising. In CVPR Work-

shops, 2019. 1, 2, 7, 8

[41] Zongsheng Yue, Hongwei Yong, Qian Zhao, Lei Zhang, and

Deyu Meng. Variational denoising network: Toward blind

noise modeling and removal. In NeurIPS, 2019. 1, 2, 7

[42] Zongsheng Yue, Qian Zhao, Lei Zhang, and Deyu Meng.

Dual adversarial network: Toward real-world noise removal

and noise generation. In ECCV, 2020. 1, 2, 7

[43] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and

Lei Zhang. Beyond a Gaussian denoiser: Residual learning

of deep CNN for image denoising. IEEE TIP, 26(7):3142–

3155, 2017. 1, 2, 7, 8

[44] Kai Zhang, Wangmeng Zuo, and Lei Zhang. FFDNet: To-

ward a fast and flexible solution for CNN-based image de-

noising. IEEE TIP, 27(9):4608–4622, 2018. 1, 2

[45] Yuqian Zhou, Jianbo Jiao, Haibin Huang, Yang Wang, Jue

Wang, Honghui Shi, and Thomas Huang. When AWGN-

based denoiser meets real noises. In AAAI, 2020. 2, 3, 4, 5,

7, 8

17734


