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Abstract

Recently, large-scale synthetic datasets are shown to be
very useful for generalizable person re-identification. How-
ever, synthesized persons in existing datasets are mostly
cartoon-like and in random dress collocation, which limits
their performance. To address this, in this work, an auto-
matic approach is proposed to directly clone the whole out-
fits from real-world person images to virtual 3D characters,
such that any virtual person thus created will appear very
similar to its real-world counterpart. Specifically, based
on UV texture mapping, two cloning methods are designed,
namely registered clothes mapping and homogeneous cloth
expansion. Given clothes keypoints detected on person im-
ages and labeled on regular UV maps with clear clothes
structures, registered mapping applies perspective homog-
raphy to warp real-world clothes to the counterparts on the
UV map. As for invisible clothes parts and irregular UV
maps, homogeneous expansion segments a homogeneous
area on clothes as a realistic cloth pattern or cell, and ex-
pand the cell to fill the UV map. Furthermore, a similarity-
diversity expansion strategy is proposed, by clustering per-
son images, sampling images per cluster, and cloning out-
fits for 3D character generation. This way, virtual persons
can be scaled up densely in visual similarity to challenge
model learning, and diversely in population to enrich sam-
ple distribution. Finally, by rendering the cloned characters
in Unity3D scenes, a more realistic virtual dataset called
ClonedPerson is created, with 5,621 identities and 887,766
images. Experimental results show that the model trained
on ClonedPerson has a better generalization performance,
superior to that trained on other popular real-world and
synthetic person re-identification datasets. The ClonedPer-
son project is available at https://github.com/Yanan-Wang-
cs/ClonedPerson.

*Shengcai Liao is the Corresponding Author.

1. Introduction

The generalization of person re-identification has gained
increasing attention in recent years. One way to improve
generalization is to develop large-scale and diverse training
datasets. However, collecting person images from surveil-
lance videos is privacy sensitive, and the further data an-
notation is expensive. Therefore, recently, synthetic person
re-identification datasets have been actively developed due
to their advantages of no privacy concern and no annotation
cost [3,4,25]. For example, RandPerson [29] automatically
creates large-scale random 3D characters with 8,000 identi-
ties, rendered from simulation of surveillance environments
in Unity3D [27]. It is also proved in [29] that large-scale
synthetic datasets are very useful to improve generalization.
Similar findings are also observed in the following work
UnrealPerson [33]. However, synthesized persons in ex-
isting datasets are quite different from realistic persons, be-
cause synthesized persons are mostly cartoon-like and dress
in random collocation. This clear domain gap limits the per-
formance of models trained on such synthetic datasets.

On the other hand, some researchers proposed to gen-
erate 3D human body models from real-world person im-
ages [13, 28, 34], targeting at high-fidelity reconstruction.
These methods try to generate 3D body shapes and the as-
sociated textures simultaneously, through deep neural net-
works. They can help reduce the gap between synthetic and
realistic person images to some extent due to the input of
real-world clothes textures. However, current methods are
still not satisfactory as the results are usually blur, and there
are many artifacts, e.g. in back views (see Fig. 8c).

Considering the above, in this work, an automatic ap-
proach is proposed to directly clone the whole outfits from
real-world person images to virtual 3D characters. By do-
ing so, we would like to achieve two goals1: (1) the directly

1However, high-fidelity 3D reconstruction of person bodies, for exam-
ple, heads and 3D body shapes, is not our target. On the other hand, high-
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Figure 1. The proposed ClonedPerson pipeline, which automatically creates similarly dressed 3D characters from person images.

cloned clothes textures are clear and sharp in looking; and
(2) by cloning the whole outfit, the virtual person thus cre-
ated will appear very similar to its real-world counterpart,
in similar clothes and dress collocation. Specifically, in-
spired from the UV texture mapping [5] method developed
in RandPerson [29], in this work, two cloning methods for
UV maps are designed, namely registered clothes mapping
and homogeneous cloth expansion. Registered mapping tar-
gets at regular UV maps where clothes appear in regular
shapes and structures. Based on clothes keypoints detected
on real-world person images and labeled on UV maps, reg-
istered mapping applies perspective homography [26] to
warp real-world clothes to the counterparts on the UV map.
Homogeneous expansion is for invisible clothes parts and
irregular UV maps. An optimization algorithm is proposed
to find a large homogeneous area on clothes, use it as a real-
istic cloth pattern or cell, and expand the cell to fill the UV
map. Fig. 1 shows the pipeline of the proposed method.

Furthermore, a general principle is established to scale
up virtual 3D character creation, that is, it should expand
both densely in similarity and diversely in population. The
former one is to challenge discriminative model learning by
providing similar persons, while the latter is to enrich the
diversity in sample space. A similarity-diversity expansion
strategy is thus proposed. Thanks to the proposed clothes
cloning method, this can conveniently be achieved by clus-
tering real-world person images and a controlled sampling
of the clustered images for 3D character generation.

Eventually, the generated 3D characters are imported
into Unity3D virtual environments to render a more realistic
virtual dataset, called ClonedPerson, with 763,953 images
from 4,826 characters for training, and 123,813 images of
795 characters for testing. Experimental results show that
the similarity-diversity expansion strategy is effective, and
the model trained on the ClonedPerson dataset has a better
generalization performance, surpassing the models trained
on various real-world and synthetic datasets.

In summary, our main contributions are: (1) We propose

fidelity reconstruction of identifiable biometric signatures, e.g. faces, may
also raise privacy concerns.

Dataset #ID #Cam #BBox Sur RealOutfit
SOMAset [4] 50 250 100,000 No No No

SyRI [3] 100 280 56,000 No No No
PersonX [25] 1,266 6 273,456 No No No

RandPerson2 [29] 8,000 19 1,801,816 Yes No No
UnrealPerson3 [33] 6,799 34 1,256,381 Yes Yes No

ClonedPerson 5,621 24 887,766 Yes Yes Yes

Table 1. Statistics of some synthetic person re-identification
datasets. “Sur”: surveillance simulation. “Real”: realistic clothes
textures. “Outfit”: cloning full-body outfits from person images.

an automatic pipeline to clone outfits from real-world per-
son images to virtual 3D characters, such that they look very
similar to their real-world counterparts, with clear clothing
textures; (2) two cloning methods, registered clothes map-
ping and homogeneous cloth expansion, are designed to ful-
fill this task; (3) a similarity-diversity expansion strategy is
proposed, based on clustering of person images and con-
trolled sampling, to scale up 3D character creation densely
in similarity and diversely in population; and (4) a large-
scale synthetic dataset called ClonedPerson, with 887,766
images of 5,621 characters, is created, which results in a
better generalization performance than other popular real-
world and virtual person re-identification datasets. All used
and designed methods are listed in Table A of the Appendix.

2. RELATED WORK

Collecting and manually labeling real-world person re-
identification datasets are expensive and privacy-sensitive.
In contrast, the use of synthetic data can reduce the cost of
manual labeling, and synthetic datasets do not have privacy
issues. For synthetic datasets, SyRI [3] and PersonX [25]
used limited hand-made characters to generate data. In con-
trast, RandPerson [29] proposed a clever way to generate
new-looking clothes models by replacing UV maps of exist-

2Suggested subset from [29]: 8,000 characters with 132,145 images.
3Suggested subset from [33]: 3,000 characters with 120,000 images.
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ing 3D clothes models with neutral images or random color
and texture patterns, and designed an automatic pipeline in
MakeHuman [6] to scale up character generation. Besides,
similar to real-world environments, [29] simulated camera
networks in Unity3D to render and record moving person
videos. Moreover, [29] proved that models trained on syn-
thetic data generalize well on real-world datasets. Follow-
ing RandPerson, UnrealPerson [33] improved the accuracy
by using real-world person images to create virtual char-
acters, and rendering with the powerful Unreal Engine 4
(UE4) [1] with four large and realistic scenes. Specifi-
cally, it cropped blocks from segmented clothing images
to directly replace UV maps of existing 3D clothes mod-
els. However, as shown in Fig. 7, this way still results in
unrealistic-looking characters due to scale alignment issue.
Statistics of some synthetic datasets are shown in Table 1.

On the other hand, one may consider using virtual try-
on methods to generate synthesized persons. These meth-
ods aim to transfer a target clothing onto a reference person.
However, existing virtual try-on methods [11,31] are mostly
in 2D, which cannot generate 3D clothed human models,
and thus cannot import them into virtual environments for
comprehensive rendering. On the other hand, some existing
methods, e.g. PIFu [23], targets at high-fidelity reconstruc-
tion of 3D persons from 2D images. However, such meth-
ods require ground-truth of 3D shapes and textures for train-
ing, which is quite expensive and limited in scale. Recently,
some methods, e.g. HPBTT [34] tried training 3D recon-
struction models from only 2D images. However, they are
based on generative models, which usually result in blurred
textures and artifacts. Besides, Pix2Surf [21] proposed to
transfer texture from clothing images to 3D humans by neu-
ral networks. It achieved a good quality by training a spe-
cific model for every category of clothes. However, extend-
ing to other categories is costly. Furthermore, since HPBTT
and Pix2Surf are both based on SMPL [20], they are not
able to handle long skirts, as shown in Fig. 8.

Therefore, to further reduce the gap between virtual
characters and realistic persons, we follow the way of Rand-
Person in repainting UV maps of existing 3D clothing mod-
els. However, different from RandPerson and UnrealPerson
which directly replace existing UV maps by other images,
we design two cloning methods for structure-aware, fine-
grained repainting of UV maps.

3. 3D Virtual Character Generation

3.1. Pipeline Overview

Fig. 1 shows the pipeline of the proposed ClonedPerson
approach, which includes the following steps. Firstly, we
apply pre-processing steps, including pedestrian detection,
pose detection, clothes detection, and clothes keypoint de-
tection to get qualified frontal-view person images and ob-

(a) Eight clothes categories with labeled keypoints.

(b) Regular UV maps where clothes appear in regular shapes and
structures.

(c) Irregular UV maps.

Figure 2. Different categories of clothes and UV texture maps of
the corresponding 3D clothes models.

tain the clothes positions, categories, and clothes keypoints.
Next, two cloning methods, registered mapping and homo-
geneous expansion, are applied to clone clothes from person
images to UV texture maps and generate 3D characters. Fi-
nally, following RandPerson [29], these characters are im-
ported into Unity3D to render synthesized person images.

Several pre-processing steps are implemented to fulfill
our target. For example, to clone the full-body outfits from
real-world person images to virtual 3D characters, we ap-
ply person detection to localize full-body person images,
and remove standalone and occluded clothes. Besides, we
design a number of rules based on pose detection to cherry-
pick4 non-occluded frontal-view person images, since they
best show clothing patterns and collocations. Due to space
limits, pre-processing steps are introduced in Appendix B.

3.2. Registered Clothes Mapping

With 3D clothes models available in the MakeHuman
community, we obtain some clothes models with regular
UV maps, where clothes appear in regular shapes and struc-
tures, as Fig. 2b shows. With these regular UV maps, we ap-
ply perspective homography [26] to map real-world clothes
textures to UV maps of 3D characters, so that the original
texture structures in the clothes can be well kept, and will
appear to be clear and sharp.

3.2.1 Perspective homography

Perspective homography is also known as perspective trans-
formation [2,26]. Given a set of 2D points {pi} and a corre-
sponding set of points {p′

i}, augmented with homogeneous
coordinates (appending 1 as the z coordinate), perspective
homography maps each pi to p′

i by a homography matrix
H ∈ R3×3, that is, p′ = Hp.

Then, we can compute the homography matrix H by
solving the following optimization problem:

4No need to worry about dropping other images including some images
in good conditions, since there are huge available sources.
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min
H

n∑
i=1

∥p′
i − Hpi∥

2
2 , (1)

where n is the number of the corresponding points. Eq.
(1) defines a least squares problem and thus can be easily
solved. In addition, the computed homography matrix H
can be refined with the Levenberg-Marquardt method [14]
to further reduce the re-projection error.

3.2.2 Perspective warping

In our task, given labeled clothes keypoints pi on regular
UV texture maps (e.g. Fig. 2b), and the corresponding de-
tected clothes keypoints p′

i on real-world person images
(e.g. Fig. 2a), we can solve Eq. (1) and get the homography
matrix H. Then, each pixel location p on the UV map will
have a corresponding pixel location on the input image, by
[x, y, z]

T
= Hp. Besides, we need to set the z coordinate

of all the resulting points to 1 before the warping process,
as the transformation operates on homograph coordinates.
That is, p′ =

(
x
z ,

y
z

)
, where p′ represents the corresponding

point on the clothes image. Finally, the perspective warping
can be done by bilinear interpolation on the clothes image
and use the resulting pixel values to fill the UV map [26].
Specifically, by traversing p on UV map in turn, a corre-
sponding point p′=Hp with float numbers of coordinates
on the clothing image will be determined. Then, four pixels
around p′ will be bilinearly interpreted into p. An example
is shown in Fig. 3, where the red dots represent the corre-
sponding keypoints. To reduce background influence, we
set the outer part of the clothes in black.

In this paper, with most regular UV maps we directly cal-
culate perspective homography through all the clothes key-
points. However, as shown in Fig. 2b, the shapes of the
long-sleeved and trousers on the UV map are quite different
from those usually appear in person images. In these cases,
we calculate the perspective homography on each part of
them separately, then warp the clothes parts to the UV tex-
ture map and combine the results. For example, pants could
be split into left and right sides.

3.3. Homogeneous Cloth Expansion

Registered clothes mapping can handle the clothes tex-
ture of the frontal side very well. However, the back side is
usually different from the frontal side but invisible. There-
fore, we further design the homogeneous cloth expansion
method to find a homogeneous area on clothes as a realistic
cloth cell, and expand the cell to fill the UV map. Besides,
as Fig. 2c shows, the UV texture maps of some 3D clothes
models are irregular, with unclear clothes structures. This
also prevents the application of the registered clothes map-
ping. Therefore, we use the homogeneous cloth expansion

to handle irregular UV maps, and enable more clothes mod-
els and styles. In our experiments, we have 161 3D clothes
models with regular UV maps, and 17 models with irregular
UV maps, as illustrated in Fig. 2.

3.3.1 Cloth segmentation

The homogeneous cloth expansion includes two steps, cloth
segmentation and cloth expansion. For cloth segmentation,
an optimization algorithm is proposed to find a large homo-
geneous area on clothes, and use it as a realistic cloth cell.
As shown in Fig. 3, we first crop the clothes area, and use a
model trained on MSMT17 [30] by QAConv 2.0 [18] to ex-
tract the layer2 feature map (48× 16) of this clothes image.
The purpose of the QAConv model is to extract discriminant
feature maps to find homogeneous cells, so as to reduce the
influence of image noises. Then, square blocks of various
scales are defined on the feature map. Within each block,
the average and standard deviation of the feature values are
computed, as follows:

µk =
1

nk

nk∑
i=1

xk
i , σk

j =

√√√√ 1

nk − 1

nk∑
i=1

(xk
ij − µk

j )
2, (2)

where k denotes the kth block, nk is the number of ele-
ments in that block, xk

i ∈ Rd is the feature vector of the
ith element in block k, with d = 512 dimensions, and j
denotes the jth dimension. Note that the standard devia-
tion is computed per feature channel. This value estimates
the variations within each block, and thus reflects how ho-
mogeneous the cloth is within that block. Furthermore, we
would also like the selected block to be as large as possible.
Therefore, we further compute the area Ak of each block k,
and define a ratio R as our objective function for the opti-
mization problem, as follows:

K
min
k=1

Rk =
1
d

∑d
j=1 σ

k
j

Ak
, (3)

where K denotes the number of blocks. By optimizing the
above objective, we obtain a cloth area, with textures within
it as homogeneous as possible, and with the area as large as
possible. Then, we locate this block on the input clothes
image and crop it, resulting in a patch which we call cloth
cell. Appendix Fig. I shows some cloth cells thus obtained.

3.3.2 Cloth Expansion

As described above, the homogeneous cloth expansion is
applied for both regular UV maps and irregular UV maps.
For regular UV maps, it is used to fill the back side of the
clothes area, as well as the background. Since we already
apply the registered clothes mapping for the frontal side of
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Figure 3. Process pipeline of registered clothes mapping (top) and homogeneous cloth expansion (bottom).

the clothes on regular UV maps, there exists a scale align-
ment problem for the cloth cell to be filled on the same UV
map. Therefore, to maintain the consistency of the texture
of the clothes, we need to scale the homogeneous cloth cell.
As shown in Fig. 3, let Wc and Hc be the width and height,
respectively, of the clothes image, Wa and Ha be the width
and height, respectively, of the cropped cloth cell from the
clothes image, Wt and Ht be the width and height, respec-
tively, of the target area of the clothes after registered map-
ping, then, Ws and Hs, the width and height, respectively,
of the cell to be scaled can be computed as follows:

Ws =
Wa

Wc
×Wt, Hs =

Ha

Hc
×Ht. (4)

Then, the scaled cloth cell is expanded on the whole UV
map besides the registered clothes mapping area, by alter-
nating flipping and tiling. As for irregular UV maps, since
there is no reference of the scale, we simply use the origi-
nal shape of the homogeneous cloth cell to flip and tile until
fully fill the whole UV map, as shown in Fig. 3.

Note that besides the homogeneous cloth expansion , a
simple way is to resize the cloth cell directly as a UV map,
as done in RandPerson and UnrealPerson. However, sim-
ply resizing the cloth cells may result in blur textures and
unrealistic patterns, as compared in Appendix D.

4. Similarity-Diversity Expansion
We use both DeepFashion (Apache License 2.0) [19]

and DeepFashion2 [9] images for our virtual data creation.
Through the pre-processing steps, there are still tens of
thousands of images that are qualified and can be cloned
to virtual characters. However, because of the enormous
volume of images and repeating images of the same person,
using these images directly to create characters is not effi-
cient. To address this, two principles are considered. First,

Figure 4. Illustration of similarity-diversity expansion.

(a) ϵ = 0.4 (b) ϵ = 0.5

Figure 5. Clustering of different ϵ values. (a) Examples of two
clusters (up and down) with ϵ=0.4. (b) Examples of two clusters
(left and right) with ϵ=0.5, with person images (first row) and the
generated characters (second row).

the more diverse samples, the better generalization perfor-
mance should be. Second, similar person images are able to
make the model training pay more attention to subtle differ-
ences. According to [33], similar characters as hard sam-
ples take a positive effect for person re-identification with
large number of identities and cameras.

Therefore, we propose a similarity-diversity expansion
strategy to scale up virtual character creation while improv-
ing along both the similarity and diversity aspects, as illus-
trated in Fig. 4. By clustering person images, we can create
similar characters from the same cluster, while increase di-
versity by including more and more clusters. This way, the
created characters can expand densely in similarity and di-
versely in population. Specifically, this strategy first applies
DBSCAN [7] to cluster person images, then it samples a
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certain number of images per cluster, and finally clones out-
fits from these images for 3D character generation. In this
way, we can generate similar characters in the same cluster
and diverse characters with different clusters 5.

For the clustering, we use the same model trained on
MSMT17 [30] by QAConv 2.0 [18] to extract feature
maps and compute similarity scores between person im-
ages. Then, DBSCAN is applied, with different ϵ param-
eters to control the degree of similarity. Specifically, to re-
move repeating persons, we set ϵ=0.4 to cluster the same
person with the same outfits. Fig. 5a shows two examples
where images from the same cluster are with the same per-
son. Next, we select one image per cluster (closest to the
cluster center) and remove other redundant images. To-
gether with other images failed to be clustered (with label
-1), the second round of clustering is performed, with ϵ=0.5.
As shown in Fig. 5b, this time images from the same cluster
are visually similar but generally from different persons.

Finally, we select seven images (five for training and
two for testing) per cluster to generate characters. Fol-
lowing RandPerson [29], these characters are imported into
Unity3D to render synthesized person images. We imple-
ment some adjustments to improve the rendering, as de-
tailed in Appendix E. Accordingly, we create 5,621 char-
acters with 887,766 images, as the ClonedPerson dataset,
with 763,953 images from 4,826 characters for training, and
123,813 images from 795 characters for testing. The Statis-
tics of the dataset are shown in Table 1. We summarize
the details and statistics of each step in our pipeline in Ap-
pendix F. Fig. 4 and Fig. 7c (more in the Appendix) show
some characters created in ClonedPerson.

5. EXPERIMENTS
5.1. Datasets

Three real-world person re-identification datasets,
CUHK03 [15], Market-1501 [35], and MSMT17 [30], are
used for generalization evaluation. The CUHK03 dataset
includes 14,097 images of 1,467 individuals. There are
7,365 images of 767 identities in the training set, and 6,732
images of 700 identities in the test set, according to the
CUHK03-NP protocol [36]. The detected bounding boxes
are used. The Market-1501 dataset includes 32,668 images
of 1,501 identities captured from six cameras. 12,936 im-
ages of 751 identities are included in the training set, and
the remaining 19,732 images of 750 identities are used for
the test set. The MSMT17 dataset includes 126,441 images
of 4,101 identities and divided into 32,621 images of 1,041
identities for training, and the remaining 93,820 images of
3,060 identities for testing.

We use two other synthetic datasets, RandPerson [29]

5Note that we only create one 3D character for one person image, since
generating similar characters is already considered in the same cluster.

and UnrealPerson [33], for comparison, since they are
shown to be superior to other synthetic datasets for general-
izable person re-identification. RandPerson contains 8,000
identities and 1,801,816 images with 19 cameras. Both the
full set and the suggested subset (132,145 images of the
8,000 identities) are used for our experiments. Besides,
since some rendering setups are modified in this work, we
further render RandPerson characters in our conditions for
a fair comparison. This is denoted by RandPerson∗ (RP∗).
UnrealPerson releases 6,799 characters with 1,256,381 im-
ages. Both the full set and the suggested subset (120,000
images of 3,000 identities) are used for our experiments.

5.2. Methods

The validation of the proposed ClonedPerson is through
person re-identification experiments. We mainly consider
two tasks, generalizable person re-identification [12,16,32],
and unsupervised domain adaptation (UDA). We apply QA-
Conv 2.0 [18] and TransMatcher [17] for the former, and
SpCL [10] for the latter. All of them are under the MIT
License. We keep the same settings for each method.

All evaluations follow the single-query evaluation pro-
tocol [8]. We use the Cumulative Matching Characteristic
(CMC) [22], especially the Rank-1 accuracy, and the mean
Average Precision (mAP) [24] as the performance metrics.

5.3. Generalizable Person Re-Identification

The mAP results of direct cross-dataset evaluation are
shown in Table 2 comparing real-world datasets with QA-
Conv 2.0, and Table 4 comparing synthetic datasets with
QAConv 2.0 and TransMatcher. Rank-1 results are reported
in Appendix Table C. In overall, ClonedPerson achieves the
best performance, surpassing existing datasets of both syn-
thetic and real-world. The better performance over exist-
ing real-world datasets further confirms the findings in [29]
and [33]. Besides, ClonedPerson is much better than Un-
realPerson on CUHK03 and Market-1501, while they are
comparable on MSMT17. Note that scenes used by Unre-
alPerson are more large and realistic than ours, due to the
powerful UE4 engine. Besides, UnrealPerson has ten more
cameras than ClonedPerson. Note also that, by comparing
to both full set and subset results of RandPerson and Unre-
alPerson, it is clear that ClonedPerson’s better performance
is not because it is larger, but because of its capability of
cloning the whole outfits from person images.

Moreover, by comparing RandPerson∗ to RandPerson,
the new rendering settings are more effective. Besides,
compared to RandPerson∗ with the same rendering set-
ting, ClonedPerson has gained an averaged improvement of
about 2% in mAP. This is encouraging since ClonedPerson
has only 4,826 identities, compared to 8,000 in RandPerson.

Furthermore, with the same learned QAConv models in
Tables 2 and 4, we also evaluate their performances on
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Dataset CUHK03-NP Market-1501 MSMT17
Rank-1 mAP Rank-1 mAP Rank-1mAP

CUHK03 - - 65.5 34.5 42.3 13.4
Market-1501 15.1 15.1 - - 41.0 14.6

MSMT17 18.5 19.2 76.3 47.9 - -
ClonedPerson 22.6 21.8 84.5 59.9 49.1 18.5

Table 2. Direct cross-dataset evaluation results of models trained
on different datasets with QAConv 2.0.

Training Data QAConv SpCL
Rank-1 mAP Rank-1 mAP

CUHK03 29.1 2.8 11.5 1.0
Market-1501 40.3 5.9 12.0 1.1

MSMT17 39.8 6.3 10.2 0.9
ClonedPerson 91.1 68.9 10.6 0.9

Table 3. Evaluation results on the ClonedPerson testing set with
different tasks. Green: Cross-dataset evaluation. Gray: Within-
dataset evaluation. Blue: UDA. Pink: Unsupervised Learning.

the ClonedPerson testing set, with results shown in Table
3. First, with within-dataset evaluation, QAConv achieves
91.1% in Rank-1 and 68.9% in mAP, indicating that this
synthetic domain can be reasonably fitted by a represen-
tative method. Second, with cross-dataset evaluation, it
can be seen that all models trained on real-world datasets
perform not satisfactory on ClonedPerson, indicating that
ClonedPerson is quite different and challenging. Neverthe-
less, it can still be observed that MSMT17 and Market-1501
are more diverse for generalization than CUHK03.

5.4. Unsupervised Domain Adaptation

As for UDA, we conducted experiments with SpCL, us-
ing ClonedPerson as source training data or target testing
data. Since the whole training set of ClonedPerson is too
large for SpCL to handle, e.g. in its clustering stage, we
also selected a training subset of ClonedPerson for SpCL,
with one image per camera, and 75,830 images in total from
the 4,826 subjects. With ClonedPerson as source training
data, the results are shown in Table 4. It shows that on av-
erage ClonedPerson outperforms both RandPerson and Un-
realPerson, especially, with a large margin on CUHK03.

With ClonedPerson as target dataset, the results are
shown in Table 3. Similar as cross-dataset evaulation, the
UDA results on ClonedPerson are also poor. Furthermore,
we also conduct an unsupervised learning task on Cloned-
Person by SpCL, as shown in Table 3. Again, the re-
sults are poor. Therefore, it appears that, for SpCL, real-
world source training data does not help much in domain
adaptation to ClonedPerson, and thus the poor performance

Method Dataset #ID #Imgs CUHKMarketMSMTAvg

QAConv

RP 8,000 1,801k 16.0 46.9 14.0 25.6
RP 8,000 132k 15.1 45.9 13.8 24.9
RP ∗ 8,000 1,239k 20.1 56.4 17.6 31.4
UP 6,799 1,256k 17.2 56.1 17.5 30.3
UP 3,000 120k 17.8 55.9 19.3 31.0
CP 4,826 763k 21.8 59.9 18.5 33.4

TransM

RP 8,000 1,801k 18.7 49.6 16.4 28.2
RP 8,000 132k 16.9 49.0 15.8 27.2
RP ∗ 8,000 1,239k 22.9 58.0 20.9 33.9
UP 6,799 1,256k 19.7 60.2 18.4 32.8
UP 3,000 120k 19.6 59.4 21.6 33.5
CP 4,826 763k 24.4 62.3 20.8 35.8

SpCL
RP 8,000 132k 4.7 67.2 27.2 33.0
UP 3,000 120k 5.3 71.7 28.4 35.1
CP 4,826 75k 12.0 72.7 24.2 36.3

Table 4. mAP results with different datasets for different tasks.
TransM: TransMatcher. RP : RandPerson. RP ∗: RandPerson∗ in
new rendering settings. UP : UnrealPerson. CP : ClonedPerson.

(a) Different number of images per cluster (b) Different number of clusters

(c) Same number of identities
(d) Different number of identities

Figure 6. Performance of different character scaling up methods.

is mainly due to the unique challenges in ClonedPerson
for clustering-based identity label reasoning. For example,
there are a large number of diverse cameras and a lot of sim-
ilar persons created by the proposed similarity-diversity ex-
pansion strategy. Consequently, though ClonedPerson is a
synthesized dataset, it may provide a good test bed for both
domain generalization and domain adaptation, and chal-
lenge researchers in developing more effective algorithms.

5.5. Comparison of Different Generation Settings

Fig. 6 shows performance (averaged Rank-1 and mAP
of the three real-world testing datasets) with different char-
acter scaling up methods, including different settings of
the proposed similarity-diversity expansion strategy, and a
straightforward random scaling up strategy.
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After the clustering procedure described in Sec. 4, we
obtain 968 clusters. Then, first, we use all the clusters for
maximum diversity, and select different numbers of images
per cluster for experiments, indicating increasing similar-
ity. Fig. 6a shows the performance. As the number of se-
lected images increases, the performance clearly increases.
Therefore, it proves that creating similar persons is indeed
important for discriminant model learning, since it has to
pay more attention to fine details of characters. However, it
is saturating when the number of images per cluster reaches
five. Therefore, to avoid data redundancy and improve effi-
ciency, we select five images per cluster for the training set,
and treat the remaining as a separate testing set.

Next, we keep the similarity level consistent, with five
images per cluster, and select different numbers of clusters
for experiments, indicating increasing diversity. As Fig. 6b
shows, the performance increases as the number of clusters
increases, which aligns with our expectations that perfor-
mance raises as the diversity increases.

However, the adjustment of diversity and similarity will
inevitably cause changes in identities, which might influ-
ence performance. Therefore, we keep the number of iden-
tities consistent by balancing the variation of similarity and
diversity. That is, the selected clusters are gradually reduced
when the number of images per cluster increases. The re-
sults are shown in Fig. 6c. The performance fluctuates in a
small range within 0.3%, indicating that both similarity and
diversity are important in our virtual data creation.

Finally, we also compare the random creation method
that randomly selects person images for texture cloning
and character creation before our clustering step. Fig. 6d
shows the comparison of this random creation method to
our strategies in Fig. 6a and Fig. 6b. From the results it
is clear that with random creation after 3,000 characters
the performance is saturating. In contrast, the proposed
similarity-diversity expansion strategy is much more effi-
cient in scaling up the virtual character creation, especially
with larger number of identities.

Therefore, the above analysis proved that the similarity-
diversity expansion is effective and efficient in scaling up
the virtual character creation, and is potentially useful in
creating an even larger and effective dataset when more per-
son image sources are considered, considering the trend in
Fig. 6b. In contrast, in UnrealPerson [33] the conclusion
is that it can only achieve the best performance with 3,000
characters, but more characters do not help. This is also
verified in our experiments with UnrealPerson in Tab. 4.

5.6. Qualitative Comparisons

Fig. 7 shows some images of characters created by three
different methods, RandPerson, UnrealPerson, and the pro-
posed ClonedPerson. As can be seen, RandPerson is the
most cartoon-like. As for UnrealPerson, though it also uses

(a) RandPerson (b) UnrealPerson (c) ClonedPerson

Figure 7. Examples from different synthetic datasets.

(a) Test image (b) ClonedPerson (c) HPBTT

Figure 8. Qualitative comparison of different synthesis methods.

real clothes textures, most of its created characters do not
match real-life clothes due to the scale alignment issue of
cloth patterns. In contrast, thanks to the designed cloning
pipeline, the ClonedPerson characters are more realistic and
dressed more like real-life persons.

Furthermore, Fig. 8 shows a qualitative comparison be-
tween models created by our method and HPBTT [34]. It
can be observed that characters created by the proposed
method have clearer and sharper clothes textures, and bet-
ter back-view looking of the clothes, than that generated by
HPBTT. Besides, from the results shown in the first row,
it can be seen that in ClonedPerson the clothes category is
preserved, while HPBTT fails to deal with long skirts.

6. CONCLUSION
This paper contributes an automatic approach to clone

the whole outfits from real-world person images to vir-
tual 3D characters. Two critical cloning methods are pro-
posed, registered clothes mapping and homogeneous cloth
expansion. As a result, these characters bridge the gap
between synthesized and realistic persons, and so mod-
els trained by our synthesized persons have better gener-
alization ability for person re-identification. In addition, a
similarity-diversity expansion strategy is proposed to scale
up virtual characters. We show that similarity can help im-
prove model’s discrimination, while diversity can improve
the generalization ability of the model. In the future, we
could exploit more in developing different types of clothes
models and exploit more data sources. Moreover, we show
some limitations of this research in the Appendix.
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