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Abstract

Despite the promising progress having been made, the
two challenges of multi-view clustering (MVC) are still
waiting for better solutions: i) Most existing methods are
either not qualified or require additional steps for incom-
plete multi-view clustering and ii) noise or outliers might
significantly degrade the overall clustering performance. In
this paper, we propose a novel unified framework for in-
complete and complete MVC named multi-view probabilis-
tic clustering (MPC). MPC equivalently transforms multi-
view pairwise posterior matching probability into compo-
sition of each view’s individual distribution, which toler-
ates data missing and might extend to any number of views.
Then graph-context-aware refinement with path propaga-
tion and co-neighbor propagation is used to refine pair-
wise probability, which alleviates the impact of noise and
outliers. Finally, MPC also equivalently transforms prob-
abilistic clustering’s objective to avoid complete pairwise
computation and adjusts clustering assignments by maxi-
mizing joint probability iteratively. Extensive experiments
on multiple benchmarks for incomplete and complete MVC
show that MPC significantly outperforms previous state-of-
the-art methods in both effectiveness and efficiency.

1. Introduction

Multi-view clustering (MVC) [36], a task aiming at ex-
ploiting both correlated and complementary information
implied in multi-view data and dividing samples into var-
ious clusters in an unsupervised manner, has become a hot
spot in the area of computer vision, due to its superiority
over single-view clustering in performance. With the ex-
plosion of multi-source and multi-modal data, a great deal

* This work was done during research intern at Alibaba.
1 Corresponding authors.

of effort has been put into MVC. Co-EM [23] intends to
maximize the mutual agreement across all views by learn-
ing knowledge from each other. SWMC [22] constructs a
unified similarity graph from multiple views and then par-
tition this graph to obtain the clustering result. GMC [29]
weights each data graph matrix to derive the unified graph
matrix. SMSC [27] integrates anchor learning and graph
construction into a unified framework. MKKM [16] seeks
to optimally combine the predefined kernels with matrix-
induced regularization in order to improve clustering per-
formance.

Despite the progress having been made, MVC methods
still face various challenges: 1) Absence of partial views
among data points [17, 35] might frequently take place in
practice, while existing methods are either not qualified
[27,29] or require specific additional steps [30,33] for these
cases. 2) K-means [18] and spectral [25] clustering algo-
rithm are commonly employed as the last step of MVC.
Both of them are sensitive to the quality of the common rep-
resentations or similarity matrices, which might be signifi-
cantly degraded by the noise or outliers contained in multi-
view data [11,28,42,43] due to the complexity in data col-
lection. Moreover, the performance of K-means and spec-
tral clustering relies on the selection of total cluster number
which is usually unavailable in real world cases.

To address these issues, we propose a novel unified
framework for incomplete and complete MVC named
multi-view probabilistic clustering (MPC). Instead of learn-
ing or calculating a common similarity matrix, we utilize
posterior probability to directly reflect the pairwise match-
ing possibility between samples. To obtain the posterior
probability matrix, we mathematically decompose it into
the formulas of each views’ distribution, which exhibits en-
hanced tolerance to the partial missing of views and has
the benefit of easily extending to any number of views.
Then, MPC performs graph-context-aware probability re-
finement with path propagation and co-neighbor propaga-
tion, which can effectively alleviate the impact of noise and
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outliers. Finally, clusters are generated using fast proba-
bilistic clustering algorithm, which is more robustness to
noise and not requires the prior knowledge of cluster num-
bers. To avoid complete pairwise computation, we equiv-
alently transforms probabilistic clustering’s objective and
adjusts clustering assignments by maximizing joint prob-
ability iteratively. Extensive experiments demonstrate that
MPC significantly outperforms state-of-the-art methods in
both clustering performance and computational efficiency.

In summary, the main novelties of this paper are as fol-
lows:

e The proposed MPC framework equivalently trans-
forms the multi-view pairwise posterior matching
probability into composition of each view’s individual
distribution, which tolerates data missing and might
extend to any number of views.

* The proposed graph-context-aware refinement effec-
tively alleviates the impact of noise and outliers.

* The proposed fast probabilistic clustering algorithm
cuts computational complexity by a large margin and
does not require any prior knowledge.

2. Related Work
2.1. Multi-view Clustering

Based on the mechanisms and principles used in inte-
grating multiple views, existing MVC algorithms can be
grouped into the following categories. The first category
is based on graph clustering [22, 29, 30, 43]. As a typical
graph clustering method, PIC [30] seeks to learn a con-
sensus representation using a consistent graph matrix con-
structed from all views and then use spectral clustering al-
gorithm on the learned consensus graph to generate clus-
tering result. The second one is based on matrix factoriza-
tion [12,15,24,31]. This category seeks to learn a con-
sensus representation by performing low rank matrix fac-
torization on the data matrix to achieve clustering. For
example, MIC [24] optimizes a learning consensus matrix
based on weighted non-negative matrix factorization and
Ly 1-norm regularization. The third one is multiple kernel
learning [32, 39-41]. In brief, this category seeks to find
a fused graph using a group of predefined kernels and ex-
tract a common cluster structure. For example, OSLF [39]
proposes to cluster each independent similarity matrix to
learn a consensus clustering partition matrix. Besides, the
methods like [4, 14,38] are based on deep multi-view clus-
tering and MCDCEF [4] simultaneously integrates MVC and
deep matrix factorization into a unified framework to learn
a common consensus representation matrix from the hierar-
chical information.

We propose a novel method to adaptively estimate the
posterior matching probability from multiple views with-
out complicated hyper-parameters fine-tuning. Besides, cat-

egory information is not required in our method, which
severely affects the clustering performance in some meth-
ods [30,39].

2.2. Unsupervised Clustering

K-means clustering [ 8], spectral clustering [25], hierar-
chical clustering [26] and some other traditional clustering
algorithms [9, 10] are usually used for clustering tasks. K-
means [ | 8] minimizes the total intra-cluster variance with a
given number of clusters. Spectral [25] performs the graph
cut based on the affinity matrix. The clustering performance
of these algorithms is affected by the optimization parame-
ters and the number of clusters. As one of effective cluster-
ing algorithms, probabilistic clustering algorithms [19, 20]
are pioneered to incorporate pairwise relations and have
achieved state-of-the-art performance in clustering tasks.
The basic idea of probabilistic clustering is to maximize
the intra-cluster similarities and minimize the inter-cluster
similarities among the objects. Empirical functions are usu-
ally used to handle pairwise similarities in these methods,
which limits the final clustering performance. Moreover,
the matching probability of all pairwise relations are taken
into consideration resulting in high computational complex-
ity.

Thus, we propose a fast and parameter-free probabilistic
clustering algorithm, which has no optimization parameters
and can generate clustering result with a linear computa-
tional complexity.

3. The Proposed Method

In this section, we discuss the details of the proposed
MPC. As illustrated in Figure 1, the proposed method con-
sists of three phases. First, during the probability estima-
tion phase, given the data matrix of each view, a multi-view
pairwise posterior matching probability matrix is generated
from the composition of each view’s individual distribution
using the consistency information and complementary in-
formation of all views. We aim to make full use of the infor-
mation of each view. And then graph-context-aware prob-
ability refinement with path propagation and co-neighbor
propagation is introduced to refine the pairwise posterior
matching probability and alleviate the impact of noise and
outliers. In the final phase, fast probabilistic clustering al-
gorithm is introduced to generate clustering result in an ef-
ficient and robust way based on the refined multi-view pair-
wise posterior matching probability matrix.

3.1. Probability Estimation

Given a multi-view dataset of N samples with M views
S = (VO ,y@ _ yO)L yim ¢ RA™N denotes
the feature matrix in m-th view, where d(™ is the feature
dimension of the m-th view. Let W) e RN*N calcu-
lated by V(") using cosine similarity denotes the similarity
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Figure 1. Overview of the proposed MPC. The proposed method consists of three phases. In the probability estimation phase, a multi-
view pairwise posterior matching probability matrix is generated from the composition of each view’s individual distribution using the

consistency information and complementary information of all views.

In the probability refinement phase, path propagation and co-

neighbor propagation are introduced to fine-tune the posterior matching probability. As shown in path propagation, taken probability
consistency information into consideration, h sets up the probability path between ¢ and j and the probability between ¢ and j can be
enhanced by finding the path with the maximum probability. Besides, in co-neighbor propagation, b and c are the noise in k-nearest-
neighbors of a. Based on the number of common neighbours and the proportion of the common probabilities, co-neighbor propagation
refinement adjusts the probability between a and b and the probability between a and c to a small value and the small value indicates that
they are not linked. The probability between a and d can be further adjusted and enhanced. Next, the refined pairwise posterior matching
probability is used for clustering. As shown in fast probabilistic clustering procedure, each sample is assigned to its own clustering set at the
beginning and each sample is moved to the neighbour clustering set in random seqential order by maximizing joint probability iteratively.

Finally, a good clustering result can be generated in a convergent way.

matrix of the m-th view. The similarity matrix of different
views may vary from each other even though they generate
similar clustering results. Hence, we propose to estimate the
pairwise posterior probability based on the similarity matrix
of all views instead of simply combining similarity matrices
into one common similarity matrix. The pairwise posterior
probability of sample ¢ and j can be expressed as:

P() = Ples; = o2, 0, 0l ()

ij o e Wi
where ¢;; = 1 indicates that the two samples belong to the
same class and wl(m) denotes the similarity of the two sam-
ples in m-th view. Assuming that all views are condition-
ally independent similar to previous works [1, 3, 5, 6, 34],
based on Bayesian formula and conditional independence,

the above formula can be expressed as:

iJ , W

M (m) &%
(T Plwiess = 1) Ples; = 1w}))
P(i,j) = —"= (@)
S (T Pwiles; = 1)) Ples; = lw))
1€{0,1} m=2

The detailed derivation of Eq. (2) is presented in supple-
mentary material.

As shown in Eq. (2), the similarity information of all
views can be considered into the formula. The formula
is designed with the following goals. On the one hand,
the formula can independently use the similarity informa-
tion of each view. Accordingly, a larger P(wgn) lei; = 1)

or P(e” = 1|w(m)) denotes a larger pairwise probabil-

ity in the m-th view and can be reflected to the multi-
view pairwise probability. On the other hand, the formula

can fuse the probability information of all views. When
the similarity information of all views is consistent (large
P(wgn)\e” = 1) and P(e;; = 1|w(m)) in all views or
small P(w, (m) le;; = 1) and P(e;; = 1|w )) in all views ),
the formula can reflect the consistency 1nf0rmation. When
the similarity information of some views is fuzzy, the for-
mula can reflect the complementary information which is
obtained in other views. Different from learning a weight-
ing parameter to fuse multiple similarity matrices in pre-
vious works [29, 30], Eq. (2) can adaptively estimate the
posterior matching probability from multiple views.

To estimate the P(w (m)|em = 1/0) and P(e;; =

l\w(m)), we use clustering algorithm to generate pseudo

labels on each view and generate some pairwise relations
using k-nearest-neighbors of each sample. There are many
methods that can generate pseudo labels and we use our pro-
posed clustering algorithm. We label these paired samples
as 0/1 using pseudo labels to indicate whether the two sam-
ples in pairwise relations belong to the same class. Then,
we use simple isotonic regression and histogram statistics
to estimate P(wg”)|elj = 1/0) and P(e;; = 1|w(m)) re-
spectively, which are preprocessing and only need to be
estimated once. All observed data of each view is used
for calculation, no matter it is a complete view or a miss-
ing view. We aim to make full use of the information of
each view including the unique infromation in incomplete
views and the consistency information and complementary
information in complete views. The estimated value using
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P(wg;")\eij =1/0) and P(e;; = 1\w§;n)) with pseudo la-
bels only need to be approximately correct and it can be
discussed from three aspects. First, due to the formula in
Eq. (2) composed of each view’s individual distribution, the
multi-view pairwise posterior matching probability can not
be affected by a special view and can adaptively scale the
estimation value to eliminate the disturbance and enhance
the robustness. Second, the pairwise probability is used for
the proposed fast probabilistic clustering algorithm (will be
introduced in Section 3.3), and the proposed fast probabilis-
tic clustering algorithm can successfully classify clusters
with dense probabilities. Accordingly, the pairwise proba-
bility only needs to be able to roughly represent the pairwise
relationship. Third, the probability refinement is introduced
in next section to further fine-tune the pairwise probability.
Given the P(wg;n)|eij =1/0) and P(e;; = 1|w2(]m)) of all
views, a multi-view pairwise posterior matching probabil-
ity matrix can be generated and used to generate clustering
result instead of TV (™).

3.2. Graph-context-aware Refinement

The probability estimation is calculated based on the as-

pect of sample relationship, ignoring the aspect of graph
context which contains rich information. Thus, we perform
graph-context-aware refinement with path propagation and
co-neighbor propagation.
Path Propagation. Due to the data perturbation of each
view, there exists a few outliers in dataset which may affect
the clustering performance in the final step. The probability
estimation of outliers can not be calculated accurately by
using Eq. (2), we therefore try to fine-tune them with path
propagation.

Inspired by the message passing, where the information
among nodes is transmissible, the proposed path propaga-
tion (PP) passes probabilities between samples like follows:

P(i,j):max(P(i,j),P(i,h)xP(h,j)) 3)
where j € knn,, h € knn;j, knn, = {Uknn]"}, knn; =
{Uknn*}, knng; = {knn; N knn;} and knnj* € R is
the k-nearest-neighbors of sample ¢ in m-th view. In Eq.
(3), sample h sets up the path between sample ¢ and sample
7 and the probability between sample ¢ and sample j can be
enhanced by finding the path with the maximum probability.
Using path propagation, the probability consistency infor-
mation between the outliers and their neighbors is taken into
consideration, in which the outliers can be detected and the
pairwise probabilities between the outliers and their neigh-
bors can be enhanced.
Co-neighbor Propagation. The probability estimation is
calculated in Euclidean space while the visual features usu-
ally lie in low-dimensional manifolds [7]. Only using the
information in Euclidean space, overlooking the graph con-
text, may result in inaccuracy of the actual pairwise poste-
rior probabilities between samples. To take advantage of the
graph context, the co-neighbor propagation (CP) is defined

as:
Zheknnu (P(Z7 h) + P(.]’ h))

= . . “
Zh,ieknni P(Z’ hl) + Zhjeknnj P(J7 h])

P(i,j)

where knn; € RF is the k-nearest-neighbors of sample i
calculated by P(i,7) and knn;; = {knn; Nknn;}. In
the formula, the local graph is constructed by the k-nearest-
neighbors of two samples. We take both the number of com-
mon neighbours and the proportion of the common proba-
bilities into consideration to further refine the probability
based on the local graph. As shown in Eq. (4), the avail-
able graph-based probability information can be mined to
dig out as much manifold-like distribution information as
possible. Using co-neighbor propagation, the noise in k-
nearest-neighbors can be detected and the outliers can be
further enhanced in an efficient way.

3.3. Fast Probabilistic Clustering

In this phase, the fast probabilistic clustering algorithm
is introduced to generate clustering result. Given [V samples
with the clustering set 7 : 21, 22, ..., 2], the optimization
goal of fast probabilistic clustering (FPC) can be mathe-
matically expressed as:

Topt = argmaz, P(X|r) = L) l(j(i’r;r)
P(e;;=1 i (5)
Hi’j(PES;:Oi )(5( i '7)P(eij =0)
sit. P(X,7) = Sl =

where ¢ is the Kronecker function and 2 is the normaliza-
tion parameter. With the above definitions, the objective
optimization function L = —logP(X|7) can be expressed
as:

L= (82, 2)(logP(esj = 0) = logP(ei; = 1)) + ¢ (6)

where ¢ = — 37, (logP(e;; = 0)) — logP(m) — logQ

is a constant. Only the probabilities within the class need to
be calculated in Eq. (6), which reduces the computational
complexity. The whole probabilistic clustering optimiza-
tion procedure is outlined in Algorithm 1. In the first step,
k-nearest-neighbors is constructed using refined multi-view
pairwise posterior matching probability. In the second step,
each sample is assigned to its own clustering set. Then, in
random seqential order, each sample is moved to the neigh-
bour clustering set that results in the minimum value using
Eq. (6). The moving procedure is repeated for every sample
until no moving steps. The visualization of the probabilistic
clustering process is shown in Figure 1. With this algorithm,
a good clustering result can be generated in a convergent
way.

In incomplete multi-view clustering, we first generate
clustering result using the above algorithm on the samples
with complete views. And then for incomplete samples, k-
nearest-neighbors is constructed on the samples that have
the complete views. We utilize co-neighbor propagation to
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Algorithm 1: FPC Optimization Procedure
Input: P(e;; = 1) and P(e;; = 0);
Construct KNN nbrs € R™"* by P(e;; = 1);
Initialization: listn = [1,2,...,n], it = 0,

maziter = 20, z = [21, 22, ..., zn] = [1,2,..,n];
while it < maxiter do
count =0

random shuffle listn
for i in listn do
find zf;na in z[nbrs[i]] with minimum objective
value denoted by Eq. (6)
if Zi | = Zfind then
update z; = Zfind
count = count + 1
end
end
if count == 0 then
| break
end
it=dt+1

end
Output: z;

refine the pairwise probability between the incomplete sam-
ple and it’s k-nearest-neighbors. Finally, we find the max-
imum probability in k-nearest-neighbors and merge the in-
complete sample to the neighbour clustering set. Besides,
there still exists some cases in which all incomplete sam-
ples have two common views and we can also utilize the
complete multi-view clustering procedure to generate the
clustering result.

4. Experiments
4.1. Experimental Settings

Datasets. The experimental comparisons are experimen-
tally evaluated on three multi-view datasets. (1) Hand-
written [8] contains 2000 samples of 10 digits (i.e., dig-
its ’0-9’), covering four kinds of features, which are av-
erage pixels features, Fourier coefficient features, Zernike
moments features and Karhunen-Love coefficient features.
(2) 100Leaves [21] contains 1600 samples from 100 plant
species. For each sample, a shape descriptor and texture
histogram are given. (3) Humbi240, a subset of Humbi
[37] dataset, contains 13440 samples of 240 persons cov-
ering face features extracted by face recognition model'
and body features extracted by person reID model’. The
datasets are summarized in Table 1. To evaluate the clus-
tering perfomance on incomplete data, we select ¢% (¢ =
90, 70, 50, 30) samples as the paired samples that have full
views. For the remaining samples, half of them miss the first

Uhttps://github.com/XiaohangZhan/face_recognition_framework
Zhttps://github.com/layumi/Person_reID_baseline_pytorch

view, while the second view of the other half is removed.
The missing rate is defined asn =1 —c.

Table 1. Summary of the datasets. {M, C, N, d™} denotes
the number of {views, clusters, samples, features} in each view,
respectively.

Datasets M C N dm(m =1,..., M)
Handwritten 4 10 2000 240,76,47,64
100Leaves 2 100 1600 64,64
Humbi240 2 240 13440 256,256

Evaluation Metrics. In the experiments, several widely-
used clustering metrics including BCubed Fmeasure, Pair-
wise Fmeasure [2], Normalized Mutual Information (NMI)
and Adjusted Rand Index (ARI) are used as the evaluation
metrics. A higher value of these metrics indicates a better
clustering performance.

Implementation Details. We implement our MPC with
Python 3.8 and perform all evaluations on a standard
Linux OS with 16 2.50GHz Intel Xeon Platinum 8163
CPUs. For all methods, we use an appropriate /K to con-
struct k-nearest-neighbors for fair comparisons. And K
is set to 200, 20 and 120 on Handwritten, 100Leaves and
Humbi240, respectively.

4.2. Compared Methods

We compare our method with SOTA multi-view cluster-
ing algorithms. SMSC [27] integrates anchor learning and
graph construction into a unified framework. GMC [29]
weights each data graph matrix to derive the unified graph
matrix. MCDCEF [4] brings deep concept factorization to
MVC for learning the hierarchical information. SFMC [13]
presents a scalable and parameter-free graph fusion frame-
work for MVC. PIC [30] learns the common representation
using a fusion graph constructed from incomplete views.
OSLF [39] allows the imputation of the base partition ma-
trices to help the learning of the consensus partition matrix.
EEIMC [17] proposes using a multi-kernel method to im-
pute the incomplete base clustering matrices. UEAF [33]
simultaneously reconstructs the missing views and learns
the common representation of multiple views. IMCCP [14]
learns representations with contrastive prediction and miss-
ing data recovery. The first four methods could only handle
complete multi-view data and thus we fill the missing data
with the mean values of the same view.

For all methods, we download their released codes and
tune the hyper-parameters by grid search to generate the
best possible results on each dataset. In brief, for PIC, we
seek the optimal 3 from le-4 to 1e4 with an interval of 10.
For EEIMC, we exploit the “Gauss kernel” to construct the
kernel matrices and seek the optimal A from 271 to 215
with an interval of 23. For OSLF, we exploit the “Gauss
kernel” to construct the kernel matrices and seek the opti-
mal A from 27 1° to 2% with an interval of 2. For UEAF, we
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Table 2. The clustering performance comparisons on three datasets. The 1st/2nd best results are indicated in red/blue. MVC indicates
complete multi-view clustering; IMVC indicates incomplete multi-view clustering with 0.5 missing rate.

Methods Handwritten 100Leaves Humbi240
Fp Fp NMI ARI Fp Fp NMI ARI Fp Fp NMI ARI
MCDCEF [4] 5492 5932 6490 4945 | 51.04 58.14 8220 5052 | 53.16 6799 8891 52.91
SMSC [27] 67.48 6920 72.54 63.83 | 25.88 42.12 7259 2477 | 2659 4437 74.09 26.13
SFEMC [13] 7270 7372 7735 69.66 | 2997 6131 8097 2894 | 51.78 91.19 9547 51.50
IMCCP [14] 76.56 8096 8386  73.73 | 2291 36.20 6994 21.78 | 49.68 58.43 8842 49.37
MVC GMC [29] 74.84 80.47 8220 71.75 | 3640 7898 88.75 3547 | 87.99 96.05 98.57 87.94
OSLF [39] 7824 7855 7932 75.82 | 6555 69.59 87.68 6520 | 90.35 93.62 98.20 90.31
EEIMC [17] 78.86  79.13 80.80 76.51 7410 77.53 91.18 73.84 | 9145 9445 9854 9141
UEAF [33] 80.61 80.92 8143 7846 | 6454 72.81 89.18 64.16 | 8636 90.36  97.11 86.30
PIC [30] 76.61 77.88 80.23 7394 | 78.04 8149 9276  77.82 | 9434 9629 9895 9432
MPC 84.57 8445 8560 83.04 | 84.18 85.65 9440 84.04 | 9549 97.03 99.07 9547
MCDCEF [4] 20.84 2299 25.38 11.38 | 23.84 30.61 68.36  23.06 | 29.91 41.78 7144 2953
SMSC [27] 62.83 6326 65.65 58.65 17.51  30.59 63.26 16.27 18.69 31.59 6442 18.17
SFMC [13] 54.81 6730 7199 4753 | 22.67 5194 73.81 21.50 7.61 71.73  81.66 6.88
IMCCP [14] 58.52  71.10 72.68 5271 17.08 2475 60.84 1599 | 37.20 42.66 80.93 36.84
IMVC GMC [29] 53.56  73.19 7356  46.05 3.55 4735 56.76 1.76 2.55 52.86  65.28 1.75
OSLF [39] 53.86 54.06 58.51 4873 | 33.86 39.04 71.84 33.19 | 70.72 7340 89.41 70.59
EEIMC [17] 68.80 6948 70.26 6533 | 52.65 56.74  8l1.11 52.18 80.94 8624 94.84 80.86
UEAF [33] 68.94 6948 7255 6548 | 3847 4587 75.62 37.82 | 86.04 8996  96.81 85.98
PIC [30] 75.65 76.03 76.67 7295 | 50.79 55.61 80.72 50.30 | 83.30 85.74 94.64 83.23
MPC 77.44  77.65 7852 75.13 58.31 61.19 83.39 5794 | 90.10 91.56 96.53  90.06
< T 804 T——
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Figure 2. The clustering performance comparisons on Handwritten with different missing rates.

exploit the grid search approach to find the optimal penalty
parameters A\, A, A from le-5 to 1e5 with an interval of
10. For SMSSC, we fine-tune the number of anchors.

Performance Comparison with Two Views. Table 2
lists the experimental results of different methods on three
datasets. In the complete cases, our method achieves
the best performance and surpasses the best baseline by
4.58% on Handwritten, 6.58% on 100Leaves and 1.15% on
Humbi240 in terms of ARI. Moreover, in the incomplete
cases, our method surpasses the SOTA by 2.18% on Hand-
written, 5.76% on 100Leaves and 4.08% on Humbi240 in
terms of ARI. GMC and SMFC achieve inferior perfor-
mance in comparison with the other methods on Humbi240
with 0.5 missing rate. This illustrates that simply filling in
the missing views with the average vector is harmful to clus-
tering. Furthermore, the incomplete multi-view clustering
performance with different missing rates on Hnadwritten is
shown in Figure 2. From these experimental results, we
can observe the following points: (1) our method outper-

forms all the tested baselines with different missing rates,
which demonstrates the MPC’s capacity of tolerating data
missing; (2) our method achieves the best precision which
further proves the accuracy of multi-view pairwise posterior
matching probability in our proposed MPC.

Performance Comparison with Four Views. For the
Handwritten dataset, additional incomplete case is con-
structed in which all samples have two complete views (the
fitst view and the second view) and half of them miss the
third view, while the other half of the samples remove the
fourth view. As shown in Table 3, MPC significantly out-
performs these state-of-the-art methods and MPC surpasses
the best baseline by 9.24% and 8.67% in terms of ARI in
complete case and incomplete case, respectively. The en-
couraging performance demonstrates our method’s capacity
of tolerating data missing and extending to multiple views.
Specially compared with complete (first view and second
view are complete) performance in Table 2 for OSLF and
EEIMC, the clustering performance is unstable and de-
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Table 3. The clustering performance comparisons on Handwritten with 4 views. View 1 and view 2 are complete and view 3 and view 4

are 50% missing in the incomplete cases. The 1st/2nd best results are indicated in red/blue.

Pairwise Fmeasure

BCubed Fmeasure

Methods Precision  Recall ~ Fscore Precision Recall Fscore NMI ARI

OSLF [39] 76.23 76.58 76.40 76.28 76.70 7649 7651 73.79

EEIMC [17] 75.33 76.39 75.86 76.53 76.51 76.52 7828  73.17

Complete PIC [30] 80.76 80.91 80.84 81.28 81.01 81.14 83.26  78.72
UEAF [33] 81.59 82.25 81.92 82.57 82.34 82.45 83.00 79.91

MPC 95.85 85.12 90.17 94.89 85.19 89.78 89.77  89.15

OSLF [39] 62.25 67.05 64.56 64.61 67.21 65.88 69.75  60.48

EEIMC [17] 73.93 78.60 78.26 78.88 78.71 7879  79.53  75.85

Incomplete PIC [30] 77.24 79.72 78.46 78.83 79.82 79.32 81.34  76.04
UEAF [33] 81.31 81.77 81.54 81.90 81.86 81.88 82.39 79.49

MPC 95.42 83.84 89.26 94.09 83.93 88.72 88.70  88.16

crease about 15.34% and 0.66% in terms of ARI, respec-
tively. Moreover, the Pairwise precision of our method is
about 14% higher than that of UEAF, demonstrating MPC’s
capacity of multi-view pairwise posterior matching proba-
bility in multi-view information excavation.

Table 4. Running time comparison on Handwritten and
Humbi240.
Methods MCDCF PIC UEAF  IMCCP MPC
[4] (301 [33] [14]
Handwritten ~ 20min 150s Sh 80s 45s
Humbi240 20h 7.5h 288h 280s 180s

Table 5. Running time of MPC’s components on Handwritten and
Humbi240.

Components PE PP CP  FPC | Total
Handwritten 5s 10s  21s 9s 45s
Humbi240 14s  48s  80s 38s 180s

4.3. Computational Complexity Analysis

The computational complexity of MPC is composed of
the cost of three phases. In the probability estimation (PE)
phase, the computational complexity is less than O(NV K),
where K (< N) is used to generate k-nearest-neighbors
and V(< N) is the number of views. In the probability
refinement (PP,CP) phase, the computational complexity
is O(NK). According to the fast probabilistic clustering
(FPC) optimization procedure, the computational complex-
ity is O(NK L), where L(< N) denotes the iteration num-
ber. Consequently, the computational complexity of our
proposed MPCis O(NK (V +14L)) = O(NK*) linear to
the number of samples, where K* < N. For running time
comparison in Table 4, the tested baselines cannot balance
the clustering performance and computational complexity.
For example, the running time of MCDCEF is up to 20 hours
on Humbi240. And UEAF suffers from a large number of
hyper-parameters to be fine-tuned and a higher computa-
tional complexity. Compared with these methods, our pro-
posed MPC can achieve a good clustering performance with

an appropriate linear running time. The detailed running
time of MPC components is shown in the Table 5.

4.4. Ablation Studies

In this section, we conduct some studies on Handwritten
and Humbi240 in the following.

Ablation on Probability Estimation. In the probability
estimation, we use Eq. (2) to fuse the probability infor-
mation of each view. In Table 6, we compare the for-
mula with different aggregation functions on Handwriten
with two views and four views. And the aggregation func-
tion is expressed as: P(i,5) = Aggregation(P(e;; =
HwM), Pei; = 1jw@),...,P(e;; = 1|w™)), where
aggregation functions include mean, max and min. The
aggregation functions treat multiple views as equally im-
portant and cannot generate good clustering result. Com-
pared with the naive max function, using the formula in
Eq. (2) can significantly boost the ARI from 76.17 to 89.15
on handwritten with four views. It further proves that Eq.
(2) can adaptively estimate the posterior matching proba-
bility from multiple views. From the perspective of multi-
view probability fusion, we compare our method on single
view and multi views in Table 7. For single view, we use
P(e;; = 1{w(™) as the probability estimation. As shown
in Table 7, the performance of probability estimation on sin-
gle view is about 2% higher than that of origin similarity on
single view on Handwritten in terms of ARI. And the perfor-
mance of multi-view pairwise posterior matching probabil-
ity based on our method surpasses the best single view clus-
tering performance by 18.20% on Handwritten and 20.68%
on Humbi240 in terms of ARI. These experimental results
prove that our formula proposed in Eq. (2) can adaptively
fuse multi-view probability information in an efficient way,
which plays a major role in performance improvement.

Ablation on Refinement Components. The refinement
contains two steps: Path Propagation and Co-neighbor
Propagation. As we analyze in Section 3.2, two steps are
indispensable. In Table 8, we compare the evaluation met-
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Table 6. Ablation study of our method. Comparison between the
formula and the different aggregation functions on Handwritten.

Methods Fp Fp NMI ARI

mean 81.75 81.83 8399 79.99
min 80.03 79.74 81.53 78.08

Viewl2 o nax 7346 7454 7939 70.88
formula  84.57 8445 85.60 83.04
mean 86.70 86.65 8698 8534
iew 1-4 min 8430 84.13 84.49 8271
view max 7839  79.14 8249 7617
formula  90.17 89.78 89.77 89.15

Table 7. The clustering performance comparisons of our

method with single view and multiple views on Handwritten and
Humbi240. V1 and V2 indicate the origin similarity matrix in the
first view and second view; MPC-V1 and MPC-V2 indicate our
proposed method in the first view and second view; MPC indicates
our proposed method in multiple views.

Methods Fp Fp NMI ARI

V1 6524 6545 7565 6252
V2 5292 5370 6436 49.04

Handwritten ~MPC-V1 6748 6721 76.11 64.84
MPC-V2 5636 56.62 6640 52.64

MPC 84.57 8445 85.60 83.04

V1 5472 56.65 87.57 54.61

V2 53.57 58.07 85.02 5342

Humbi240 MPC-V1 7487 76,52 9282 7478

MPC-V2 6394 6699 87.79 63.81
MPC 9549 97.03 99.07 9547

Table 8. Ablation study of different refinement components on
Handwritten.

Refinement Components Fp Fp NMI ARI
Only Co-neighbor Propagation ~ 78.72 7842 8195 76.75
Only Path Propagation 80.96 80.61 83.68 79.18
Both 84.57 8445 85.60 83.04

Table 9. The clustering performance comparisons of our method
with probabilistic clustering algorithm and traditional clustering
algorithms on Handwritten and Humbi240. K-means indicates K-
means clustering algorithm. Spectral indicates spectral clustering
algorithm. FPC indicates our proposed fast probabilistic clustering
algorithm.

Methods Fp Fp NMI ARI
K-means 76.75 76.89 82.63 74.56

Handwritten ~ Spectral ~ 73.76  73.35 8191 7145
FPC 84.57 8445 85.60 83.04

K-means 8246 8545 95.66 82.39

Humbi240 Spectral ~ 90.05  90.77 97.52  90.02

FPC 9549 97.03 99.07 9547

rics under different refinement components. As shown in
Table 8, clustering result with single refinement component
achieves poor performance. Equipped with two refinement
components, the clustering performance gains a significant
further improvement, demonstrating their efficiency in de-

tecting noise and enhancing outliers.

Ablation on Clustering Methods. FPC is introcuded in
MPC to generate clustering result. The number of clusters
used for K-means and Spectral clustering is generated by
FPC, which is 16 and 320 on Handwritten and Humbi240
respectively. As shown in Table 9, clustering result with
K-means and Spectral based on the refined pairwise poste-
rior matching probability achieve poor performance and are
severely affected by the number of clusters. Equipped with
FPC, the clustering performance gains a significant further
improvement, demonstrating FPC’s success in clustering.

4.5. Limitations

MPC equivalently transforms multi-view pairwise pos-
terior matching probability into composition of each view’s
individual distribution and Eq. (2) is proposed based on
the assumption that each view is conditionally independent,
which is consistent with previous works [1,3,5,6,34]. Based
on conditional independence assumption, the individual dis-
tribution estimation may be somewhat different from the ac-
tual distribution. However, P(wgn)|eij = 1/0) can still
roughly represent the distribution in the positive and neg-
ative pairwise relations. As we discussed in Section 3.1,
the individual distribution estimation only needs to be able
to roughly represent the pairwise relationship. Hence, our
proposed MPC based on conditional independence assump-
tion can still generate robust performance.

5. Conclusion

In this paper, we propose a novel multi-view probabilis-
tic clustering (MPC) framework to tackle the challenges:
i) lack of unified frameworks for incomplete and complete
MVC, ii) the performance penalty caused by noise and out-
liers and iii) the over-complication of existing methods. The
proposed MPC equivalently transforms multi-view pairwise
posterior matching probability into composition of each
view’s individual distribution, which tolerates incomplete
views. Equipped with graph-context-aware probability re-
finement and fast probabilistic clustering, MPC exhibits ex-
cellent efficiency as well as superior robustness to noise
and outliers. Extensive experiments on various multi-view
datasets show that our method performs markedly better
than SOTA methods while requiring shortest running time,
demonstrating the effectiveness of MPC.
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