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Abstract

Existing state-of-the-art 3D instance segmentation meth-
ods perform semantic segmentation followed by grouping.
The hard predictions are made when performing semantic
segmentation such that each point is associated with a sin-
gle class. However, the errors stemming from hard deci-
sion propagate into grouping that results in (1) low over-
laps between the predicted instance with the ground truth
and (2) substantial false positives. To address the afore-
mentioned problems, this paper proposes a 3D instance
segmentation method referred to as SoftGroup by perform-
ing bottom-up soft grouping followed by top-down refine-
ment. SoftGroup allows each point to be associated with
multiple classes to mitigate the problems stemming from se-
mantic prediction errors and suppresses false positive in-
stances by learning to categorize them as background. Ex-
perimental results on different datasets and multiple eval-
uation metrics demonstrate the efficacy of SoftGroup. Its
performance surpasses the strongest prior method by a sig-
nificant margin of +6.2% on the ScanNet v2 hidden test
set and +6.8% on S3DIS Area 5 in terms of AP5g. Soft-
Group is also fast, running at 345ms per scan with a sin-
gle Titan X on ScanNet v2 dataset. The source code and
trained models for both datasets are available at https :
//github.com/thangvubk/SoftGroup.git.

1. Introduction

Scene understanding on 3D data has received increasing
attention for the rapid development of 3D sensors and avail-
ability of large-scale 3D datasets. Instance segmentation on
point clouds is a 3D perception task, serving as the foun-
dation for a wide range of applications such as autonomous
driving, virtual reality, and robot navigation. Instance seg-
mentation processes the point clouds to output a category
and an instance mask for each detected object.

State-of-the-art methods [4, 15,20] consider 3D instance
segmentation as a bottom-up pipeline. They learn the
point-wise semantic labels and center offset vectors and
then group points of the same labels with small geomet-
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Figure 1. Instance segmentation with and without SoftGroup from
the same semantic prediction results. The last row shows the
palette for semantic predictions only. Instance predictions are il-
lustrated by different random colors for different objects. In the se-
mantic prediction results, some regions of cabinet are wrongly
predicted as other furniture. Without SoftGroup, these er-
rors are propagated to instance prediction. SoftGroup addresses
this problem and produces more accurate instance masks.

ric distances into instances. These grouping algorithms
are performed on the hard semantic prediction, where a
point is associated with a single class. In many cases, ob-
jects are locally ambiguous, the output semantic predictions
show different categories for different parts, and thus us-
ing hard semantic predictions for instance grouping leads to
two problems: (1) low overlap between predicted instance
and the ground-truth and (2) extra false-positive instances
from wrong semantic regions. Figure | shows a visual-
ization example. Here, in the semantic prediction results,
some parts of cabinet is wrongly predicted as other
furniture. When hard semantic predictions are used
to perform grouping, the semantic prediction error is prop-
agated to instance prediction. As a result, the predicted
cabinet instance has low overlap with the ground truth,
and the other furniture instance is a false positive.

This paper proposes SoftGroup to address these prob-
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lems by considering soft semantic scores to perform group-
ing instead of hard one-hot semantic predictions. The intu-
ition of SoftGroup is illustrated in Figure 2. Our finding is
that the object parts with wrong semantic predictions still
have reasonable scores for the true semantic class. Soft-
Group relies on a score threshold to determine which cate-
gory the object belongs instead of the argument max values.
Grouping on the soft semantic scores produces for accurate
instance on true semantic class. The instance with wrong
semantic prediction will be suppressed by learning to cate-
gorize it as background. To this end, we treat an instance
proposal as either a positive or negative sample depending
on the maximum Intersection over Union (IoU) with the
ground truth, then construct a top-down refinement stage
to refine the positive sample and suppress the negative one.
As shown in Figure 1, SoftGroup is able to produce accurate
instance masks from imperfect semantic prediction.

SoftGroup is conceptually simple and easy to imple-

ment. Experiments on the ScanNet v2 [6] and S3DIS [1]
benchmark datasets show the efficacy of our method. No-
tably, SoftGroup outperforms the previous state-of-the-art
method by a significant margin of +6.2% on the ScanNet
hidden test set and +6.8% on S3DIS Area 5 in terms of
APs5g. SoftGroup is fast, requiring 345ms to process a Scan-
Net scene. In summary, our contribution is threefold.

* We propose SoftGroup that performs grouping on soft
semantic scores to avoid error propagation from hard
semantic predictions to instance segmentation.

* We propose a top-down refinement stage to correct, re-
fine the positive samples and suppress false positives
introduced by wrong semantic predictions.

* We report extensive experiments on multiple datasets
with different evaluation metrics, showing significant
improvements over existing state-of-the-art methods.

2. Related work

Deep Learning on 3D Point Clouds. Point cloud repre-
sentation is a common data format for 3D scene understand-
ing. To process point clouds, early methods [2,3,36,37] ex-
tract hand-crafted features based on statistical properties of
points. Recent deep learning methods learn to extract fea-
tures from points. PointNet-based methods [32,33] propose
to process points through shared Multi-Layer Perceptron
(MLP) and then aggregate regional and global features from
symmetric function, such as max-pooling. Convolution
methods are actively explored for point clouds processing.
Continuous convolution methods [23, 40, 44, 45] learn the
kernels which are associated to the spatial distribution of lo-
cal points. Discrete convolution methods [5,8,13,19,25,34]
learn the kernels which are regular grids obtaining from
point quantization. Transformers [18, 50] and graph-based
methods [38, 39,43] are also proposed to address the data
irregularity of point clouds.

— Classification —> Cabinet

£
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¥

Figure 2. The cabinet in Figure 1 is extracted to illustrate
the high-level pipeline of our method. The soft grouping module
based on soft semantic scores to output more accurate instance (the
upper one). The classifier processes each instance and suppress the
instance from wrong semantic prediction (the lower one).

Proposal-based Instance Segmentation. Proposal-
based methods consider a top-down strategy that generates
region proposals and then segments the object within each
proposal. Existing proposal-based methods for 3D point
clouds are highly influenced by the success of Mask-R
CNN for 2D images. To handle data irregularity of point
clouds, Li et al. [47] propose GSPN, which takes an
analysis-by-synthesis strategy to generate high-objectness
3D proposals, which are refined by a region-based PointNet.
Hou et al. [12] present 3DSIS that combines multi-view
RGB input with 3D geometry to predict bounding boxes
and instance masks. Yang et al. [46] propose 3D-BoNet
which directly outputs a set of bounding boxes without
anchor generation and non-maximum suppression, then
segments the object by a pointwise binary classifier. Liu ef
al. [22] present GICN to approximate the instance center of
each object as a Gaussian distribution, which is sampled to
get object candidates then produce corresponding bounding
boxes and instance masks.

Grouping-based Instance Segmentation. Grouping-
based methods rely on a bottom-up pipeline that produces
per-point predictions (such as semantic maps, and geo-
metric shifts, or latent features) then groups points into
instances. Wang et al. [41] propose SGPN to construct a
feature similarity matrix for all points and then group points
of similar features into instances. Pham et al. [29] present
JSIS3D that incorporates the semantic and instance labels
by a multi-value conditional random field model and jointly
optimizes the labels to obtain object instances. Lahoud et
al. [17] propose MTML to learn feature and directional
embedding, then perform mean-shift clustering on the
feature embedding to generate object segments which are
scored according to their direction feature consistency. Han
et al. [9] introduce OccuSeg that performs graph-based
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Figure 3. The architecture of the proposed method consists of bottom-up grouping and top-down refinement stages. From the input point
clouds, the U-Net backbone extracts the point features. Then semantic and offset branches predict the semantic scores and offset vectors,
followed by a soft grouping module to generate instance proposal. The feature extractor layer extracts backbone features from instance
proposals. The features for each proposal are fed into a tiny U-Net followed by the classification, segmentation, and mask scoring branches

to get the final instances.

clustering guided by object occupancy signal for more
accurate segmentation outputs. Zhang et al. [48] consider
a probabilistic approach that represents each point as a
tri-variate normal distribution followed by a clustering step
to obtain object instances. Jiang et al. [15] propose Point-
Group to segment objects on original and offset-shifted
point sets, relying on a simple yet effective algorithm that
groups nearby points of the same label and expands the
group progressively. Chen et al. [4] extend PointGroup and
propose HAIS that further absorbs surrounding fragments
of instances and then refines the instances based on intra-
instance prediction. Liang et al. [20] SSTNet to construct a
tree network from pre-computed superpoints then traverse
the tree and split nodes to get object instances.

The common proposal-based and grouping-based meth-
ods have their advantages and drawbacks. Proposal-based
methods process each object proposal independently that
is not interfered with by other instances. Grouping-based
methods process the whole scene without proposal gener-
ation, enabling fast inference. However, proposal-based
methods have difficulties in generating high-quality pro-
posals since the point only exists on the object surface.
Grouping-based methods highly depend on semantic seg-
mentation such that the errors in semantic predictions are
propagated to instance predictions. The proposed method
leverages the advantages and address the limitations of both
approaches. Our method is constructed as a two-stage
pipeline, where the bottom-up stage generates high-quality
object proposals by grouping on soft semantic scores, and
then the top-down stage process each proposal to refine pos-
itive samples and suppress negative ones.

3. Method

The overall architecture of SoftGroup is depicted in Fig-
ure 3, which is divided into two stages. In the bottom-
up grouping stage, the point-wise prediction network (Sec.

3.1) takes point clouds the input and produces point-wise
semantic labels and offset vectors. The soft grouping mod-
ule (Sec. 3.2) processes these outputs to produce prelimi-
nary instance proposals. In the top-down refinement stage,
based on the proposals, the corresponding features from the
backbone are extracted and used to predict classes, instance
masks, and mask scores as the final results.

3.1. Point-wise Prediction Network

The input of the point-wise prediction network is a set of
N points, each of which is represented by its coordinate and
color. The point set is voxelized to convert unordered points
to ordered volumetric grids, which are fed into a U-Net style
backbone [35] to obtain point features. The Submanifold
Sparse Convolution [£8] is adopted to implement the U-Net
for 3D point clouds. From the point features, two branches
are constructed to output the point-wise semantic scores and
offset vectors.

Semantic Branch. A semantic branch is constructed
from a two-layer MLP and learns to output semantic scores
S = {s1,..,sy} € RN*Nas for N points over Nejs
classes. Different from existing methods [4, 1 5], we directly
perform grouping on semantic scores without converting
the semantic scores to one-hot semantic predictions.

Offset Branch. In parallel with the semantic branch, we
apply a two-layer MLP to learn the offset vectors O =
{o1,...,0N} € RN*3 which represents the vector from
each point to the geometric center of the instance the point
belongs. Based on the learned offset vectors, we shift the
points to the center of the corresponding instance to per-
form grouping more effectively.

The cross-entropy loss and ¢; regression loss are used to
train the semantic and offset branches, respectively.
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where s* is the semantic label, o* is offset label represent-
ing the vector from a point to the geometric center of the
instance that the point belongs to (analogous to [4, 15,20]),
and 1,y is the indicator function indicating whether the
point p, belongs to any instance.

3.2. Soft Grouping

The soft grouping module receives the semantic scores
and offset vectors as the input and produces instance pro-
posals. First, the offset vectors are used to shift points to-
ward the corresponding instance centers. To perform group-
ing using the semantic scores, we define a score threshold
T to determine which semantic classes a point belongs to,
allowing the point to be associated with multiple classes.
Given semantic scores S € RN*News we iterate through
Nass classes, and at each class index we slice a point sub-
set of the whole scene that has the score (w.r.t. the class
index) higher than the threshold 7. We follow [4, 15] to
perform grouping on each point subset. Since all points in
each subset belong to the same class, we simply traverse all
the points in the subset and create the links between points
having a geometric distance smaller than a grouping band-
width b to get the instance proposals. For each iteration, the
grouping is performed on a point subset of the whole scan,
ensuring fast inference. The overall instance proposals are
the union of the proposals from all subsets.

We note that existing proposal-based methods [12,22,46]
commonly consider bounding boxes as object proposals
then perform segmentation within each proposal. Intu-
itively, the bounding box with high overlap with the in-
stance should have the center close to the object center.
However, generating high-quality bounding box proposals
in 3D point clouds is challenging since the point only exists
on object surfaces. Instead, SoftGroup relies on point-level
proposals which are more accurate and naturally inherit the
scattered property of point clouds.

Since the quality of instance proposals from grouping
highly depend on the quality of semantic segmentation, we
quantitatively analyze the impact of 7 on the recall and pre-
cision of semantic predictions. The recall and precision for
class j is defined as follows.
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Figure 4. The recall and precision of semantic prediction with
varying score threshold 7. The dashed lines denote the recall and
precision with hard semantic prediction.

Figure 4 shows the recall and precision (averaged over
classes) with the varying score thresholds 7 compared with
those of hard semantic prediction. With hard semantic
prediction, the recall is 79.1%, indicating more than 20%
amount of points over classes are not covered by the predic-
tions. When using the score threshold, the recall increases
as the score threshold decreases. However, the small score
threshold also leads to low precision. We propose a top-
down refinement stage mitigate the low precision problems.
The precision can be interpreted as the relation between
foreground and background points of object instances. We
set the threshold to 0.2 with precision near 50%, leading
to the ratio between foreground and background points for
ensuring stage is balanced.

3.3. Top-Down Refinement

The top-down refinement stage classifies and refines the
instance proposals from the bottom-up grouping stage. A
feature extractor layer processes each proposal to extract
its corresponding backbone features. The extracted features
are fed into a tiny U-Net network (a U-Net style network
with a small number of layers) before predicting classifica-
tion scores, instance masks, and mask scores at the ensuing
branches.

Classification Branch. The classification branch starts
with a global average pooling layer to aggregate the feature
of all points in the instance, followed by a MLP to predict
the classification scores C' = {¢1,...,cx} € REX (Netass+1)
where K is the number of instances. We directly derive the
object category and classification confidence score from the
output of the classification branch.

We note that existing grouping-based methods typically
derive the object category from semantic predictions. How-
ever, instances may come from objects with noisy semantic
predictions. The proposed method directly uses the output
of the classification branch as the instance class. The classi-
fication branch aggregates all point features of the instance
and classifies the instance with a single label, leading to
more reliable predictions.
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Segmentation Branch. As shown in Section 3.2, the in-
stance proposals contain both foreground and background
points, we construct a segmentation branch to predict an
instance mask within each proposal. The segmentation
branch is a point-wise MLP of two layers that output an
instance mask m, for each instance k.

Mask Scoring Branch. The mask scoring branch shares
the same structure as the classification branch. This branch
outputs the mask scores E = {ey,...,ex} € RE X Netass |
which estimate the IoU of a predicted mask with the ground
truth. The mask score is combined with the classification
score by multiplication to get the final confidence score.

Learning Targets. Training the top-down refinement
branches requires the target labels for each branch. To this
end, we follow the logic in existing 2D object detection and
segmentation methods. We treat all instance proposals hav-
ing IoU with a ground-truth instance higher than 50% as
the positive samples and the rest as negatives. Every posi-
tive sample is assigned to a ground-truth instance with the
highest IoU. The classification target of a positive sample
is the category of the corresponding ground-truth instance.
The total number of classes is Ncjass + 1 (NVe1ass foreground
classes and one background class). The segmentation and
mask scoring branches are trained on positive samples only.
The mask target of a positive sample is the mask of the as-
signed ground-truth instance. The mask score target is the
IoU between the predicted mask and the ground truth. The
training loss of these branches is the combination of cross-
entropy, binary cross-entropy, and ¢, regression losses, fol-
lowing [10, 14].

K
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Here, c*, m*, e* are the classification, segmentation, and
mask scoring targets, respectively. K is the total number
of proposals and 1y, indicates whether the proposal is a
positive sample.

L mask —
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3.4. Multi-task Learning

The whole network can be trained in an end-to-end man-
ner using a multi-task loss.

L= Lsemantic + Loffset + Lclass + Lmask + Lmask,score; (7)

where Lgemanic and Logrer are the semantic and offset losses
defined at subsection Section 3.1 while L¢jas, Lmask and
Liaskscore are the classification, segmentation and mask
score losses defined at Section 3.3.

4. Experiments
4.1. Experimental Settings

Datasets. The experiments are conducted on standard
benchmarked ScanNet v2 [6] and S3DIS [1] dataset. The
ScanNet dataset contains 1613 scans which is divided into
training, validation, and testing sets of 1201, 312, 100 scans,
respectively. Instance segmentation is evaluated on 18 ob-
ject classes. Following existing methods, the benchmarked
results are reported on the hidden test split. The ablation
study is conducted on the validation set.

The S3DIS dataset contains 3D scans of 6 areas with
271 scenes in total. The dataset consists of 13 classes for
instance segmentation evaluation. Following existing meth-
ods, two settings are used to evaluate the instance segmen-
tation results: testing on Area 5 and 6-fold cross-validation.

Evaluation Metrics. The evaluation metric is the stan-
dard average precision. Here, AP5y and APs5 denote the
scores with IoU thresholds of 50% and 25%, respectively.
Likewise, AP denotes the averaged scores with IoU thresh-
old from 50% to 95% with a step size of 5%. Addi-
tionally, the S3DIS is also evaluated using mean coverage
(mCov), mean weighed coverage (mWCov), mean preci-
sion (mPrec), and mean recall (mRec).

Implementation Details. The implementation details fol-
low those of existing methods [4, 15]. The model is imple-
mented using PyTorch deep learning framework [28] and
trained on 120k iterations with Adam optimizer [16]. The
batch size is set to 4. The learning rate is initialized to 0.001
and scheduled by a cosine annealing [24]. The voxel size
and grouping bandwidth b are set to 0.02m and 0.04m, re-
spectively. The score threshold for soft grouping 7 is set
to 0.2. At training time, the scenes are randomly cropped
at a maximum number of points of 250k. At inference,
the whole scene is fed into the network without cropping.
For the S3DIS with high point density, scenes are randomly
downsampled at a ratio of 1/4 before cropping. At infer-
ence, the scene is divided into four parts before feeding into
the model, and then the features of these parts are merged
right after the U-Net backbone. The ensuing components
process the merged features as those on ScanNet dataset.

We note that the source code and trained models for ex-
isting high-performing methods are publicly available on
ScanNet v2 only. In this work, the source code and trained
models on both ScanNet v2 and S3DIS will be released to
support result reproducibility.
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SGPN [41] 143 | 20.8 39.0 169 65 275 29 69 00 87 43 14 27 00 11.2 35.1 16.8 43.8 13.8
GSPN [47] 30.6 | 50.0 40.5 31.1 34.8 589 54 6.8 126 283 290 2.8 219 214 33.1 39.6 27.5 82.1 245
3D-SIS [12] 38.2 (100.0 43.2 245 19.0 577 1.3 263 3.3 320 240 7.5 422 857 11.7 699 27.1 883 235
MASC [21] 447 | 52.8 55.5 38.1 38.2 63.3 0.2 509 26.0 36.1 43.2 32.7 45.1 57.1 36.7 63.9 38.6 98.0 27.6
PanopticFusion [27] | 47.8 | 66.7 71.2 59.5 259 55.0 0.0 613 17.5 25.0 43.4 43.7 41.1 85.7 48.5 59.1 26.7 944 359
3D-Bonet [46] 48.8 1100.0 67.2 59.0 30.1 48.4 9.8 62.0 30.6 34.1 259 12.5 434 79.6 40.2 49.9 51.3 90.9 439
MTML [17] 54.9 1100.0 80.7 58.8 32.7 64.7 0.4 81.5 18.0 41.8 36.4 18.2 44.5 100.0 44.2 68.8 57.1 100.0 39.6
3D-MPA [7] 61.1 {100.0 83.3 76.5 52.6 75.6 13.6 58.8 47.0 43.8 43.2 35.8 65.0 85.7 429 76.5 55.7 100.0 43.0
Dyco3D [11] 64.1 1100.0 84.1 89.3 53.1 80.2 11.5 58.8 44.8 43.8 53.7 43.0 55.0 85.7 534 764 657 98.7 56.8
PE [49] 64.5 [100.0 77.3 79.8 53.8 78.6 8.8 79.9 35.0 43.5 54.7 54.5 64.6 93.3 56.2 76.1 55.6 99.7 50.1
PointGroup [15] 63.6 {100.0 76.5 62.4 50.5 79.7 11.6 69.6 384 44.1 559 47.6 59.6 100.0 66.6 75.6 55.6 99.7 51.3
GICN [22 63.8 1100.0 89.5 80.0 48.0 67.6 14.4 73.77 354 44.7 40.0 36.5 70.0 100.0 56.9 83.6 59.9 100.0 47.3
OccuSeg [] 67.2 1100.0 75.8 68.2 57.6 84.2 47.7 504 52.4 56.7 58.5 45.1 55.7 100.0 75.1 79.7 56.3 100.0 46.7
SSTNet [20] 69.8 1100.0 69.7 88.8 55.6 80.3 38.7 62.6 41.7 55.6 58.5 70.2 60.0 100.0 82.4 72.0 69.2 100.0 50.9
HAIS [4] 69.9 1100.0 84.9 82.0 67.5 80.8 27.9 757 46.5 51.7 59.6 559 60.0 100.0 654 76.7 67.6 994 56.0
SoftGroup (Ours) | 76.1 [100.0 80.8 84.5 71.6 86.2 24.3 82.4 65.5 62.0 73.4 699 79.1 98.1 71.6 84.4 76.9 100.0 59.4

Table 1. 3D instance segmentation results on ScanNet v2 hidden test set in terms of APso scores. The proposed SoftGroup achieves
the highest average APsq, outperforming the previous strongest method by a significant margin. Reported results are from the ScanNet
benchmark on 13/11/2021.

s 2 :
Semantic GT Semantic pred Instance pred w/o SoftGroup Instance pred w/ SoftGroup Instance GT

Figure 5. Qualitative results on ScanNet v2 validation set. Instance prediction without SoftGroup output low-quality instance mask at the
region of wrong semantic prediction (highlighted by dashed boxes). SoftGroup produces more accurate instance masks at these regions.

4.2. Benchmarking Results AP/AP5q of 51.6/66.1(%), which is 8.9/6.8(%) improve-
ment compared to the second-best. The state-of-the-art per-
formance on both ScanNet v2 and S3DIS datasets shows the
generalization advantage of our method.

ScanNet v2. Table 1 shows the results of SoftGroup and
recent state-of-the-art methods on the hidden test set of
ScanNet v2 benchmark. We submit our model and re-
port the results from the server. The proposed SoftGroup
achieves the highest average AP5( of 76.1%, surpassing the

previous strongest methods a significant margin of 6.2%. Segmentation and Detection Results. We further report
Regarding class-wise scores, our method achieves the best the instance segmentation and object detection results on
performance in 12 out of 18 classes. ScanNet v2 validation set. To obtain object detection re-

sults, we follow the approach in [7] to extract a tight axis-
S3DIS. Table 2 summaries the results on Area 5 and 6- aligned bounding box from the predicted point mask. Ta-
fold cross-validation of S3DIS dataset. On both Area 5 ble 3 reports the instance segmentation and object detec-
and cross-validation evaluations, the proposed SoftGroup tion results. Our method achieves significant improvement
achieves higher overall performance compared to existing compared to the second-best by 3.2, 3.3, 6.3, and 7.3(%) of

method. Notably, on Area 5 evaluation, SoftGroup achieves APs5g, AP25, box AP5g, and box APss, respectively.
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Method AP AP59 mCov mWCov mPrecsg mRecso Method Component time (ms) Total (ms)
SGPNT [41] - - 327 355 36.0 28.7 Backbone (GPU): 2080
ASIST [42) - - 44.6 47.8 55.3 42.4 SGPN [41] Group merging (CPU): 149000 158439
PointGroup' [15] - 57.8 - - 61.9 62.1 Block merging (CPU): 7119
SSTNet' [20] 42.7 59.3 - - 65.5 64.2 Backbone (GPU): 2083
HAIS' [4] - - 643 660  TLI 650 ASIS [47] Mean shift (CPU): 172711 181913
SoftGroup’ 51.6 66.1 66.1  68.0 73.6 66.6 Block merging (CPU): 7119
SGPN? [41] - - 379 4038 38.2 31.2 Backbone (GPU): 1612
PartNet* [20] - - - - 56.4 434 GSPN [47] Point sampling (GPU): 9559 12702
ASIS* [42] - - S5l2 55 63.6 475 Neighbour search (CPU): 1500
3D-BoNet [46] - - - - 65.6 477
OccuSeg? [9] B B B _ 72.8 603 Backbone (GPU): 2083
GICN'! 2] ) ) ) ) 63.5 50.8 3D-BoNet [46] SCN (GPU)': 667 9202
PointGroup* [15] - 640 - - 69.6 692 Block merging (CPU): 7119
SSTNet! [20] 54.1 67.8 - - 73.5 73.4 Backbone (GPU): 1497
HAIS* [4] - - 67.0 704 73.2 69.4 GICN [22] SCN (GPU): 667 8615
SoftGroup* 544 689 693 71.7 75.3 69.8 Block merging(CPU): 7119

Backbone GPU): 189
Table 2. 3D instance segmentation results on S3DIS dataset. OccuSeg [9] Supervoxel (CPU): 1202 1904

Methods marked with | are evaluated on Area 5, and methods
marked with I are evaluated on 6-fold cross validation.

Method AP5O AP25 Box AP50 Box AP25
F-PointNet [31] - ; 10.8 19.8
GSPN [47] 37.8 534 17.7 30.6
3D-SIS [12] 18.7 35.7 225 40.2
VoteNet [30] - - 33.5 58.6
3D-MPA [7] 519 724 49.2 64.2
PointGroup [15] 51.7 713 48.9 61.5
SSTNet [20] 643 74.0 52.7 62.5
HAIS [4] 644 75.6 53.1 64.3
SoftGroup 67.6 789 59.4 71.6

Table 3. Instance segmentation and object detection results on
ScanNet v2 validation set. Our method achieves better results on
both mask and box AP.

Runtime Analysis. Table 4 report the runtime per scan of
different methods on ScanNet v2 validation set. For a fair
comparison, the reported runtime is measured on the same
Titan X GPU model. The inference time of our method is
345ms per scan, which is extra 6ms over the fastest model.
Regarding our component-time, the point-wise prediction
network, soft grouping algorithm, and top-down refinement
latencies are 152ms, 132ms, and 70ms, respectively. The
results show that our method achieves high accuracy while
remaining computationally efficient.

4.3. Qualitative Analysis

Figure 5 shows the visualization examples from Scan-
Net v2 dataset. Without SoftGroup, the semantic prediction
errors are propagated to instance segmentation predictions

Clustering (GPU+CPU): 513

Backbone (GPU): 128
Clustering (GPU+CPU):221 452
ScoreNet (GPU): 103

Backbone (GPU) 125

PointGroup [15]

SSTNet [20] Tree network (GPU+CPU): 229 428
ScoreNet (GPU): 74
Pointwise prediction (GPU): 154

HAIS [4] Hier. aggr. (GPU+CPU): 118 339
Intra-inst. prediction (GPU): 67
Pointwise prediction (GPU): 152

(S(‘;f:g)r oup Soft grouping (GPU+CPU): 123 345

Top-down refinement (GPU): 70

Table 4. Inference time per scan of different methods on ScanNet
v2 validation set. For a fair comparison, the runtime is measured
on the same Titan X GPU model.

(highlighted by dashed boxes). In contrast, SoftGroup ef-
fectively corrects the semantic prediction errors and thus
generates more accurate instance masks.

4.4. Ablation Study

Component-wise Analysis. We provide experimental re-
sults of SoftGroup when different components are omitted.
The considered baseline is a model with hard grouping and
the confidence scores of output instances are ranked by a
ScoreNet branch [15,20]. Table 5 shows the ablation re-
sults. The baseline achieves 39.5/61.1/75.5(%) in terms of
AP/AP5¢/APy5. Significant improvement is obtained by ei-
ther applying soft grouping or top-down refinement. Com-
bining these two components achieves the best overall per-
formance AP/APso/APgy5; of 46.0/67.6/78.9(%), which is
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Baseline Soft grouping Top-down refinement AP APso AP2s

v 395 61.1 755
v 41.6 63.8 79.2

v 443 654 78.1

v v 46.0 67.6 789

Overall improvement +6.5 +6.5 +3.4

Table 5. Component-wise analysis on ScanNet v2 validation set.
Our model achieves significant improvement over the baseline.

T ‘ AP AP50 AP25
None | 443 65.4 78.1
0.01 40.1 58.5 69.2

0.1 45.3 66.5 78.5
0.2 46.0 67.6 78.9
0.3 45.2 66.8 78.5
0.4 44.7 46.1 78.3
0.5 439 64.8 71.7

Table 6. Ablation experiments on varying score threshold 7 for
soft grouping. “None” denotes the threshold is not used, and the
hard semantic prediction is used for grouping instead.

significantly higher than the baseline by 6.5/6.5/3.4(%).

Score Threshold for Soft Grouping. Table 6 shows the
experimental results with varying score thresholds for soft
grouping. The baseline is with 7 being “None”, indicating
the threshold is deactivated and the hard predicted label is
used for grouping. The baseline achieves AP/AP5,/AP25 of
44.3/65.4/78.1(%). When 7 is too high or too low the per-
formance is even worse than the baseline. The best perfor-
mance is obtained at 7 of 0.2, which confirms our analysis at
the Section 3.2, where the number of positive and negative
samples are balanced.

Top-Down Refinement. We further provide the abla-
tion results on the top-down refinement, on Table 7.
With only the classification branch, our method achieves
AP/AP50/APo5 of 41.1/64.6/79.7(%). When mask branch
and mask scoring branch are in turn applied, the perfor-
mance tends to improve on the higher IoU threshold re-
gions. Combining all branches yields the performance
AP/AP50/AP25 of 46.0/67.6/78.9(%).

Instance Category from Classification Branch. Table 8
reports the results of different schemes to obtain object cat-
egories. The results show that deriving the object cate-
gory from semantic prediction yields the AP/AP5¢/APs5 of
45.0/65.6/76.2(%). The proposed method directly uses the

Class Mask Maskscore AP AP5q5 APos

v 41.1 646 79.7
v v 4577 684 795
v v v 46.0 676 789

Table 7. The impact of each branch in top-down refinement on
ScanNet v2 validation set.

Category from class branch? AP AP5y APos

N 450 656 762
Y 46.0 67.6 78.9

Table 8. Ablation study on instance category. “N” indicates that
the instance category is taken from majority vote of semantic pre-
diction. “Y” indicates that the instance category is taken from clas-
sification branch

output of the classification branch as the instance class. The
classification branch aggregates all point features of the in-
stance and classifies the instance with a single label, leading
to more reliable prediction. The results show that directly
using classification output as object category improves the
AP/AP50/AP25 to 46.0/67.6/78.9(%).

5. Conclusion

We have presented SoftGroup, a simple yet effective
method for instance segmentation on 3D point clouds. Soft-
Group performs grouping on soft semantic scores to address
the problem stemming from hard grouping on locally am-
biguous objects. The instance proposals obtained from the
grouping stage are assigned to either positive or negative
samples. Then a top-down refinement stage is constructed
to refine the positives and suppress the negatives. Exten-
sive experiments on different datasets show that our method
outperforms the existing state-of-the-art method by a sig-
nificant margin of +6.2% on the hidden ScanNet v2 test set
and +6.8% on S3DIS Area 5 in terms of AP5.
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