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Figure 1. Examples of our predictions on images from Holopix50K [16] dataset. We show left images of the stereo pairs and their
corresponding predicted disparities. Our results achieve high accuracy and exhibit high-quality details for fine-structured objects.

Abstract
With the advent of convolutional neural networks, stereo

matching algorithms have recently gained tremendous
progress. However, it remains a great challenge to accu-
rately extract disparities from real-world image pairs taken
by consumer-level devices like smartphones, due to practi-
cal complicating factors such as thin structures, non-ideal
rectification, camera module inconsistencies and various
hard-case scenes. In this paper, we propose a set of in-
novative designs to tackle the problem of practical stereo
matching: 1) to better recover fine depth details, we design
a hierarchical network with recurrent refinement to update
disparities in a coarse-to-fine manner, as well as a stacked
cascaded architecture for inference; 2) we propose an adap-
tive group correlation layer to mitigate the impact of erro-
neous rectification; 3) we introduce a new synthetic dataset
with special attention to difficult cases for better generaliz-
ing to real-world scenes. Our results not only rank 1st on
both Middlebury and ETH3D benchmarks, outperforming
existing state-of-the-art methods by a notable margin, but
also exhibit high-quality details for real-life photos, which
clearly demonstrates the efficacy of our contributions.

*Equal contribution. † Corresponding author.

1. Introduction

Stereo matching is a classical research topic of computer
vision, the goal of which, given a pair of rectified images,
is to compute the displacement between two corresponding
pixels, namely “disparity” [34]. It plays an important role
in many applications, including autonomous driving, aug-
mented reality, simulated bokeh rendering and so forth.

Recently, with the support of large synthetic datasets
[5, 27, 46], convolutional neural network (CNN) based
stereo matching methods have taken the accuracy of dis-
parity estimation to a new height [8, 23, 44]. However, to
make the algorithm truly practical in the scenario of every-
day consumer photography, we are still faced with three ma-
jor obstacles.

Firstly, it remains a complicated issue for most existing
algorithms to precisely recover the disparity of fine image
details, or thin structures such as nets and wire frames. The
fact that consumer photos are being produced in higher res-
olutions only serves to worsen the problem. In computa-
tional bokeh, for instance, disparity error around fine details
would result in degraded rendering results that are unpleas-
ing to human perception [32]. Secondly, perfect rectifica-
tion [24, 56] is hard to obtain for real-world stereo image
pairs, as they are often produced by camera modules with
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different traits. For example, most current smartphones cap-
ture the stereo pair with a wide-angle and a telephoto lens,
which have distinct characteristics like focal length and dis-
tortion parameters, inevitably resulting in non-ideal recti-
fications. Therefore existing methods assuming that the
stereo pair is perfectly rectified are likely to fail under such
adversarial conditions. In addition, the image pair produced
by inconsistent cameras modules may vary in illumination,
white balancing, image quality, etc., making the estimation
task even harder. Finally, though it has been shown that
models trained from large enough synthetic datasets can
generalize well to real-world scenes [10, 27], disparity esti-
mation in typical hard cases, like non-texture or repetitive-
texture regions, continues to be difficult, which requires
special attention be paid in covering relevant scenes in the
training dataset.

In this paper, we propose CREStereo, namely Cascaded
REcurrent Stereo matching network, which comprises a set
of novel designs, to tackle the problem of practical stereo
matching. To better recover intricate image details, we de-
sign a hierarchical network to update disparities recurrently
in a coarse-to-fine manner; in addition, we adopt a stacked
cascaded architecture for high-resolution inference. To alle-
viate the negative influence of rectification error, we design
an adaptive group local correlation layer for feature match-
ing. Furthermore, we introduce a new synthetic dataset with
richer variations in lighting, texture and shapes, in order to
better generalize to real-world scenes.

So far, CREStereo ranks 1st on both ETH3D two-view
stereo [36] and Middlebury [35] benchmarks, and achieves
competitive performance on KITTI 2012/2015 [11] among
published methods. Additionally, our network demonstrates
superior performance for arbitrary real-world scenes, well
proving the effectiveness of our designs.

Our main contributions can thus be summarized as fol-
lows: 1) we propose a cascaded recurrent network for prac-
tical stereo matching and a stacked cascaded architecture
for high-resolution inference; 2) we design an adaptive
group correlation layer to handle non-ideal rectification; 3)
we create a new synthetic dataset to better generalize to real-
world scenes; 4) our method outperforms existing methods
on public benchmarks such as Middlebury and ETH3D by a
significant margin, and considerably increases the accuracy
of recovered disparities for real-world stereo images.

2. Related Work
Traditional algorithms. Stereo matching is a challeng-

ing problem and has been studied for a long time. Tradi-
tional algorithms can be categorized into local and global
methods. Local methods [2, 15, 47] compute matching cost
using a support window centered at pixels along the epipo-
lar line. Global methods treat stereo matching as an op-
timization problem, where an explicit cost function is for-

mulated and optimized by belief propagation [20,42,52] or
graph cut [4] algorithms. A semi-global matching (SGM)
method is later proposed [14] using mutual information in-
stead of intensity based on dynamic programming.

Learning-based algorithms. Deep neural network was
first introduced in stereo matching task only for matching
cost computation. Zbontar and LeCun [54] proposed to
train a CNN to initialize the matching cost between patches,
which is refined by cross-based aggregation and semi-
global optimization as in SGM [14]. In recent years, end-
to-end network has become mainstream in stereo match-
ing. One line of networks [12, 21, 22, 27, 29, 44, 49] only
uses 2D convolutions. Mayer et al. [27] introduced the first
end-to-end network named DispNet and its correlation ver-
sion DispNetC for disparity estimation. Pang et al. [29]
proposed a two-stage framework called CRL with multi-
scale residual learning. Guo et al. [12] proposed GwcNet
with group-wise correlation to improve similarity measure-
ment. AANet [49] introduced a novel aggregation method
using sparse points and multi-scale interaction. A very re-
cent method, RAFT-Stereo [23], takes advantage of the it-
erative refinement in the optical flow network RAFT [45]
to design a network adapted for stereo matching. Another
line of networks [7, 17, 18, 51, 55] uses 3D convolutions to
perform cost volume construction and aggregation in tradi-
tional methods. GCNet [17] and PSMNet [7] proposed to
construct a 4D cost volume with 3D hourglass aggregation
networks. For high-res images, Yang et al. [51] proposed a
coarse-to-fine hierarchical network to address memory and
speed issues. Lately, neural architecture search has also
been introduced into deep stereo networks [8].

Practical stereo matching. Stereo matching oriented
toward real-world images is a less explored problem. Pang
et al. [30] proposed a self-adaptation approach for general-
izing CNN to target domain without ground truth disparity.
Luo et al. [25] proposed a wavelet synthesis network to pro-
duce better results for bokeh applications on smartphones.
Song et al. [39] introduced a domain adaptation pipeline
for networks to narrow down the gap between synthetic and
real-world domains.

Synthetic datasets. Sufficient training data is essential
for deep stereo models, but it is hard to obtain accurate dis-
parity in real world. Synthetic datasets [5,26,27,46] provide
high-accuracy and dense ground truth. Recently, He et al.
[13] built a data generation pipeline for stereo matching us-
ing Blender [3], with textures from real images of common
datasets. Autoflow [40] introduced a simple method to ren-
der randomized polygons with motion for optical flow train-
ing. Despite the effectiveness of these datasets, they still
have limited variations of object shapes, and a restricted dis-
tribution of the disparity/optical flow values, which weak-
ens the generalizing ability from synthetic to real world.
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Figure 2. An overview of our proposed network. Left: A pair of stereo images I1 and I2 are fed into two shared-weight feature extraction
networks to produce a 3-level feature pyramid, which is used to compute different scales of correlations in the 3 stages of cascaded recurrent
networks. The feature pyramid of I1 also provides context information for latter update blocks and offsets computation. In each stage of
the cascades, the features and the predicted disparities are refined iteratively using the Recurrent Update Module (RUM, Sec. 3.2), and
the final output disparity of the former stage is fed to the next as an initialization. For each iteration in RUM, we apply Adaptive Group
Correlation Layer (AGCL, Sec. 3.1) to compute the correlation. Right: Our proposed stacked cascaded architecture in inference phase,
which takes an image pyramid as input, taking advantage of multi-level context, as detailed in Sec. 3.3 .

3. Methods

In this section we present the key components of the
proposed Cascaded REcurrent Stereo matching network
(CREStereo) and our new synthetic dataset.

3.1. Adaptive Group Correlation Layer

We observe that it is difficult to implement perfect cali-
bration for real-world stereo cameras. For instance, the two
cameras may not be strictly placed on the horizontal epipo-
lar line, resulting in slight rotations in 3D space; or images
from camera lenses usually have residual distortion even af-
ter they are rectified. As a result, for a stereo image pair,
the corresponding points may not locate on the same scan-
line. We thus propose an Adaptive Group Correlation Layer
(AGCL) to reduce the matching ambiguity in this situation,
achieving better performance compared to all-pairs match-
ing [23, 45] while only local correlation is computed.

Local Feature Attention. Instead of computing global
correlation for every pair of pixels, we only match points
in a local window to avoid large memory consumption and
computation cost. In light of LoFTR [41] for sparse feature
matching, we add an attention module before correlation
computation in the first stage of cascades in order to ag-
gregate global context information in single or cross feature
maps. Following [41], we add positional encoding to the
backbone output, which enhances positional dependence of
the feature maps. The self and cross attention is computed
alternately, where a linear attention layer is used to reduce
computation complexity.

2D-1D Alternate Local Search. Different from the
flow estimation network RAFT [45] and its stereo version
[23] where all-pairs correlation is computed by a matrix
multiplication of two C×H ×W feature maps, which out-
puts a 4D H×W×H×W or 3D H×W×W cost volume,

we only compute correlation in a local search window that
outputs a much smaller volume of H × W × D to save
the memory and computation cost. H and W denote the
height and width of the feature maps, and D is the number
of correlation pairs much smaller than W . Our correlation
computation is also distinct from cost volume based stereo
networks like [7,18,49,51] where the search range is related
to the maximum displacement of foreground objects. This
fixed range is much larger than the number of local corre-
lation pairs we use, which leads to more noisy interference.
Furthermore, we don’t need to preset the range when the
model generalizes to stereo pairs with different baselines.

Given two resampled and attended feature maps F1 and
F2, the local correlation at position (x, y) can be denoted as

Corr(x, y, d) =
1

C

C∑
i=1

F1(i, x, y)F2(i, x
′, y′), (1)

where x′ = x + f(d), y′ = y + g(d), Corr(x, y, d) ∈
RH×W×D is the matching cost of d-th (d ∈ [0, D−1]) cor-
relation pair, C is the number of feature channels, f(d) and
g(d) denote the fixed offset of current pixels in horizontal
and vertical directions.

Traditionally, search direction between two rectified im-
ages only lies on the epipolar line in stereo matching. To
deal with non-ideal stereo rectification cases, we adopt a
2D-1D alternate local search strategy to improve the match-
ing accuracy. In 1D search mode, we set g(d) = 0 and
f(d) ∈ [−r, r], where r = 4. Positive displacement value
of f(d) is reserved to adjust inaccurate results after every it-
erative sampling. The results computed by Eq. 1 are stacked
and concatenated at channel dimension for the final correla-
tion volume. In 2D search mode, a k × k grid with dilation
l similar to dilated convolution [53] is used for correlation
computation. We set k =

√
2r + 1 to make sure the out-
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Figure 3. The architecture of proposed modules. Left: Recurrent Update Module (RUM). Right: Adaptive Group Correlation Layer
(AGCL). Details are described in Sec. 3.2 and Sec. 3.1, respectively.

put features have the same number of channels so that they
can be fed to a shared-weight update block. Cooperating
with iterative resampling, alternate local search also acts as
a propagation module for recurrent refinement, where the
network learns to replace the biased prediction on current
location with its more accurate neighbors.

Deformable search window. Stereo matching often suf-
fers from ambiguity in occlusion or textureless areas. Cor-
relation computed in a fixed-shape local search window
tends to be vulnerable to those cases. Extending deformable
convolution [57] to correlation computation, we use a con-
tent adaptive search window for correlation pairs genera-
tion, which is different from AANet [49] where a simi-
lar strategy is adopted only in cost aggregation. With the
learned additional offset dx and dy, the new correlation can
be computed as

Corr(x, y, d) =
1

C

C∑
i=1

F1(i, x, y)F2(i, x
′′, y′′) (2)

where x′′ = x + f(d) + dx, y′′ = y + g(d) + dy. Fig. 4
shows how offsets change the formation of a conventional
search window.

Group-wise correlation. Inspired by [12] which intro-
duces the group-wise 4D cost volume, we split the fea-
ture map into G groups to compute local correlation indi-
vidually. Finally, we concatenate G correlation volumes of
D×H ×W in channel dimension to get the GD×H ×W
output volume. The procedure is shown in Fig. 3.

3.2. Cascaded Recurrent Network

For non-texture or repetitive-texture areas, matching is
more robust using low-res and high-level feature maps due
to large receptive field and sufficient semantic information.
However the details of fine structures may be lost in such
feature maps. In order to maintain robustness and preserve
the details in high-res input simultaneously, we propose cas-
caded recurrent refinement for correlation computing and
disparity updating.

Recurrent Update Module. We build a Recurrent Up-
date Module (RUM) based on GRU blocks and our Adap-
tive Group Correlation Layer (AGCL). Unlike in RAFT

offset

offset

2D

1D

Figure 4. Illustration of the adaptive local correlation. The top and
the bottom are 2D and 1D situations respectively, which share the
same number of searched neighbors to produce correlation maps
in the same shape.

[45] where the feature pyramid is constructed in a single
correlation layer with the output being merged into one vol-
ume, we compute correlations for every feature map respec-
tively in different cascade levels and refine the disparities
for several iterations independently. As is shown in Fig. 3,
the “sampler” samples locations of grouped feature taking
coordinate grid derived from fn as input. {f1, ..., fn} are
intermediate predictions of n iterations with initialization
f0. Current correlation volume is constructed with learned
offsets o ∈ R2×(2r+1)×h×w. The GRU blocks update cur-
rent prediction and feed it to the AGCL in next iteration.

Cascaded Refinement. Except for the first level of
cascades, which starts at 1/16 of the input resolution with
disparity initialized to all zeros, other levels take the up-
sampled version of prediction from previous level as initial-
ization. Though handling different levels of refinement, all
RUMs share the same weights. After the last refinement
level, convex upsampling [45] is conducted to get the final
prediction at input resolution.

3.3. Stacked Cascades for Inference

As is discussed in previous sections, during training we
use a three-level feature pyramid at fixed resolutions to do
hierarchical refinement. However, for images of higher res-
olution as input, more downsampling should be done in or-
der to enlarge the receptive field for extracted features and
correlation computation. But for small objects with large
displacement in high resolution images, features in these
regions may suffer from deterioration with direct down-
sampling. To solve this problem, we designed a stacked
cascaded architecture with shortcuts for inference. Specifi-
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Figure 5. Example image-disparity pairs of our synthetic data
featuring various shapes and textures (repetitive-texture, reflective
non-texture surface, etc.)

cally, we downsample the image pair in advance construct-
ing an image pyramid and feed them into the same trained
feature extraction network to take advantage of multi-level
context. An overview of the stacked cascade architecture
is shown on the right of Fig. 2, where skip connections in
the same stage are not displayed for brevity. For a specific
stage of the stacked cascades (denoted as rows in Fig. 2),
all the RUMs in that stage will be used together with the
last RUM in the stage of higher resolution. All stages of the
stacked cascades share the same weight during training, so
no fine-tuning is needed.

3.4. Loss Function

For each stage s ∈ { 1
16 ,

1
8 ,

1
4} of our feature pyramid,

we resize the sequence of output {fsi , · · · , fsn} to the full
prediction resolution with the upsampling operator µs, and
use the exponentially weighted l1 distance similar to RAFT
[45] as the loss function (with γ set to 0.9). Given ground
truth disparity dgt, the total loss is defined as:

L =
∑
s

n∑
i=1

γn−i||dgt − µs(f
s
i )||1 (3)

3.5. Synthetic Training Data

Compared to previous synthetic datasets, our data gener-
ating pipeline devotes extra attention to challenging cases in
real-world scenes, and features various enhancements. We
make use of Blender [3] to generate our synthetic training
data. Each scene consists of left-right image pairs and the
corresponding pixel-accurate dense disparity map, captured
with dual virtual cameras and customarily positioned ob-
jects. Our major design considerations are described as be-
low, with some examples shown in Fig. 5.

Shape. We diversify the shapes of the models used as the
main scene content with multiple sources: 1) The ShapeNet
[6] dataset with over 40,000 3D models of common objects
with varied shapes, forming our basic source of content. 2)
Blender’s sapling tree gen add-on, providing fine-detailed
and cluttered disparity maps. 3) We use blender’s inter-
nal basic shapes combined with the wireframe modifier to
generate models for challenging scenes featuring holes and
open-work structures.

Lighting and texture. We place different types of lights
with random color and luminance at random position in-

side the scene, resulting in a complex lighting environment.
Real world images are used as textures for objects and scene
background, particularly hard scenes containing repeated
patterns or lacking visible features. Additionally, we ex-
ploit the light tracing ability of Blender’s Cycles renderer
and randomly set objects as transparent or with metallic re-
flection, in order to cover real-world scenes with similar at-
tributes.

Disparity distribution. To cover different baseline set-
tings, we make efforts to ensure the disparity of the gener-
ated data distributes smoothly within a wide range. We put
objects within a frustum-shaped space formed by the cam-
eras’ field of view and a max distance. The exact position
of each object is randomly chosen from a probability dis-
tribution, then the object is scaled according to its distance
to prevent blocking the view. This practice results in a ran-
domized but controllable disparity distribution.

4. Experiments
4.1. Datasets and Evaluation Metrics

We evaluate our method on three popular public bench-
marks. Middlebury 2014 [33] provides 23 high-resolution
image pairs under different lighting environments. Cap-
tured with large-baseline stereo cameras, the maximum dis-
parity in Middlebury can exceed 600 pixels. ETH3D [36]
consists of 27 monochrome stereo image pairs with dispar-
ity sampled by a laser scanner, covering both indoor and
outdoor scenes. KITTI 2012/2015 [28] consists of 200
wide-angle stereo image pairs of street views, with lidar-
sampled sparse disparity ground truth.

In addition to our rendered dataset, we collect major pub-
lic datasets for training, including Sceneflow [27], Sintel [5]
and Falling Things [46]. Sceneflow contains 39k training
pairs of multiple synthetic scene setups. Falling things con-
tains a large amount of images from scenes of household
object models. Sintel provides 1.2k stereo pairs from vari-
ous synthetic sequences. The other data sources we utilize
are InStereo2K [1], Carla [9] and AirSim [37].

For evaluation, we follow the popular metrics including
AvgErr (average error), Bad2.0 (percentage of pixels with
disparity error larger than 2 pixels) [35, 36], D1-all (per-
centage of disparity outlier pixels in left image) [11], etc.

4.2. Implementation Details

Training. Our network is implemented with Pytorch
[31] framework. The model is trained on 8 NVIDIA GTX
2080Ti GPUs, with a batch size of 16. The whole training
process is set to 300,000 iterations. We use the Adam [19]
optimizer with a standard learning rate of 0.0004. We per-
form a warm-up process of 6,000 iterations at the beginning
of the training where the learning rate is linearly increased
from 5% to 100% of the standard value. After 180,000 iter-
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Method
Middlebury ETH3D

Bad 2.0 AvgErr Bad 1.0 Avgerr

2D all-pairs [45] 47.38 5.62 6.17 0.38
1D all-pairs [23] 44.41 4.93 6.03 0.38
1D local 19.87 3.03 3.13 0.28
2D local 20.70 2.99 3.33 0.29
1D+2D local 19.23 3.01 3.05 0.28
1D local, 2 levels 13.84 2.24 2.35 0.23
2D local, 2 levels 14.07 2.15 2.09 0.23
1D+2D local, 2 levels 12.48 1.99 2.20 0.22
1D+2D local, 3 levels 12.67 1.80 2.01 0.21

w/o def. & group. & atten. 6.86 1.11 1.26 0.19
w/o deformable search 6.84 1.08 1.22 0.19
w/o group-wise correlation 6.82 1.08 1.20 0.18
w/o attention 6.49 1.07 1.22 0.18
full method 6.46 1.05 1.03 0.17

Table 1. Ablation study for RUMs. The top half is comparisons
for different forms of correlation layers and different levels of cas-
cades, trained on public datasets except Middlebury and ETH3D.
And the bottom half is evaluation for key components in AGCL,
trained on full datasets.

ations, the learning rate is linearly decreased down to 5% of
the standard value towards the end of the training process.
The model is trained with an input size of 384 × 512. All
training samples undergo a set of augmentation operations
before getting fed into the model.

Augmentation. To imitate the camera module incon-
sistencies and non-ideal rectification, we employ multiple
data augmentation techniques for training. Firstly, we ap-
ply asymmetric chromatic augmentations for the two in-
puts respectively, including shifts in brightness, contrast and
gamma. To further enhance the robustness for rectification
error in real-world images, we conduct spatial augmentation
applied only to the right image: slightly random homogra-
phy transformation and vertical shift at a very small range
(< 2 pixels). To avoid mismatching in ill-posed regions,
we use random rectangle occlusion patches with height and
width between 50 and 100 pixels. Finally, to fit input data
from various sources into the network’s training input size,
the group of stereo images and disparity undergoes random
resize and crop operations.

4.3. Ablation Study

In this section we evaluate our model on different set-
tings to prove the effectiveness of the network components.
Besides the ablation study for the stacked cascades, all eval-
uation resolutions are 768× 1024.

Correlation types. In order to compare the effect of dif-
ferent types of correlations, we replace our correlation lay-
ers with other forms. As shown in Tab. 1, both 2D and
1D all-pairs correlation used in [45] and [23] lead to a sub-
stantial drop in accuracy compared with their local forms.

Method Input size
Middlebury

Bad 2.0 AvgErr

single cascade 768× 1024 6.46 1.05
single cascade 1024× 1536 6.00 1.61
2 stacked cascades 1024× 1536 5.30 0.94
2 stacked cascades 1536× 2048 4.53 0.93
3 stacked cascades 1536× 2048 4.58 0.92

Table 2. Abalation study for stacked cascaded architecture during
inference.
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Figure 6. Training loss and ETH3D / Middlebury validation error
of models trained with Sceneflow and our synthetic dataset.

When we replace the alternate local correlation with a single
2D or 1D correlation, it harms the final precision, which is
more evident when the network contains more than 1 level
of cascades because the rectification error increases with the
resolution.

Components in AGCL. As shown in the bottom half
of Tab. 1, using a fixed correlation window without learned
offsets degrades the accuracy which demonstrates the ef-
fectiveness of the adaptive mechanism. Replacing group
correlation with single form and removing the local feature
attention modules both deteriorate the accuracy.

Cascaded RUMs. We compare the performance of dif-
ferent numbers of cascade stages. As is shown in Tab. 1,
using a single RUM without cascades leads to a substantial
drop in precision. When changing the number of cascades,
the prediction error decreases evidently when more levels
of cascades are used while the correlation type keeps the
same. This demonstrates the importance of our cascaded
architecture.

Stacked cascades. During inference, we feed the cas-
cades using different levels of image pyramid as input while
sharing the same trained parameters. We compare the per-
formance of different stages of cascades with various of res-
olutions on Middlebury. As shown in Tab. 2, the prediction
error increases with the input size when only a single cas-
cade is used. Multi-level input helps to reduce the error
substantially, which demonstrates that our stacked cascades
scheme enjoys a great improvement for disparity accuracy.

New synthetic data. To analyze the effectiveness of our
proposed synthetic data, we sample 35,000 pairs of images
from our training dataset and compare with similar-sized
Sceneflow [27]. Both datasets are used to train our model
with the same augmentation for 50,000 iterations. As shown
in Fig. 6, our synthetic data results in lower training loss and
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(a) Left image (b) HITNet (c) RAFT-Stereo (d) Ours

Figure 7. Visual comparisons on Middelbury and ETH3D with
HITNet [44] and RAFT-Stereo [23].

(a) Left image (b) LEAStereo [8]

(c) AANet [49] (d) Ours

Figure 8. Visual comparisons with other methods on one case of
KITTI 2015 test set. Our method preserves more details.

better performance in both ETH3D and Middlebury valida-
tion data. This demonstrate that our dataset is more advan-
tageous in domain generalization.

4.4. Comparisons with State-of-the-art

Middlebury. We train our network on 23 pairs of im-
ages (including 13 additional pairs with ground truth) from
Middlebury 2014 dataset together with our full training set
without fine-tuning. The proportion of Middlebury training
set is augmented to 2% of the full training set. We evalu-
ate the test set at 1536 × 2048 using resized full-resolution
images where 2-stage inference is adopted, and the results
are submitted to the online leaderboard . We achieve the 1st

place on the majority of the metrics among more than 120
other methods, surpassing the published state-of-the-art by
21.73% on the bad 2.0 metric, 31.00% on the A95 metric.
The quantitative comparison results with other methods are
shown in Tab. 3.

ETH3D. We train our network on the whole training
set with a proportion of 2% augmented training data from
ETH3D low-res two-view stereo dataset. Without fine-
tuning, we evaluate the test set at the size of 768 × 1024
where 2-stage inference is adopted. At the time of writing,
we achieve state-of-the-art among published methods on the
online benchmark for all metrics. Our method surpasses the
published state-of-the-art by 59.84% on the bad 1.0 metric.
Quantitative comparisons are shown in Tab. 4.

KITTI. Different from the training procedure for Mid-
dlebury and ETH3D, we fine-tune the model pre-trained on
the full training set for another 50K iterations on KITTI
2012 and 2015 training sets. The initial learning rate
is set to 0.0001. We augment the proportion of KITTI

Method Bad 2.0 Bad 1.0 AvgErr RMS A95

CREStereo (Ours) 3.711 8.251 1.151 7.701 1.581

RAFT-Stereo [23] 4.742 9.372 1.272 8.413 2.292

LocalExp [43] 5.435 13.910 2.2413 13.423 4.8117

HITNet [44] 6.4614 13.34 1.714 9.975 4.269

LEAStereo [8] 7.1518 20.840 1.433 8.112 2.653

SDR [50] 7.6924 18.832 2.9432 15.443 7.1330

MC-CNN-acrt [54] 8.0827 17.123 3.8258 21.386 14.155

CFNet [38] 10.137 19.633 3.4946 15.444 16.458

HSMNet [48] 10.238 24.648 2.075 10.38 4.3210

AdaStereo [39] 13.759 29.561 2.2210 10.27 5.6725

AANet++ [49] 15.466 25.551 6.3794 23.5103 48.8112

Table 3. Quantitative results on Middlebury benchmark.

Method Bad 1.0 Bad 0.5 AvgErr RMSE

CREStereo (Ours) 0.981 3.581 0.131 0.281

RAFT-Stereo [23] 2.445 7.044 0.183 0.363

HITNet [44] 2.799 7.836 0.206 0.4610

AdaStereo [39] 3.0912 10.2218 0.2414 0.447

CFNet [38] 3.3117 9.8715 0.2414 0.5119

GwcNet [12] 3.6625 12.0437 0.2940 0.6752

iResNet [22] 3.6826 10.2619 0.2414 0.5119

HSMNet [48] 4.0036 11.3328 0.2836 0.6243

AANet [49] 5.0152 13.1645 0.3145 0.6857

GANet [55] 6.5667 25.41108 0.4383 0.7573

Table 4. Quantitative results on ETH3D benchmark.

datasets to 75% with the rest part randomly sampled from
the whole training set. During evaluation, we pad the input
to 384×1248 before feeding to the network and single stage
inference is adopted. We achieve competitive performance
on both datasets , surpassing LEAStereo [8] in KITTI 2012
by 9.47% on Out-Noc under 2 pixels error threshold. We
show a visual comparison of KITTI 2015 in Fig. 8.

4.5. Practical Performance

Compared with the real-world images from standard
stereo datasets which is limited in numbers and scenes, im-
ages taken from consumer-level devices pose greater chal-
lenges to stereo matching. For fair comparisons, we trained
all other stereo networks with author-released code and rec-
ommended settings on our full training set.

Holopix50K. Fig. 9 shows the qualitative comparison re-
sults of our network with several published stereo match-
ing on Holopix50K [16] dataset in varied scenes. Pre-
rectification were performed to eliminate possible negative
disparity. The visual results show that our method has a sig-
nificant advantage in thin objects like cat whiskers and wire
meshes. We also achieve better performance on textureless
areas like walls and windows.

Disturbed ETH3D. We simulate common disturbances
in practical scenes on ETH3D dataset to test the robustness
of our proposed method and list the quantitative results in
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Figure 9. Comparison of results from different methods on Holopix50K [16] dataset. Zoom in for best view.
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Figure 10. Comparisons among methods on the ETH3D training
dataset with different types of disturbances.

Method mxIoU mxIoUbd

Ours 97.50% 72.61%
RAFT-Stereo [23] 94.58% 69.26%
HSMNet [48] 91.70% 60.17%
AANet [49] 91.02% 63.70%
GwcNet [12] 90.77% 64.26%
STTR [21] 90.82% 62.12%
LEAStereo [8] 92.38% 58.06%

Table 5. Quantitative results on 400 smartphone captured scenes.
We choose the resolution with best performance for every method.

Fig. 10. The disturbances here include image blur, color
transform, chromatic noise, image perspective transform,
vertical shift and spatial distortion. The results demonstrate
that our method is less vulnerable to these disturbances.

Smartphone photos. Because it is difficult to obtain
ground truth disparity in real-world scenes, an empirical
way is to manually label a foreground mask Mf for evaluat-
ing the disparity quality [25]. The metric of IoU (intersec-
tion over union) is commonly used in segmentation tasks.
For a disparity map, we can place a threshold t to obtain
a foreground mask Mt, where the disparity values of the
foreground are larger than t. The “mxIoU” means the max-
imum IoU between Mf and Mt by changing t. Similarly,
“mxIoUbd” means mxIoU in a banded area within p (we set
p = 4) pixels from the boundary of Mf . The quantitative
and qualitative comparison results are shown in Tab. 5 and

(a) Left image (b) Mask (c) RAFT-Stereo (d) Ours

Figure 11. Comparison of predicted disparities of repetitive-
texture and non-texture cases in smartphone photos with RAFT-
Stereo [23]. The mxIoU scores are marked in the figure.

Fig. 11 respectively.

5. Conclusion

Despite unprecedented success of deep stereo networks,
obstacles remain for accurately recovering disparities in
real-world scenes. In this paper, we have presented
CREStereo, a novel stereo matching network that attains
state-of-the-art results on both public benchmarks and real-
world scenes. Our key message here is that, both network
architecture and training data deserve rigorous thoughts in
order for an algorithm to truly work in the real world. Via
cascaded recurrent network with adaptive correlation, we
are able to recover delicate depth details better than existing
methods; and we manage to better handle hard-case scenes
like non-texture or repetitive-texture areas through careful
design of our synthetic dataset. A limitation of our method
is that the model is not yet efficient enough to run in current
mobile applications. Future improvements could be made
to adapt our network for various portable devices, prefer-
ably in real-time.
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