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Abstract

The problem of class imbalanced data is that the gener-
alization performance of the classifier deteriorates due to
the lack of data from minority classes. In this paper, we pro-
pose a novel minority over-sampling method to augment di-
versified minority samples by leveraging the rich context of
the majority classes as background images. To diversify the
minority samples, our key idea is to paste an image from
a minority class onto rich-context images from a majority
class, using them as background images. Our method is sim-
ple and can be easily combined with the existing long-tailed
recognition methods. We empirically prove the effectiveness
of the proposed oversampling method through extensive ex-
periments and ablation studies. Without any architectural
changes or complex algorithms, our method achieves state-
of-the-art performance on various long-tailed classifica-
tion benchmarks. Our code is made available at ht tps :
//github.com/naver—ai/cmo.

1. Introduction

Real-world data are likely to be inherently imbal-
anced [13, 19,29, 30], where the number of samples per
class differs greatly. If models are trained on an imbalanced
dataset, they can be easily biased toward majority classes
and tend to have a poor generalization ability on recogniz-
ing minority classes (i.e., overfitting).

A simple and straightforward method to overcome the
class imbalance problem is to repeatedly oversample the
minority classes [6,44]. However, these naive oversampling
can intensify the overfitting problem, since the repeatedly
selected samples have less diversity but almost similar im-
age contexts [39]. For example, consider a minority class of
‘snow goose,” in which the geese always stand upon grass in
the training images. If samples are drawn from these limited
training samples [44] or even if new samples are produced

*The work for this paper was performed as part of an internship at
NAVER AI Lab.
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Figure 1. Concept of context-rich minority oversampling. In the
real-world long-tailed dataset iNaturalist 2018 [19], the number of
samples from the head class and the tail class is extremely differ-
ent (Upper). Simple random oversampling method repeatedly pro-
duces context-limited images from minority classes. We propose
a novel context-rich oversampling method to generate diversified
minority images. To this end, we oversample the tail-class images
with various sizes. Then, these patches are pasted onto the head-
class images to have various backgrounds. Our key idea is to bring
rich contexts from majority samples into minority samples.

by interpolating within the class [0], only context-limited
images will be created as in Figure 1. Our goal is to solve the
aforementioned problem by introducing a simple context-
rich oversampling method.

We pay attention to the characteristics of long-tailed
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distributions; that is, majority class samples are data-rich
and information-rich. Unlike the existing re-sampling meth-
ods that ignore (i.e., undersample) majority samples, our
method uses the affluent information of the majority sam-
ples to generate new minority samples. Specifically, our
idea is to leverage the rich major-class images as the back-
ground for the newly created minor-class images. Figure 1
illustrates the concept of our proposed context-rich over-
sampling strategy. Given an original image from a minority
class, the object is cropped in various sizes and pasted onto
the various images from majority classes. Then, we can cre-
ate images with more diverse contexts (e.g., ‘snow goose’
images with the sky, road, roof, crows, etc). Since this is
an interpolation of the majority and minority class samples,
it generates diversified data around the decision boundary,
and as a result, it improves the generalization performance
for minority classes.

To this end, we adopt an image-mixing data augmenta-
tion method, CutMix [49]. As our key idea is to transfer
rich contexts from majority to minority samples, we apply a
simple and effective data sampling method to generate new
minority-centric images with majority’s contexts. However,
naive use of CutMix may exacerbate the overfitting prob-
lem in favor of the majority classes because it may gener-
ate more majority-centric samples than minority samples.
We solve this problem by sampling the background images
and the foreground patches from different distributions to
achieve the desired minority oversampling.

Our key contributions can be summarized as follows:
(1) We propose a novel context-rich minority oversam-
pling method that generates various samples by leverag-
ing the rich context of the majority classes as background
images. (2) Our method requires little additional computa-
tional cost and can be easily integrated into many end-to-
end deep learning algorithms for long-tailed recognition. (3)
We demonstrate that significant performance improvements
and state-of-the-art performance can be achieved by apply-
ing the proposed oversampling to existing commonly used
loss functions without any architectural changes or complex
algorithms. (4) We empirically prove the effectiveness of
the proposed oversampling method through extensive ex-
periments and ablation studies. We believe that our study
offers a useful and universal minority oversampling method
for research into long-tailed classification.

2. Related Work
2.1. Long-tailed Recognition

Re-weighting methods. Re-weighting aims to assign
different weights to training samples to adjust their impor-
tance either at the class level or at the instance level. Class-
level re-weighting methods include re-weighting sam-
ples by inverse class frequency [20, 48], Class-balanced

loss [11], LDAM loss [5], Balanced Softmax [37], LADE
loss [18]. Instance-level re-weighting methods include fo-
cal loss [28] and influence-balanced loss [35].

Re-sampling methods. Resampling methods aim to
modify the training distributions to decrease the level of
imbalance [21]. Resampling methods include undersam-
pling and oversampling. Undersampling methods [44, 52]
that discard the majority samples can lose valuable in-
formation, and undersampling is infeasible when the im-
balance between classes is too high. The simplest form
of oversampling is random oversampling (ROS) [3, 44],
which oversamples all minority classes until class balance
is achieved. This method is simple and can be easily used
in any algorithm, but since the same sample is repeatedly
drawn, it can lead to overfitting [39]. As a more advanced
method, the synthetic minority over-sampling technique
(SMOTE) [6], which oversamples minority samples by in-
terpolating between existing minority samples and their
nearest minority neighbors, was proposed. Following the
success of SMOTE, several variants have been developed:
Borderline-SMOTE [15], which oversamples the minor-
ity samples near class borders, and Safe-level-SMOTE [4],
which defines safe regions not to oversample samples from
different classes. These methods have been widely used by
classical machine learning algorithms, but there are diffi-
culties in using them for large-scale image datasets due to
the high computational complexity of calculating the K-
Nearest Neighbor for every sample. Generative adversar-
ial minority oversampling (GAMO) [34] solves this issue
by producing new minority samples by training a convex
generator, inspired by the success of generative adversar-
ial networks (GANSs) [14] in image generation. However,
training the generator incurs high additional training cost;
moreover, GAMO can suffer from the infamous mode col-
lapse of GANs [2]. To generate diverse minority data, recent
works [24,25] have proposed adversarial augmentations by
adding small noise to the input images. To this end, Major-
to-minor Translation (M2m) [24] transfers knowledge from
majority classes using a pre-trained network, and Balanc-
ing Long-Tailed datasets (BLT) [25] uses a gradient-ascent
image generator based on the confusion matrix.

Another recent line of research is oversampling in the
feature space rather than in the input space: Deep Over-
sampling (DOS) [1], Feature-space Augmentation (FSA)
[8], and Meta Semantic Augmentation (MetaSAug) [27].
These methods aim to augment minority classes in the fea-
ture space by sampling from the in-class neighbors in the
linear subspace [!], using learned features from pretrained
networks [8], or using an implicit semantic data augmen-
tation (ISDA) algorithm [47]. However, DOS [1] requires
finding the nearest neighbors in the feature space, FSA [8]
requires a pre-trained feature sub-network and a classifier
for feature augmentation procedure. Lastly, MetaSAug [27]
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demands additional uniform validation samples that out-
number the number of samples in the tail classes and hun-
dreds and thousands of iterations for training. Consequently,
these methods are less cost-efficient and technically more
difficult to perform. On the other hand, our method over-
samples diverse minority samples using a simple data aug-
mentation technique and outperforms all previous methods
while maintaining reasonable training costs.

Other long-tailed methods. Recently, significant im-
provement has been achieved by two-stage algorithms: De-
ferred re-weighting (DRW) [5], classifier re-training (cRT),
learnable weight scaling (LWS) [23], and the Mixup shifted
label-aware smoothing model (MiSLAS) [53]. Meanwhile,
a bilateral branch network (BBN) [54] uses an additional
network branch for re-balancing, and RIDE [46] uses multi-
ple branches called experts, each of which learns to special-
ize in different classes. Another line of recent research em-
ploys meta-learning methods: Meta-Weight-Net [40] learns
an explicit loss-weight function, and a meta sampler [37]
estimates the optimal class sample rate. PaCo [10] proposes
supervised contrastive learning with parametric class-wise
centers for long-tailed classification.

2.2. Data Augmentation and Mixup Methods

Spatial-level augmentation methods have performed sat-
isfactorily in the computer vision fields. Cutout [12] re-
moves random regions whereas CutMix [49] fills the re-
moved regions with patches from another training image.
In addition, mixup methods [41,45,51] linearly interpolate
two images in a training dataset. Since the data augmenta-
tion method is closely related to the oversampling methods,
some recent long-tailed recognition methods have used the
mixup method. Zhou et al. [54] use the mixup as a base-
line method, and MiSLAS [53] uses mixup in its Stage-
1 training. However, these methods apply mixup without
any adjustments, and little work has been done to explore
appropriate data augmentation techniques for a long-tailed
dataset. Recently, for an imbalanced dataset, the Remix [7]
assigned a label in favor of the minority classes when mix-
ing two samples. Unlike these methods, our method sam-
ples images from different distributions, which takes into
account the specificity of long-tailed data distribution.

3. Context-rich Minority Oversampling
3.1. Algorithm

We propose a new oversampling method called Context-
rich Minority Oversampling (CMO). CMO utilizes the con-
texts of the majority samples to diversify the limited con-
text of the minority samples. As shown in the Figure 1, the
background images are sampled from majority classes and
combined with foreground images of minority classes. Let
r € RW*HXC and y denote a training image and its la-
bel, respectively. We aim to generate a new sample (Z,7)

by combining two training samples (z°,4°) and (27, y/).
Here, the image x” is used as a background image, and the
image 2/ provides the foreground patch to be pasted onto
(z",9").

For the image combining method, we chose CutMix [49]
data augmentation due to its simplicity and effectiveness.
Following CutMix [49] settings, the image and label pairs
are augmented as

F=Moz*+1-M) o'
§=M+ 1=y, (1)

where (1-M) € {0, 1}"W*# denotes a binary mask indicat-
ing where to select the patch and paste it onto a background
image. 1 means a binary mask filled with ones, and © is
element-wise multiplication. The combination ratio A € R
between two images is sampled from the beta distribution
Beta(a, ). To sample the mask and its coordinates, we
apply the original CutMix [49] setting. An experiment on
using a different « is included in the Supplementary Mate-
rial.

Since CutMix was originally designed for data augmen-
tation on a class-balanced dataset, Eq. 1 does not represent
the majority or minority class of samples. To change the
method to CMO, we include sampling data distributions
for foreground (7, ys) and background samples (z°,y).
In our design, the background samples (z°,4") should be
biased to the majority classes. Therefore, we sample the
background samples from the original data distribution P.
Meanwhile, the foreground samples (z/,y7) are sampled
from minor-class-weighted distribution () to be biased to
the minority classes. In short, CMO consists of data sam-
pling from two distributions, (2%, y*) ~ P and (27, y/) ~
@, and combining the images using Eq. 1. The pseudo-code
of the training procedure is presented in Algorithm 1.
Algorithm 1 Context-rich Minority Oversampling (CMO)

Require: Dataset Di]\;I’ model parameters 0, P, (), any
loss function L(-).
1: Randomly initialize 6.
2: Sample weighted dataset DY, ~ Q.
3: forepoch=1,...,7T do
4 for batch:=1,...,B do

5: Draw a mini-batch (22, y?) from DY,
6: Draw a mini-batch (z/, /) from DY,
7: A ~ Beta(a, o)

8: Li=Mozl+(1-M) o

9: b =M+ (1= Ny

10: 0+ G—UVL((i“gjz),G)

11: end for

12: end for

3.2. Minor-class-weighted Distribution Q

To sample the foreground image from minority classes,
we design the minor-class-weighted distribution ) by uti-
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lizing the re-weighting methods. The re-weighting ap-
proach, dating back to the classical importance sampling
method [22], provided a way to assign appropriate weights
to samples. Commonly used sampling strategies include
ones that assign a weight inversely proportional to the class
frequency [20,48], to the smoothed class frequency [32,33],
or to the effective number [11].

Let ny, be the number of samples in the k-th class, then
for the C classes, the total number of samples is N =
ZkC=1 ng. Then, the generalized sampling probability for
the k-th class can be defined by

.
q(r k) = 01#7
>r=1l/ ny

where the k-th class has a sampling weight inversely pro-
portional to ny. As r increases, the weight of the minor
class becomes increasingly larger than that of the major
class. By adjusting the value of r, we can examine diverse
sampling strategies. Setting » = 1 uses the inverse class
frequency [20,48] while setting = 1/2 uses the smoothed
inverse class frequency, as in [32, 33]. We can also use the
effective number [ 1 1] instead of n,, which is defined as
(1—p5™)

B) = 757 3)
where § = (N — 1)/N. Since CMO is a new approach
for long-tailed classification, it is hard to predict the perfor-
mance of each sampling strategy for CMO. Therefore, we
evaluate the different sampling strategies on the long-tailed
CIFAR-100 [26] and select the best strategy ¢(1, k) for the
minor-class-weighted distribution (). The experimental re-
sults are displayed in Table 10 of the experimental section.

3.3. Regularization Effect of CMO

2

A recent study [53] has reported that models trained on
long-tailed datasets are more over-confident than the mod-
els trained on balanced data. In addition, the study reveals
that the long-tailed classification accuracy can be improved
by solving the over-confidence issue. Moreover, CMO can
be interpreted as a way to mitigate over-confidence in long-
tailed classification. Inherited from CutMix, CMO uses a
soft-target label g, as in Eq. 1. The soft-target label penal-
izes over-confident outputs, similarly to the label smooth-
ing regularization [42]. Therefore, we argue that CMO con-
tributes not only to minority sample generation but also
to mitigating the over-confidence, which both enable an
impressive performance improvement in diverse long-tail
settings. We will demonstrate the effectiveness of CMO
through various experiments in the experimental section.

4. Experiments

We present experiments on and analyses of CMO in this
section. We first describe our experimental settings and im-

plementation details in Section 4.1. Next, we present the
effectiveness of CMO using three long-tailed classification
benchmarks: CIFAR-100-LT, ImageNet-LT, and iNaturalist.
CMO consistently boosts the performance of these base-
lines with state-of-the-art accuracy (Section 4.2). In Sec-
tion 4.3 we present in-depth analyses of CMO to study its
inherent characteristics.

4.1. Experimental Settings

Datasets. We validate CMO on the most commonly used
long-tailed recognition benchmark datasets: CIFAR-100-
LT [5], ImageNet-LT [31], and iNaturalist 2018 [19] (see
Table 1). CIFAR-100-LT and ImageNet-LT are artificially
made imbalanced from their balanced versions (CIFAR-
100 [26] and ImageNet-2012 [38]). The iNaturalist 2018
dataset is a large-scale real-world dataset that exhibits long-
tailed imbalance. We used the official training and test splits
in our experiments.

Table 1. Summary of datasets. The imbalance ratio p is defined
by p = maxg{n}/ming{nx}, where nj is the number of sam-
ples in the k-th class.

Dataset # of classes # of training Imbalance ratio
CIFAR-100-LT 100 50K {10, 50, 100}
ImageNet-LT 1,000 115.8K 256
iNaturalist 2018 8,142 437.5K 500

Evaluation Metrics. Performances is mainly reported as
the overall top-1 accuracy. Following [31], we also report
the accuracy of three disjoint subsets: Many-shot classes
(classes that contain more than 100 training samples),
medium-shot classes (classes that contain 20 to 100 sam-
ples), and few-shot classes (classes that contain under 20
samples).

Comparison methods. We compare CMO with the mi-
nority oversampling methods, the state-of-the-art long-tail
recognition methods, and their combinations.

* Minority oversampling. (1) No oversampling (vanilla);
(2) Random oversampling (ROS) [44], that oversamples
minority samples to balance the classes in the train-
ing data; (3) Remix [7], which oversamples minority
classes by assigning higher weights to the minority labels
when using Mixup [51]; (4) Feature space augmentation
(FSA) [2].

* Re-weighting. (5) label-distribution-aware margin
(LDAM) loss [5], which regularizes the minority classes
to increase margins to the decision boundary; (6)
influence-balanced (IB) loss [35], which re-weights
samples by their influences; (7) Balanced Softmax [37],
an unbiased extension of Softmax; (8) LADE [18], which
disentangles the source label distribution from the model
prediction.
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e Other state-of-the-art methods. (9) Deferred re-
weighting (DRW) [5] and (10) Decouple [23] are two-
stage algorithms that re-balance the classifiers during
fine-tuning; (11) BBN [54] and (12) RIDE [46] use ad-
ditional network branches to handle class imbalance; (13)
Causal Norm [43], which disentangles causal effects and
adjusts the effects in training; (14) MiSLAS [53], a two-
stage algorithm, enhances classifier learning and calibra-
tion with label-aware smoothing (LAS) in stage-2.

Implementation. We use PyTorch [36] for all experiments.
For the CIFAR datasets, we use ResNet-32 [16]. The net-
works are trained for 200 epochs following the training
strategy in [5]. For ImageNet-LT, we use ResNet-50 as the
backbone network. The network is trained for 100 epochs
using an initial learning rate of 0.1. The learning rate is de-
cayed at the 60th and 80th epochs by 0.1. For iNaturalist
2018, we use ResNet-{50, 101, 152} and Wide ResNet-
50 [50]. We train the networks for 200 epochs using an
initial learning rate of 0.1, and decay the learning rate at
epochs 75 and 160 by 0.1. All experiments are trained with
stochastic gradient descent (SGD) with a momentum of 0.9.

4.2. Long-tailed classification benchmarks
4.2.1 CIFAR-100-LT

We conduct experiments on CIFAR-100-LT using differ-
ent imbalance ratios: 10, 50, 100. We apply CMO to var-
ious methods to verify its effectiveness on different algo-
rithms: vanilla cross-entropy loss, class-reweighting loss
(LDAM [5]), a two-stage algorithm (DRW [5]), and multi-
branch architecture (RIDE [46]).

Comparison with state-of-the-art methods. The overall
classification accuracies are displayed in Table 2. It is sur-
prising that CMO with basic cross-entropy (CE) loss shows
comparable performance to that of complex long-tail recog-
nition methods. Moreover, applying CMO to the state-of-
the-art model (i.e., RIDE) further boosts the performance
markedly, especially when the imbalance ratios are high as
50 and 100.

Comparison with oversampling methods. We further
compare the performance improvement of CMO with that
of other oversampling techniques when combined with
long-tailed recognition methods (see Table 3). The results
reveal that CMO consistently improves the performance of
all long-tailed recognition methods. On the other hand, sim-
ply balancing the class distribution with ROS [44] severely
degrades performance. We speculate that this is because the
naive balancing of the sampling distribution across classes
hinders the model from learning generalized features for
major classes and induces the model to memorize the minor
class samples. Remix [7] improves the performance of some
methods but degrades the performance when combined with
RIDE [46]. This indicates that the simple labeling policy of

Table 2. State-of-the-art comparison on CIFAR-100-LT
dataset. Classification accuracy (%) for ResNet-32 architecture on
CIFAR-100-LT with different imbalance ratios. * and { are from
the original paper and [ 18], respectively.

Imbalance ratio 100 50 10

Cross Entropy (CE) 38.6 440 564
CE-DRW 41.1 456 579
LDAM-DRW [5] 417 479 573
BBN [54] 26 471 592
Causal Norm [43]F 441 503 59.6
IB Loss [35]* 450 489 58.0
Balanced Softmax (BS) [37]T  45.1 499 61.6
LADE [18]" 454 505 617
Remix [7] 458 495 59.2
RIDE (3 experts) [46] 486 514 598
MiSLAS [53]1* 47.0 523 63.2
CE + CMO 439 483 595
CE-DRW + CMO 47.0 509 61.7
LDAM-DRW + CMO 472 517 584
BS + CMO 46.6 514 623
RIDE (3 experts) + CMO 50.0 53.0 60.2

Table 3. Comparison against baselines on CIFAR-100-LT (Im-
balance ratio = 100). Classification accuracy (%) of ResNet-32.

Vanilla +ROS [44] +Remix [7/] +CMO

CE 38.6 32.3 40.0 43.9
(#0.0)  (-5.3) (+14)  (+5.3)
41.1 35.9 458 47.0
CE-DRW [] +0.0)  (-5.2) (+4.7)  (+5.9)
41.7 32.6 453 47.2
LDAM-DRW [5] +0.0)  (-9.1) (+3.6) (+5.5)
RIDE [16] 48.6 22.6 44.0 50.0

(+0.0)  (-26.0) (-4.6) (+1.4)

Remix may not be effective when the model complexity be-
comes large, as in RIDE.

4.2.2 ImageNet-LT

Comparison with state-of-the-art methods. The results
of our method and other long-tailed recognition methods
are displayed in Table 4. Applying CMO to the basic train-
ing with CE loss improves the performance by a significant
margin, outperforming most of the recent baselines. The
greater performance improvement on ImageNet-LT com-
pared to CIFAR-100 indicates that our method benefits from
the richer context information available in the major classes
of ImageNet-LT. In addition, a consistent performance im-
provement by using CMO when combined with DRW or
BS bolsters the efficacy of CMO, which can be easily inte-
grated into modern state-of-the-art long-tailed recognition
methods. It is noteworthy that as {CE-DRW + CMO } and
{BS + CMO } especially achieve a much higher few-shot
class accuracy than did the other methods, our method is
useful for achieving consistent performance across classes.
Lastly, applying CMO to RIDE further boosts performance,
outperforming the results of RIDE with four experts.
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Table 4. State-of-the-art comparison on ImageNet-LT. Classi-
fication accuracy (%) of ResNet-50 with state-of-the-art methods
trained for 90 or 100 epochs. “x” and “i” denote the results are
from the original papers, and [23], respectively. The best results

are marked in bold.

All' Many Med Few

Cross Entropy (CE)* 416 640 338 58
Decouple-cRT [23]1 473 588 440 26.1
Decouple-LWS [23]F 477 571 452 293
Remix [7] 48.6 604 469 30.7
LDAM-DRW [5] 49.8 604 469 30.7
CE-DRW 50.1 617 473 288
Balanced Softmax (BS) [37] 51.0 60.9 48.8  32.1
Causal Norm [43]* 51.8 62.7 48.8 31.6
RIDE (3 experts) [46]* 54.9 66.2 51.7 349
RIDE (4 experts) [40]* 554 662 523 365
CE + CMO 49.1  67.0 423 205
CE-DRW + CMO 514 60.8 48,6 355
LDAM-DRW + CMO S51.1 620 474 308
BS + CMO 523 62.0 49.1 36.7

RIDE (3 expetts) + CMO 562 664 539 356

Table 5. Comparison against baselines on ImageNet-LT. Clas-
sification accuracy (%) of ResNet-50.

Vanilla +Remix [7] +CMO

41.6 41.7 49.1
(+0.0) (+0.1) (+7.5)
50.1 48.6 51.4
(+0.0) (-1.5) (+1.3)
51.0 49.2 52.3
(+0.0) (-1.8) (+1.3)

CE

CE-DRW [5]

Balanced Softmax [37]

Comparison with oversampling methods. In Table 5, we
compare performance improvement using other oversam-
pling techniques. While CMO consistently improves perfor-
mance for all methods, Remix [7] fails to improve the per-
formance of the long-tailed recognition methods and barely
improves the model trained with cross-entropy loss. This
implies that the labeling strategy of Remix is not sufficient
to compensate for the adverse effect of using the same orig-
inal distribution as the two sampling distributions of the
mixup method, especially when the imbalance ratio rises
severly to 256, as with ImageNet-LT. In contrast, CMO gen-
erates more minority samples by using different distribu-
tions when selecting two images and produces much better
classification accuracy on all tasks.

Results on longer training epochs. Recently, PaCo [10]
performed impressively by using supervised contrastive
learning. Since contrastive learning requires diverse aug-
mentation strategies and longer training times, PaCo trained
networks for 400 epochs using RandAugment [9]. Since
CMO should also improve using longer training epochs,
we evaluate CMO using the same setting from PaCo (i.e.,
400 epochs & RandAug). Table 6 reveals that {BS + CMO
} achieves a new state-of-the-art performance. It is note-

Table 6. Results on longer training epochs with RandAug-
ment [9]. Classification accuracy (%) of ResNet-50 on ImageNet-
LT. “x” denotes the results from [10].

All Many Med Few

BS* 550 667 529 330
PaCo [10]* 57.0 650 557 382
BS+CMO 580 67.0 550 44.2

Table 7. State-of-the-art comparison on iNaturalist2018. Clas-
sification accuracy (%) of ResNet-50 on iNaturalist2018. “x” and
“4” indicate the results from the original paper and [54], respec-

tively. RIDE [46] was trained for 100 epochs.

All Many Med Few

Cross Entropy (CE) 61.0 73.9 63.5 555
IB Loss [35]* 65.4 - - -
FSA [8]* 65.9 - - -
LDAM-DRW [5]f 66.1 - - -
Decouple-cRT [23]* 68.2 73.2 68.8  66.1
Decouple-LWS [23]* 69.5 71.0 69.8 68.8
BBN [54]* 69.6 - - -
Balanced Softmax [37] 70.0 70.0 70.2 699
LADE [18]* 70.0 - - -
Remix [7]* 70.5 - - -
MiSLAS [53]* 71.6 73.2 724 704
RIDE (3 experts) [46]* 72.2 70.2 722 727
RIDE (4 experts) [460]* 72.6 70.9 724 731
CE + CMO 68.9 76.9 69.3  66.6
CE-DRW + CMO 70.9 68.2 70.2 722
LDAM-DRW + CMO 69.1 75.3 69.5 673
BS + CMO 70.9 68.8 70.0 723
CE-DRW + CMO + LAS [53] 71.8 69.6 72.1 719
RIDE (3 experts) + CMO 72.8 68.7 72.6 73.1

worthy that applying CMO significantly surpasses the two
baselines, especially in the few-shot classes. On top of its
simplicity and much lower computational cost, the results
demonstrate the effectiveness of the proposed method. The
results on CIFAR-100-LT and iNaturalist 2018 are included
in the Supplementary Material.

4.2.3 iNaturalist 2018

Comparison with state-of-the-art methods. Table 7
presents the classification results. On the naturally-skewed
dataset, applying CMO to the simple training scheme
of CE-DRW surpasses most of the state-of-the-arts. On
iNaturalist 2018, as in ImageNet-LT, CMO dramatically
improves the performance of the cross-entropy loss (CE)
by 7.9%p (61.0% increased to 68.9%). This is because
the sample generation by CMO fully utilizes the abundant
context of training data. Again, it achieves a remarkable
performance improvement in the few-shot classes. It is
moreover noteworthy that when we apply the same stage-2
strategy, LAS, from [53], it further boosts performance.
Lastly, applying CMO to RIDE achieves a new state-of-
the-art performance.
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<Original>

<Generated minority samples>

Figure 2. A display of the minority images generated by CMO (minority classes: the snow goose and the Acmon blue (butterfly)).
We randomly choose generated images for each original image. Our method is able to generate context-rich minority samples that have
diverse contexts. For example, while the original ‘snow goose’ class contains only images of a ‘snow goose’ on grass, the generated images
have various contexts such as the sky, the sea, the sand, and a flock of crows. These generated images enable the model to learn a robust

representation of minority classes.

Results on large models. We investigate the performance
of CMO and other oversampling methods using the large
deep networks of Wide ResNet-50 [50], ResNet-101, and
ResNet-152 [16]. We compare CMO with the feature space
augmentation method (FSA) [8]. While both methods im-
prove the results from vanilla training with cross-entropy
loss, our method provides superior performance to that of
FSA. This indicates that using the context-rich information
from majority classes in the input space is simple but effec-
tive in improving the overall performance.

Table 8. Results on large architectures. Classification accuracy
(%) of large backbone networks on iNaturalist 2018. The results
are copied from [8].

Method ResNet-50 Wide ResNet-50 ResNet-101 ResNet-152

CE 61.0 - 65.2 66.2
FSA [8] 65.9 - 68.4 69.1
CMO 70.9 71.9 72.4 72.6

Display of the generated images. We visualize the gener-
ated images for the minority classes in Figure 2. From the
rarest minority classes, we randomly choose generated im-
ages for each original image. CMO produces diverse minor-
ity samples that have various contexts. For example, while
the ‘snow goose’ class contains only images of geese on
grass, the generated images have various contexts, such as
the sky or sea. Likewise, the butterflies in the third row are
newly created as diverse images that have various contexts,
containing bees and flowers of various colors and shapes.
We argue that various combinations of context and minority
samples encourage the model to learn a robust representa-
tion of the minority classes.

4.3. Analysis

Is the distribution for augmenting images important?
To justify the need for different distributions of background

and foreground images, we compare CutMix and CMO.
As can be seen from Table 9, CMO outperforms CutMix
on long-tailed classification by a large margin. In partic-
ular, there is a remarkable performance improvement in
the medium and few-shot classes. The performance gap is
due to the absence of a minor-class-weighted distribution in
CutMix augmentation. Although CutMix can generate in-
formative mixed samples, its effect is limited when used
with long-tailed distributions. Thus, we claim that the use
of a minor-class-weighted distribution is a key-point in data
augmentation in the long-tailed settings; this highlights the
contribution and originality of CMO.

Table 9. Comparison with CutMix using cross-entropy loss.

All Many Med Few

CIFAR-100-LT

CutMix 356 710 379 49

CMO 439 704 425 144
ImageNet-LT

CutMix 45.5 68.6 38.1 8.1

CMO 49.1 67.0 423 205

How to choose the appropriate probability distribution
(. We evaluate different sampling strategies in Section 3.2
on CIFAR-100 with the imbalance ratio 100, The results are
reported in Table 10. ¢(1, k) displays the most balanced per-
formance. This result is consistent with the common prac-
tice of balancing the dataset by assigning weights inversely
proportional to the class frequency. While ¢(2, k), which
imposes a higher probability on the minority class than does
q(1, k), performs acceptably in the few-shot classes, the
overall performance slightly deteriorates. We assume this is
because we cannot sample more diverse images when im-
posing too high probabilities on the few-shot classes. Based
on this result, we set @ as ¢(1, k) in our all experiments.
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Table 10. Impact of different () sampling distributions. Results
on CIFAR-100-LT (imbalance ratio=100) according to different Q
sampling probabilities.

All Many Med Few

a(1/2,k) 426 716 421 95
a(1, k) 439 704 425 144
a(2, k) 401 672 367 123
E(K)[11] 395 704 380 47

Why should we oversample only for the foreground sam-
ples? One may wonder why oversampling only for the fore-
ground samples is better than oversampling both patches
and background samples or oversampling only the back-
grounds. To verify our design choice, we evaluate two vari-
ants of CMO. The first variant, CMO ., samples back-
ground images from a minor-class-weighted distribution
and patches from the original distribution, which is exactly
the opposite design of CMO, i.e., (z°,4?) ~ Q, (27, y7) ~
P. The second variant, CMO ,,,; 0, samples both the back-
ground and the patches from a minor-class-weighted distri-
bution, i.e., (z°,9°), (x7,y7) ~ Q. We report the results of
applying these variants of the CMO method to the model
trained with CE loss and LDAM loss [5] in Table 11.

Table 11. Ablation study. Results from variants of CMO with
ResNet-32 on imbalanced CIFAR-100; imbalance ratio of 100.

All Many Med Few

Cross Entropy (CE) 38.6 65.3 37.6 8.7
CE + CMO ninor 379 583 404 112
CE + CMO pqck 40.1 647 402 113
CE + CMO 439 704 425 144
LDAM [5] 417 614 422 18.0

LDAM + CMO minor 317 502 332 84
LDAM +CMO poer 442 592 46.6 240
LDAM + CMO 472 615 486 288

CMO ,inor yields severe performance degradation
using both methods. We suspect that this is because the
rich context of the majority samples cannot be utilized.
In contrast, CMO 4. produces acceptable performance
improvements, but far less than did the original CMO.
This is because, using the CutMix method, there is a high
probability that the object in the foreground image overlaps
the background image. Therefore, we can expect a loss
of information about minority classes in the background
image, resulting in a limited performance boost.

Comparison with other minority augmentations. To fur-
ther verify our design choice, we analyze the effectiveness
of using different augmentation methods, including Cut-
Mix [49], Mixup [51], color jitter, and Gaussian blur. For
Mixup, we use the same sampling strategy as for CMO. For
color jitter and Gaussian blur, which do not interpolate two

images, we apply augmentation only to the minority classes
and oversample those classes. As evidenced in Table 12,
other augmentation methods provide little performance gain
compared to the gains using CutMix. We suspect that this is
because the pixel-level transformations (i.e., Gaussian blur
and color jitter) are not effective in producing minority sam-
ples that have a rich context. Gaussian blur and color jitter
do not combine two images; thus, it is hard to add a new
context to minority samples. While Mixup combines two
images, it does not distinguish the roles of the two sam-
ples, limiting the control of the source of the context and
of the patch information. In contrast, CutMix can create
diverse images with larger changes at pixel-level than can
other methods.

Table 12. Data augmentation methods. Comparisons between
augmentation methods for generating new minority samples on
CIFAR-100-LT with an imbalance ratio of 100.

All Many Med Few

CMO w/ Gaussian Blur ~ 31.1 54.7 28.8 6.2
CMO w/ Color Jitter 34.7 58.9 344 6.8
CMO w/ Mixup 38.0 54.8 40.2 159
CMO w/ CutMix 43.9 70.4 425 144

5. Conclusion

We have proposed a novel context-rich oversampling
method, CMO, to solve the data imbalance problem. We
tackle the fundamental problem of previous oversampling
methods that generate context-limited minority samples,
which intensifies the overfitting problem. Our key idea is
to transfer the rich contexts of majority samples to minor-
ity samples to augment minority samples. The implemen-
tation of CMO is simple and intuitive. Extensive experi-
ments on various benchmark datasets demonstrate not only
that our CMO significantly improves performance, but also
that adding our oversampling method to the basic losses ad-
vances the state-of-the-art.

Limitations. In some cases, the performance improvement
for the minority classes occurs with the degraded perfor-
mance of the majority classes. Future work should be de-
signed to improve the performance of all classes without
sacrificing the performance of the many-shot classes.
Potential negative societal impact. Since our method cre-
ates new samples, it benefits more from longer training and
deeper architectures. Thus, it may lead to more computa-
tions, which has a risk that the use of GPUs for machine
learning could accelerate environmental degradation [17].
Acknowledgement This work was partially supported by
IITP grant from Korea government (MSIT) [No.B0101-15-
0266, High Performance Visual BigData Discovery Plat-
form; NO.2021-0-01343, AI Graduate School Program
(SNU)]
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