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Abstract

The inductive bias of vision transformers is more relaxed
that cannot work well with insufficient data. Knowledge dis-
tillation is thus introduced to assist the training of transform-
ers. Unlike previous works, where merely heavy convolution-
based teachers are provided, in this paper, we delve into
the influence of models inductive biases in knowledge distil-
lation (e.g., convolution and involution). Our key observa-
tion is that the teacher accuracy is not the dominant reason
for the student accuracy, but the teacher inductive bias is
more important. We demonstrate that lightweight teachers
with different architectural inductive biases can be used to
co-advise the student transformer with outstanding perfor-
mances. The rationale behind is that models designed with
different inductive biases tend to focus on diverse patterns,
and teachers with different inductive biases attain various
knowledge despite being trained on the same dataset. The di-
verse knowledge provides a more precise and comprehensive
description of the data and compounds and boosts the per-
formance of the student during distillation. Furthermore, we
propose a token inductive bias alignment to align the induc-
tive bias of the token with its target teacher model. With only
lightweight teachers provided and using this cross inductive
bias distillation method, our vision transformers (termed as
CiT) outperform all previous vision transformers (ViT) of
the same architecture on ImageNet. Moreover, our small
size model CiT-SAK further achieves 82.7% Top-1 accuracy
on ImageNet without modifying the attention module of the
ViT. Code is available at https://github.com/OliverRensu/co-
advise.

1. Introduction

Although convolutional neural network (CNN) has revo-
lutionized the field of computer vision, it possesses certain
limitations. Recent research interests have been intrigued in
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Figure 1. Comparison with DeiT. Here CiT-SA and CiT-SAK indi-
cate models with token inductive bias alignment, without or with
distillation. Our cross inductive bias distillation (CiT) outperforms
DeiT where only lightweight teachers are provided. Combining
with token inductive bias alignment, the performance of our method
can be further improved.

replacing convolution layers with novel self-attention-based
architectures. For instance, ViT [0] is a pure transformer
without convolutional layers. Nevertheless, transformers
have fewer inductive biases than CNNs (e.g., translation
equivariance and locality) and thus suffer when the given
amounts of training data are insufficient [6]. In this con-
text, knowledge distillation technique [7, 16] is applied by
DeiT [30] to assist the training of vision transformers. When
the CNN teacher is powerful enough, transformers with such
distillation [30] (i.e., DeiT) can achieve competitive results
as SOTA CNNs on ImageNet. Howerver, DeiT has its own
limitations: 1) The trained transformer is over-influenced by
the inductive bias of the teacher CNN and mirrors its classi-
fication error; 2) DeiT requires the teacher CNN to be very
large (e.g., RegNetY-16GF), which disturbingly brings about
heavy computational overhead (e.g., training a RegNetY-
16GF on ImageNet takes four times longer training time
under the same training protocols than DeiT-S); 3) Class
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Figure 2. Class probabilities predicted by a CNN, an INN, a trans-
former without distillation, and a transformer distilling from both
CNN and INN. CNN and INN come up with consistent (the first
row) or complementary (the second and third rows) conclusions to
correct transformer’s prediction.

token and the Distillation token have different targets but
share the same random initialization protocol.

In this paper, we argue that a heavy and highly-accurate
teacher is not necessarily effective in teaching a “good” stu-
dent transformer. Instead, the involved inductive bias plays
a leading role. Our key observation is that models with
different inductive biases tend to focus on diverse patterns
despite that they are trained on the same dataset (see Fig-
ure 2). Namely, compared with naive teacher assembling,
teachers of different inductive biases inherently make com-
plementary assumptions of the data they see and focus on the
data from various perspectives to attain diverse knowledge.
They provide more precise, complementary and comprehen-
sive descriptions of the data, which further compounds and
boosts the performance of student during distillation. In
contrast, teachers with similar inductive biases but different
performance (e.g., ResNet-18 and ResNet-50) have little dif-
ferences in data descriptions, and the student distilling from
them have limited performance gain.

To compare the influence of directly introducing induc-
tive bias to the model and knowledge distillation, we propose
a token alignment technique. Specifically, two tokens are
used in DeiT, learning from a CNN teacher and golden la-
bels, respectively. However, these two tokens share the same
random initialization protocol, which we believe, actually
limits the power of them to learn different targets. To make
the representation power of tokens close to their correspond-
ing teachers so that they could truly move towards their
corresponding teachers, we propose token inductive bias

alignment by further introducing inductive bias into tokens.
In our experiments, we show that introducing the inductive
bias to student model by our inductive bias alignment truly
brings improvements on ImageNet. However, we also find
that comparing with directly introducing the same inductive
bias with the teacher model into the model by our inductive
bias alignment, knowledge distillation helps the student to
perform more similar to the teacher. Therefore, we find that
although knowledge distillation cannot “transfer” inductive
bias to the student, it helps the student to “inherit” more
characteristics of the teacher.

Thanks to complementary inductive biases of convolu-
tion (spatial-agnostic and channel-specific) and involution
(spatial-specific and channel-agnostic), our method only re-
quires two super lightweight teachers (a CNN and an INN).
In the distillation stage, the knowledge from teachers com-
pensates each other and significantly prompts the accuracy
of the student transformer. Our main observations of this
paper are as follows:

* We observe that the intrinsic inductive bias of the
teacher model matters much more than its accuracy.

* CNNs and INNs with different inductive biases are
inclined to learn complementary patterns, while a vision
transformer, a more general architecture with fewer
inductive biases, can inherit knowledge from both.

¢ When several teachers with different inductive biases
are provided, a student model with less inductive biases
is more compatible to learn various knowledge.

* Compared with introducing the inductive bias into the
transformer, knowledge distillation makes student trans-
former performs more similar to various inductive bias
teachers.

¢ Qur cross inductive bias vision transformers (CiT) out-
perform all previous vision transformers of the same
architecture and only require super lightweight teachers
with 20% and 50% parameters of the teacher in DeiT-Ti
and DeiT-S, respectively.

2. Related Works

CNNs.  Convolution operator was first proposed in [19]
around thirty years ago. Its rejuvenation appears in the past
decade, when deep CNNs (e.g., AlexNet [18], VGGNet
[26], ResNet [1 1], EfficientNet [27]) led to an astonishing
breakthrough in a great variety of tasks. The remarkable
performance of CNNs origins from inherent characteristics
(a.k.a. inductive biases) of the convolution operator such as
translation equivariance [6] and spatial-agnostic [20]. On the
other hand, its locality alternatively makes CNNs struggle
to relate spatially-distant concepts, unless we deliberately
increase the kernel size and/or model depth.
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Transformers. Transformers, which first prevailed in nat-
ural language processing [32], has drawn attention in the
computer vision community recently. The ViT proposed
in [6] feeds 16 x 16 image patches into a standard trans-
former, achieving comparable results as SOTA CNNs on
JFT-300M [6]. However, its superiority is at the expense of
excruciatingly long training time and tremendous amount of
labeled data. Most importantly, when insufficient amount of
data are given, ViT only achieves modest improvement of
accuracy. Furthermore, DETR and VT were proposed in [1]
and [35], respectively. DETR [1] exploits bipartite match-
ing loss and a transformer-based encoder-decoder structure
in object detection task, while VT [35] represents images
as semantic tokens and exploits transformers in image clas-
sification and semantic segmentation. Alternatively from
theoretical perspective, it has been proven in [3] that the
self-attention mechanism used in transformers is at least as
expressive as a convolution layer.

INNs. Involution operator was proposed in [20, 33] lately.
In a nutshell, convolution operator is spatial-agnostic and
channel-specific, while an involution kernel is shared across
channels and distinct in the spatial extent. In other words,
involution attains precisely inverse inherent characteristics
compared to convolution. As a result, it has the ability to
relate long-range spatial relationship in an image. It is de-
picted in [20] that their involution-based RedNet consistently
delivers enhanced performances compared with CNNs and
transformers.

Knowledge Distillation. Knowledge distillation (KD)
was first formulated in [16] as a strategy of model com-
pression, in which a lightweight student is trained from a
high-capacity teacher [31,36]. Specifically, authors in [16]
achieve this goal by minimizing the KL divergence of stu-
dent’s and teacher’s probabilistic predictions. Afterwards,
KD unfolds usefulness in various tasks such as privileged

learning [21,31], cross-modal learning [17,36], adversarial
learning [15,24], contrastive learning [28], and incremental
learning [23]. In relevance to our work, authors in [30] pro-

posed to train transformers via a token-based KD strategy.
By distilling from a large-scale and powerful CNN teacher,
the resulting DeiT [30] can perform as well as CNNs on
ImageNet, while the preceding ViT [6] cannot. Our method
outperforms DeiT by distilling from two weak teachers with
much fewer parameters, worse accuracy but different induc-
tive bias.

3. Proposed Method
3.1. Cross Inductive Bias Teachers

DeiT [30], where the teacher model is a single
convolution-based architecture, is limited by the knowledge

Table 1. Performance on ImageNet and Out-of-Distribution dataset
of convolution and involution model “A”, “R”, “C” indicate
ImageNet-A, R, C respectively. “mCE” indicate mean corrup-
tion error, and for convenience, we do not normalize them with
AlexNet.

Model | ImageNet(%) | A (%)* | R(%)1 | C(mCE) |
Convolution
ResNet-18 68.74 260 | 31.90 65.58
ResNet-34 72.62 345 | 3517 60.26
ResNet-50 75.57 260 | 3561 59.15
ResNet-101 77.00 6.03 | 38.77 5433
ResNet-152 77.96 773 | 40.72 53.18
Involution
RedNet-26 75.19 549 | 3333 61.09
RedNet-38 76.88 6.88 | 34.80 58.15
RedNet-50 77.72 764 | 3572 56.03
RedNet-101 78.35 9.03 | 36.30 5478
RedNet-152 78.54 924 | 36.84 53.58

of the teacher. A popular idea to go beyond the teacher
performance is an ensembling of multiple teachers with dif-
ferent initializations [16]. However, those teachers with
the same architecture have the same inductive biases, and
consequently offer similar perspectives of data.

When teachers have different inductive biases, the output
distribution may vary distinctively as the different inductive
biases inherently make the model biased towards different
patterns. Such variation on output distribution may not be
obvious if we use the top-1 accuracy to evaluate. For a
better understanding, here we introduce out-of-distribution
datasets [12—14] which are generated by applying different
perturbations on ImageNet, e.g.natural adversarial examples
(ImageNet-A), semantic shift (ImageNet-R), common im-
age corruptions (ImageNet-C). As shown in Table 1, when
the convolution model (ResNet) and involution model (Red-
Net) have similar accuracy on ImageNet like ResNet-50 and
RedNet-26 or ResNet-101 and RedNet-38, but their perfor-
mances vary on out-of-distribution dataset. This implies that
if we take CNNs and INNs as teachers, CNN teachers will
perform better on ImageNet-R/C but worse on ImagNet-A
compared with INN teachers. This phenomenon also demon-
strates that convolution and involution model may focus on
different patterns and will drive different knowledge to the
student model. In other words, the knowledge provided by
cross inductive bias teachers can describe the data more pre-
cisely and comprehensively. In our later experiments, we
show that our students will inherit the trend of teachers on
out-of-distribution datasets: We match class toekn, Conv
token and Inv token to golden labels, RegNet (CNN teacher),
and RedNet (INN teacher), respectively. We observe that the
Conv token and Inv token will perform similar to the CNN
teacher and INN teacher respectively on out-of-distribution
datasets.
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Figure 3. Schematic of our CiT. Given an image as input, human, convolution model and involution model will provide three similar (but
slightly different) distributions to describe the image class. Our CiT model inherits the architecture of ViT but has two extra tokens (i.e.,
Conv token and Inv token) to learn from the convolution and involution teachers, respectively.

3.2. Token Inductive Bias Alignment

Previous works [6, 30] use randomly initialized tokens
to learn the label and distill from a CNN teacher. However,
a randomly initialized token has limited power to learn a
convolution teacher which has very specific inductive bias.
To address this issue, we propose token inductive bias align-
ment, making tokens explicitly possessing different inductive
biases so that they could move towards their corresponding
teachers. Specifically, we have three kinds of teachers: hu-
man (i.e., golden labels), convolution teacher and involution
teacher. Therefore, we have three tokens: Class token, Conv
token, and Inv token. For the Class token, we simply ap-
ply truncated gaussian initialization [30] which makes this
token have no inductive bias. To introduce corresponding
inductive bias into the remaining two tokens, we combine
token generation and patch embedding. Previous methods
simply split image to non-overlap patches and use a linear
projection to map these patches into tokens. We introduce
convolution stem [9, 10] and involution stem to replace the
linear projection. Then the Conv token and Inv token are the
average pooled output of convolution and involution stem
output respectively.

3.3. Cross Inductive Bias Distillation

The schematic of our CiT is demonstrated in Figure 3.
Our learning objective is expressed as a weighted summa-

tion of two Kullback-Leibler divergence losses (L) and a
cross-entropy loss (Lo g):

L =X\Lcr(0(2s,,..),Y)
Zt1

2 Zscon’u
+ AT ‘CKL[U(T%U(Z)] 1)

207 Licn[o(Z2), 0(Z2)],
T2 T2
where 0 < 71,79 < oo are hyper-parameters controlling
the temperature of Softmax function o [16]. zs,, .., Zs,,,,.
zs,,, are the output of Class token, Conv token and Inv
token. z;, and z;, denote logits of the CNN teacher and INN
teacher, respectively. Here 0 < Ag, A1, A2 < 1 are weights
balancing the importance of three loss terms.

4. Experimental Results

In Section 4.1, we describe our implementation de-
tails, and next compare our CiT with various transform-
ers, convolution- and involution-based neural networks on
ImageNet-1k [5] in Section 4.2. In the rest of this section,
experiments are conducted on ImageNet-100 [34]. We ana-
lyze impacts of teacher performance and inductive biases to
student performance in Section 4.3.1. Then we explain the
advantage of choosing a transformer as student over CNNs
and INNs in Section 4.3.1. To prove the efficiency of our
co-advising strategy, we compare the prediction accuracy
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Table 2. Comparison of teacher models used in DeiT [30] and CiT.
DeiT uses a much larger and powerful convolution teacher, while
CiT uses weak and small involution and convolution teachers.

Student ‘ Teacher
| Model | Param | Top-1 (%)
DeiT | RegNetY-16GF (Conv) | 84M | 829
CiT-Ti RegNetY-600M (Conv) 6M 74.0
RedNet-26 (Inv) IM 76.0
cits | RegNetY-4GF (Conv) 21M 79.9
RedNet-101 (Inv) 26M 79.0

of models trained by our cross inductive bias distillation
and naive multi-teacher distillation in Section 4.3.3. Finally,
we study the influence of the inductive bias alignment on
ImageNet and Out-of-Distribution datasets with or without
distillation.

4.1. Implementation Details

For comparison purpose, following DeiT [30], we imple-
ment two variants of our model: (i) CiT-Ti has two hidden
layers with dimensions of 192 and 12, respectively (each
with three attention heads), and (ii) CiT-S has two hidden
layers with dimensions of 384 and 12, respectively (each
with six attention heads). (ii) CiT-SAK is the same as CiT-S
except the token inductive bias Alignment. We use the same
data augmentation and regularization methods described in
DeiT [30] (e.g., Auto-Augment, Rand-Augment, mixup).
The weights of our transformers are randomly initialized
by sampling from a truncated normal distribution. We use
AdamW [22] as optimizer with learning rate equal to 0.001
and weight decay equal to 0.05. For hyper-parameters in
distillation, we set A\g = \1 = Ay = land 7y = » = 1.
During inference, we retrieve the value stored in the class
token as the final output.

4.2. Comparison among Different Architectures

In this section, we compare accuracy of various
convolution-, involution-, and transformer-based models on
ImageNet-1k [5].

Teacher Model In Table 2, we compare teacher models used
in DeiT [30] and our CiT. Different from DeiT, which uses a
powerful convolution teacher RegNetY-16GF [25] with 84M
parameters and top-1 accuracy of 82.9%, we choose a convo-
lution teacher and an involution teacher who possess similar
model sizes as the student transformer. We emphasize that
the overall parameters of teacher models used in our CiT
are still much fewer than those in DeiT, and that such small
teachers significantly speed up the whole training process.

Results We report inference speed, top-1 accuracy of several
models in Table 3. Compared with CNNs, when the model
size is small (say around 6 million parameters), transformers

Table 3. Comparisons among different networks on ImageNet-
1k [5]. Throughput is measured on a single RTX3090 with batch
size of 64. CiT-SAK indicate the small size model with token
alignment and knowledge distillation

Param | Throughput | Top-1

Model (M) | (Images/s) | (%)

ResNet-50 [ 1] 25.6 13494 76.2
ResNet-101 [11] 44.5 799.4 77.4

CNN | RegNetY-600MF [25] 6.1 1200.5 75.5
RegNetY-4.0GF [25] 20.6 350.5 79.4
RegNetY-8.0GF [25] 39.2 220.5 79.9
RedNet-26 [20] 9.2 1820.9 73.6

INN RedNet-50 [20] 15.5 1066.8 78.4
RedNet-101 [20] 25.6 657.4 79.1
RedNet-152 [20] 34.0 459.3 79.3

ViT-B /16 [6] 86 166.88 77.9

ViT-L /16 [6] 307 54.4 76.5

DeiT-Ti [30] 5.0 3082.9 72.2

Trans. | Deit-S [30] 22 1562.0 79.8
DeiT-Ti-KD [30] 6.0 3060.8 74.5
DeiT-S-KD [30] 22 1546.1 81.2

CiT-Ti (Ours) 6.0 3053.0 75.3

CiT-S (Ours) 22 1564.1 82.0
CiT-SAK (Ours) 26 1414.1 82.7

do not reveal better performances. For instance, RegNet-
600MF performs the best with top-1 accuracy equal to
76.0%, while DeiT-Ti, DeiT-Ti-KD, and our CiT-Ti achieve
top-1 accuracy of 72.2% (—4.1%), 74.5% (—1.8%), and
75.3% (—1.0%), respectively. Namely, our CiT narrows the
gap between the accuracy of CNNs and transformers in this
context. When the model size grows, the accuracy of our CiT
grows much faster than that of other models, and our CiT-S
outperforms all other models at 20 million parameters. The
performance of our CiT-S improves 2.6% over RegNet-4GF
and 2.9% over RedNet-101.

Compared with the recent transformer-based model ViT
[6] (i.e., VIT-L /1 and ViT-B /16 in Table 3), our CiT-S re-
quires about 4 times or 15 times fewer model parameters,
while at the same time, achieves about 4.1% or 5.5% more
accurate predictions. Furthermore, our CiT-S also outper-
forms the latest work DeiT-KD, even though DeiT-KD has
a more potent teacher. Moreover, our CiT achieves similar
inference speed as DeiT-KD or even slightly better: CiT-Ti
and CiT-S improve 0.4% and 0.8% over the corresponding
DeiT-KD of similar sizes. To sum up, the extra convolu-
tion and involution tokens boost the performance of student
transformer almost without additional computation cost.

4.3. Ablation on Cross Inductive Bias Distillation

In this section, we keep the same Transformer as DeiT
and perform all experiments on ImageNet-100.
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Figure 4. Prediction accuracy of Transformer-Ti distilled from dif-
ferent teachers on ImageNet-100. (a) We take ResNet-18, RegNetY-
600M and RedNet-26 as teacher, the performances gap of teachers
are different at different training epochs, but the students’ perfor-
mances almost keep unchanged from horizontal view. (b) Viewing
horizontally reveals that the student’s accuracy won’t change much
even though the teacher accuracy improves. Nevertheless, the verti-
cal view demonstrates that teachers with same accuracy but belong
to different kinds (e.g., CNNs or INNs) can yield students with
different accuracy.

4.3.1 Teacher Performance and Inductive Biases.

This section delves into the impacts of teacher’s performance
and inductive biases when distilling to a student transformer.
For illustration purpose, we conduct an experiment on stu-
dent’s accuracy when it distills from different kinds of teach-
ers. We take three kinds of teachers into consideration:
convolution-based ResNet and RegNet, and involution-based
RedNet. We choose CiT-Ti as student. During distillation,
either a CNN teacher or an INN teacher (but not both) is
provided, and thus one of the three tokens in CiT-Ti will be
discarded in this experiment. From now on, this degenerated
CiT-Ti will be referred to as Transformer-Ti. The results are
reported in Figure 4.

As shown in Figure 4, if the teacher models share similar
architecture (i.e., viewing horizontally in both (a) and (b)),
the student model retains similar performance even though
the teacher performances are boosted. For instance, in Fig-
ure 4(a), increasing training epochs leads to performance
improvement of teacher models. Training extra 100 epochs
helps the RegNet-200M teacher improve 9%, but the per-
formance of the student transformer keeps hardly changed.
Similar observation can be generalized to ResNet-18 and
RedNet-26 teachers. In Figure 4(b), although the perfor-
mances increase 6.5% from RegNet-200M to RegNet-600M,
the performance of students remains still. This observation
implies that the accuracy of the teacher model is not the most
important factor determining the student’s performance in
this context. Namely, we are approaching saturation: when
the accuracy of teacher model is sufficiently large, improving
teacher accuracy won’t result in the improvement of student
model.

Table 4. Performances of different students distilled from involution
and convolution teachers. When both involution- and convolution-
based teachers are provided, Transformer-Ti becomes CiT-Ti.

Student ‘ Teacher ‘ Top-1
‘ ResNet-18 ‘ RegNet-26 ‘ (%)
ResNet-10 81.5
ResNet-10 v 83.0
ResNet-10 v 82.6
ResNet-10 v v 83.4
Mixer-Ti 80.5
Mixer-Ti v 81.6
Mixer-Ti v 80.9
Mixer-Ti v v 82.3
Transformer-Ti 81.8
Transformer-Ti v 86.5
Transformer-Ti v 85.0
Transformer-Ti (Ours) v v 88.0

Alternatively, the vertical view of Figure 4 implies that
we could resort to a teacher of a different type. For instance,
when a teacher has similar performance but belongs to differ-
ent kinds (e.g., ResNet-18 and RedNet-26 with training 150
epochs in Figure 4(a), ResNet-50 and RedNet-50 in Figure
4(b)), the distilled student could possess relatively differ-
ent performances. Our hypothesis is that different kinds of
teachers have different inductive biases. Even trained on
the same dataset, they tend to harvest different knowledge.
During distillation, some knowledge might be easier to be
understood and inherited by the student model, while others
do not. Furthermore, in terms of the student performance,
the inherent knowledge of the teacher model seems to weigh
more than its accuracy.

4.3.2 Student Performance and Inductive Biases.

When distilling cross inductive knowledge to a student, the
student needs to have few inductive biases to avoid overly
inclining to a certain teacher. Moreover, the student model
needs to have enough capability and model capacity to learn
from its teachers. Based on these two considerations, we
choose ResNet-10, Transformer-Ti, and Mixer-Ti [29] as
students for testing purpose, and ResNet-18, RedNet-26
as teachers. ResNet-10 has stronger inductive biases than
Transformer-Ti, and such inductive biases are similar to
those of ResNet-18 and conflicts with those of RedNet-26.
The results are reported in Table 4.

Our experiment results demonstrate that ResNet-10 dis-
tilling from two teachers attains a similar performance to
that distilling from a single convolution-based ResNet-18.
In contrast, Transformer-Ti can learn from both teachers
and achieve higher performance (88%) than distilling from
a single teacher. We believe the intrinsic reason is that a
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Table 5. The output KL divergence. A smaller value indicates a
larger similarity.

Student | ResNet-18 | RedNet-26 | Top-1 (%)
ResNet-10 | 0261 | 0274 | 834
Mixer-Ti | 0358 | 0313 | 823
CiT-Ti conv token |  0.255 ‘ 0.290 ‘ 87.1
CiT-Ti inv token 0.254 0.154 87.7

transformer possesses few inductive biases and the attention
layer could not only perform convolution [4], but also has
close relationship to involution [20].

This rises a natural question: An MLP possesses the
fewest inductive biases, how about choosing it as student?
To this end, we include the recent Mixer model [29], a pure
multi-layer perceptron (MLP) structure, into comparison.
For fairness of comparison, the Mixer-Ti used in our paper
has 12 layers, and the hidden dimension is 192. As shown in
Table 4, it indicates that without any distillation, Mixer-Ti
and Transformer-Ti have similar performances. However,
after distilling knowledge from teachers, Transformer-Ti
gains more improvement than Mixer. This demonstrates the
effectiveness of choosing transformer as a student.

The reason why Mixer-Ti doesn’t gain as much as a Trans-
former through distillation will be clear if we compute the
KL divergence between student’s and teacher’s outputs. As
shown in Table 5, all values of KL divergence in Mixer-Ti
are much larger than the others. It implies that Mixer-Ti
doesn’t have the ability to learn from the teacher when its
model size is constrained to the same as its Transformer
counterpart. On the contrary, compared with other students,
CiT-Ti are more similar to teachers. Not surprisingly, the
convolution token and involution token are more inclined
to convolution and involution teacher, respectively, because
our loss function in Eq (1) advocates them to mimic their
corresponding teachers.

4.3.3 Naive Multi and Cross Inductive Bias Teachers.

In this section, we verify the effectiveness of our cross induc-
tive bias distillation by comparing it with naive multi-teacher
distillation. We implement three teachers: (i) ResNet-18,
ResNet-50 are both convolution-based models. They have
similar inductive biases, but different performances due to
different model sizes. (ii) RedNet-26 is an involution-based
model but with similar performance as ResNet-50. The
results are illustrated in Table 6.

When Transformer-Ti distills from a single teacher, its
performance gain is significant regardless the type of teacher.
Specifically, after distilling from the convolution-based
ResNet-18, Transformer-Ti can achieve about 86.5% top-
1 accuracy on ImageNet-100, while after distilling from the

Table 6. Performances of various models on ImageNet-100. A
check mark v represents a teacher of the specified type is presented.
v'v indicates two architectural identical teachers with different
initialization.

Teacher

Student ‘ ‘ Top-1

| ResNet-18 | ResNet-50 | RedNet-26 | (%)
ResNet-18 85.1
ResNet-50 89.0
RedNet-26 89.2
Transformer-Ti 81.8
Transformer-Ti v 86.5
Transformer-Ti v 86.6
Transformer-Ti v 85.0
Transformer-Ti vV 87.2
Transformer-Ti v v 87.0
Transformer-Ti
(Ours) v v 88.0

involution-based RedNet-26, its performance gain is rela-
tively moderate: achieving 85.0% top-1 accuracy.

When one more teacher is further allowed in distillation,
interesting phenomenon occurs. If both teachers are con-
volution based (a.k.a. teacher ensembling [8]), the further
performance improvement is limited (e.g. from 86.5% to
87.0% or 87.2%). In contrast, if we choose the additional
teacher as the involution-based RedNet-26, the performance
of Transformer-Ti rises to 88.0%. This justifies the effective-
ness of providing two different types of teachers.

4.3.4 Effectiveness of Multiple Distillation Tokens.

In conventional knowledge distillation [16], one output token
is used to fit the true label and teacher’s logits simultaneously.
However, such two objectives are sometimes in conflict [2].
As shown in Eq (1), we use different tokens to capture differ-
ent knowledge provided by different teachers. Specifically,
class , convolution and involution token learn from the true
label, convolution teacher, and involution teacher, respec-
tively. To evaluate the effectiveness of three tokens, we
compare the accuracy of the learned Transformer with that
trained via only one or two tokens. The results are reported
in Table 7. When the number of tokens is one, distilling
from two teachers with different inductive biases can bring
considerable improvements, while only distilling from one
teacher induces almost no positive result. With the same
teachers, merely by increasing from one token to three, our
method achieves a 4.5% accuracy improvement.

4.4. Ablation on Token Inductive Bias Alignments

In this section, we evaluate our token inductive bias align-
ments with or without knowledge distillation on ImageNet-
1k and Out-of-Distribution datasets.

Inductive Bias Injection. We aim at align the inductive bias
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Table 7. Performances of various models on ImageNet-100. A
check mark v" represents a teacher of the specified type is presented.

Table 9. Performance of transformer w/ and w/o knowledge distilla-
tion and inductive bias alignments on Out-of-Distribution datasets.

Student ‘ Teacher ‘

Top-1

Model ‘ Token ‘ ResNet-18 ‘ RedNet-26 ‘ (%)

Transformer-Ti 1 81.8

Transformer-Ti 1 v 81.9

Transformer-Ti 1 v 80.7

Transformer-Ti 1 v v 83.5
Transformer-Ti

(Ours) 3 ‘ v ‘ v ‘ 88.0

Table 8. Performances of inductive bias injection on ImageNet-1k.
A check mark v represents a kind of inductive biases which are
injecting into the transformer.

Inductive Bias

‘ Top-1 (%)

(Ours)

Model ‘

‘ Convolution ‘ Involution ‘
Transformer-S 79.8
Transformer-S v 81.5
Transformer-S v 81.4
Transformer-S ‘ v ‘ v ‘ 318

between the teachers and the corresponding tokens with to-
ken inductive bias alignments, but we find that simply inject
the inductive bias will also brings significant improvements.
As show in Table 8, if we inject involution or convolution,
the performance will be improved 1.7 % and 1.6 % respec-
tively. When we inject both two kinds of inductive bias, we
are pleased to find they are compatible and complementary
and can further improve the performance.

Tokens on Out-of-Distribution Dataset. Inductive bias is
the set of assumptions predefined in the model, it is hard
to say ‘transfer’ or ‘inherent’ inductive bias by knowledge
distillation without model modification. However, the tokens
in our distilled student performs more similar to the corre-
sponding teachers with different inductive bias comparing
with simply inject some inductive bias into the model. Ac-
cording to the results on Table 1, convolution perform better
on ImageNet-R and C but worse on ImageNet-A comparing
with involution when models have similar performance on
ImageNet. As shown in Table 9, when we simply inject the
inductive bias to the tokens which inherent the inductive bias
of teachers but different tokens share same learning targets
(Random w/o KD and Align w/o KD), such modification
truly brings some differences but is too limited. When the sit-
uation goes to knowledge distillations (Random w/o KD and
Random w/ KD), there is no inductive bias injected into the
student model, but thanks to the different knowledge, the stu-
dent model perform much similar to the teachers than simply
inject the inductive bias. Specifically, convolution teacher
perform better than the involution teacher on ImageNet-R

Model | ImageNett | AT | Rt | Cl
Random | Conv Token 79.80 18.36 | 42.35 | 41.36
w/o KD Inv Token 79.80 18.35 | 42.35 | 41.35
Random | Conv Token 81.43 16.18 | 45.08 | 39.58

w/ KD Inv Token 81.89 18.80 | 44.43 | 40.95
Align Conv Token 81.72 24.89 | 41.88 | 38.54
w/o KD Inv Token 81.74 24.88 | 41.76 | 38.56
Align Conv Token 82.11 23.58 | 4741 38.11
w/ KD Inv Token 82.51 25.15 | 46.81 | 38.04

and C but worse on ImageNet-A. The tokens in our stu-
dent inherent the characteristics and the Conv token perform
better than Inv token on ImageNet-R and C but worse on
ImageNet-A. Finally, when the knowledge distill and token
inductive bias alignments combine together (Random w/o
KD and Align w/ KD), our student inherent the characteris-
tics of the teacher best.

5. Conclusion

In this paper, we introduce a cross inductive bias trans-
former (CiT) by distilling from teacher networks with diverse
inductive biases. Compared with distilling from convolu-
tion teacher, cross inductive bias teachers provide different
perspectives of data and avoid that student is over biased
toward single teacher. In our experiments, we find that the
teacher inductive biases play a more critical role than the
teacher performance in knowledge distillation. Furthermore,
we delve into the student model’s inductive biases, and the
capability of imitating teachers and the transformer shows
its superiority in these two aspects comparing with Mixer
and ResNet. Finally, we evaluate the effectiveness of token
alignment, and prove the distillation help student perform
more similar to teachers, and the distillation help student
perform best together with the token alignment.

Limitations. We need to independently train our two
lightweight teachers, although the total training time is still
much less than that of the heavy teacher in DeiT. In theory,
our method is compatible with more cross inductive bias
teachers. More suitable teachers other than CNNs and INNs
will be explored in our future work.
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