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Abstract

In this paper, we present Uformer, an effective and effi-
cient Transformer-based architecture for image restoration,
in which we build a hierarchical encoder-decoder network
using the Transformer block. In Uformer, there are two
core designs. First, we introduce a novel locally-enhanced
window (LeWin) Transformer block, which performs non-
overlapping window-based self-attention instead of global
self-attention. It significantly reduces the computational
complexity on high resolution feature map while capturing
local context. Second, we propose a learnable multi-scale
restoration modulator in the form of a multi-scale spatial
bias to adjust features in multiple layers of the Uformer
decoder. Our modulator demonstrates superior capabil-
ity for restoring details for various image restoration tasks
while introducing marginal extra parameters and compu-
tational cost. Powered by these two designs, Uformer en-
joys a high capability for capturing both local and global
dependencies for image restoration. To evaluate our ap-
proach, extensive experiments are conducted on several im-
age restoration tasks, including image denoising, motion
deblurring, defocus deblurring and deraining. Without bells
and whistles, our Uformer achieves superior or compara-
ble performance compared with the state-of-the-art algo-
rithms. The code and models are available at https:
//github.com/ZhendongWang6/Uformer.

1. Introduction

With the rapid development of consumer and industry
cameras and smartphones, the requirements of removing
undesired degradation (e.g., noise, blur, rain, and so on) in
images are constantly growing. Recovering genuine images
from their degraded versions, i.e., image restoration, is a
classic task in computer vision. Recent state-of-the-art meth-
ods [9, 47, 74, 76, 77] are mostly ConvNets-based, which
achieve impressive results but show a limitation in capturing
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Figure 1. PSNR vs. computational cost on the SIDD dataset [1].

long-range dependencies. To address this problem, several
recent works [31, 39, 83] start to employ single or few self-
attention layers in low resolution feature maps due to the
self-attention computational complexity being quadratic to
the feature map size.

In this paper, we aim to leverage the capability of self-
attention in feature maps at multi-scale resolutions to recover
more image details. To this end, we present Uformer, an
effective and efficient Transformer-based structure for image
restoration. Uformer is built upon an elegant architecture
UNet [49], wher we modify the convolution layers to Trans-
former blocks while keeping the same overall hierarchical
encoder-decoder structure and the skip-connections.

We propose two core designs to make Uformer suitable
for image restoration tasks. First, we propose the Locally-
enhanced Window (LeWin) Transformer block, which is an
efficient and effective basic component. The LeWin Trans-
former block performs non-overlapping window-based self-
attention instead of global self-attention, which significantly
reduces the computational complexity on high resolution fea-
ture maps. Since we build hierarchical feature maps and keep
the window size unchanged, the window-based self-attention
at low resolution is able to capture much more global de-
pendencies. On the other hand, local context is essential for
image restoration, we further introduce a depth-wise con-
volutional layer between two fully-connected layers of the
feed-forward network in the Transformer block to better cap-
ture local context. We also notice that recent works [35, 72]
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use the similar design for different tasks.
Second, we propose a learnable multi-scale restoration

modulator to handle various image degradations. The mod-
ulator is formulated as a multi-scale spatial bias to adjust
features in multiple layers of the Uformer decoder. Specifi-
cally, a learnable window-based tensor is added to features
in each LeWin Transformer block to adapt the features for
restoring more details. Benefiting from the simple operator
and window-based mechanism, it can be flexibly applied for
various image restoration tasks in different frameworks.

Based on the above two designs, without bells and whis-
tles, e.g., the multi-stage or multi-scale framework [77, 78]
and the advanced loss function [28, 29], our simple U-
shaped Transformer structure achieves state-of-the-art per-
formance on multiple image restoration tasks. For de-
noising, Uformer outperforms the previous state-of-the-
art method (NBNet [9]) by 0.14 dB and 0.09 dB on the
SIDD [1] and DND [46] benchmarks, respectively. For the
motion blur removal task, Uformer achieves the best (Go-
Pro [45], RealBlur-R [48], and RealBlur-J [48]) or compet-
itive (HIDE [52]) performance, displaying its strong capa-
bility of deblurring. Uformer also shows the potential on
the defocus deblurring task [3] and outperforms the previous
best model [54] by 1.04 dB. Also, on the SPAD dataset [61]
for deraining, it obtains 47.84 dB on PSNR, an improvement
of 3.74 dB over the previous state-of-the-art method [47]. We
expect our work will encourage further research to explore
Transformer-based architectures for image restoration.

Overall, we summarize the contributions of this paper as
follows:

• We present Uformer, a general and superior U-
shaped Transformer for various image restoration tasks.
Uformer is built on the basic LeWin Transformer block
that is both efficient and effective.

• We present an extra light-weight learnable multi-scale
restoration modulator to adjust on multi-scale features.
This simple design significantly improves the restora-
tion quality.

• Extensive experiments show that Uformer establishes
new state-of-the-arts on various datasets for image
restoration tasks.

2. Related Work
Image Restoration Architectures. Image restoration aims
to restore the clean image from its degraded version. A pop-
ular solution is to learn effective models using the U-shaped
structures with skip-connection to capture multi-scale infor-
mation hierarchically for various image restoration tasks,
including image denoising [9, 74, 77], deblurring [3, 28, 29],
and demoireing [38, 55]. Some image restoration meth-
ods are inspired by the key insight from the rapid devel-

opment of image classification [17, 21, 27]. For example,
ResNet-based structure has been widely used for general
image restoration [42, 83] as well as for specific tasks in im-
age restoration such as super-resolution [37, 84] and image
denoising [16, 81]. There are also DenseNet-based meth-
ods [40, 41, 84]. More CNN-based image restoration archi-
tectures can be found in the recent surveys [32, 57, 65] and
the NTIRE Challenges [2].

Until recently, some works start to explore the atten-
tion mechanism to boost the performance. For example,
squeeze-and-excitation networks [20] and non-local neu-
ral networks [63] inspire a branch of methods for different
image restoration tasks, such as super-resolution [36, 82],
deraining [33, 61], denoising [76, 77], deblurring [47, 77],
deshadow [11, 12], and so on. Our Uformer also applies
the hierarchical structure to build multi-scale features while
using the newly introduced LeWin Transformer block as the
basic building block.
Vision Transformers. Transformer [59] shows a significant
performance in natural language processing (NLP). Differ-
ent from the design of CNNs, Transformer-based network
structures are naturally good at capturing long-range depen-
dencies in the data by the global self-attention. The success
of Transformer in the NLP domain also inspires the com-
puter vision researchers. The pioneering work of ViT [15]
directly trains a pure Transformer-based architecture on the
medium-size (16×16) flattened patches. With large-scale
data pre-training (i.e., JFT-300M), ViT gets excellent results
compared to state-of-the-art CNNs on image classification.

Since the introduction of ViT, many efforts have been
made to reduce the quadratic computational cost of global
self-attention for making Transformer more suitable for
vision tasks. Some works [19, 62] focus on establishing
a pyramid Transformer architecture simlilar to ConvNet-
based structure. To overcome the quadratic complexity of
original self-attention, self-attention is performed on local
windows with the halo operation or window shift [43, 58]
to help cross-window interaction, and get promising re-
sults. Rather than focusing on image classification, recent
works [10, 14, 23, 70, 85] propose a brunch of Transformer-
based backbones for more general high-level vision tasks.

Besides high-level discriminative tasks, there are also
some Transformer-based works [25, 68, 86] for generative
tasks. While there are enormous explorations in the vision
area, introducing Transformer to low-level vision still lacks
exploration. Early work [69] makes use of self-attention
mechanism to learn texture for super-resolution. As for
image restoration tasks, IPT [8] first applies standard Trans-
former blocks within a multi-task learning framework. How-
ever, IPT relies on pretraining on a large-scale synthesized
dataset and multi-task learning. In contrast, we design a gen-
eral U-shaped Transformer-based structure, which proves to
be efficient and effective for image restoration.
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Figure 2. (a) Overview of Uformer. (b) LeWin Transformer block. (c) Illustration of how the modulators modulate the W-MSAs in each
LeWin Transformer block which is named MW-MSA in (b).

3. Method
In this section, we first describe the overall pipeline and

the hierarchical structure of Uformer for image restoration.
Then, we provide the details of the LeWin Transformer block
which is the basic component of Uformer. After that, we
present the multi-scale restoration modulator.

3.1. Overall Pipeline

As shown in Figure 2(a), the overall structure of the pro-
posed Uformer is a U-shaped hierarchical network with skip-
connections between the encoder and the decoder. To be
specific, given a degraded image I ∈ R3×H×W , Uformer
firstly applies a 3× 3 convolutional layer with LeakyReLU
to extract low-level features X0 ∈ RC×H×W . Next, fol-
lowing the design of the U-shaped structures [24, 49], the
feature maps X0 are passed through K encoder stages. Each
stage contains a stack of the proposed LeWin Transformer
blocks and one down-sampling layer. The LeWin Trans-
former block takes advantage of the self-attention mecha-
nism for capturing long-range dependencies, and also cuts
the computational cost due to the usage of self-attention
through non-overlapping windows on the feature maps. In
the down-sampling layer, we first reshape the flattened fea-
tures into 2D spatial feature maps, and then down-sample
the maps, double the channels using 4 × 4 convolution
with stride 2. For example, given the input feature maps
X0 ∈ RC×H×W , the l-th stage of the encoder produces the
feature maps Xl ∈ R2lC×H

2l
×W

2l .
Then, a bottleneck stage with a stack of LeWin Trans-

former blocks is added at the end of the encoder. In this
stage, thanks to the hierarchical structure, the Transformer
blocks capture longer (even global when the window size
equals the feature map size) dependencies.

For feature reconstruction, the proposed decoder also con-
tains K stages. Each consists of an up-sampling layer and a
stack of LeWin Transformer blocks similar to the encoder.

We use 2× 2 transposed convolution with stride 2 for the up-
sampling. This layer reduces half of the feature channels and
doubles the size of the feature maps. After that, the features
input to the LeWin Transformer blocks are concatenation
of the up-sampled features and the corresponding features
from the encoder through skip-connection. Next, the LeWin
Transformer blocks are utilized to learn to restore the image.
After theK decoder stages, we reshape the flattened features
to 2D feature maps and apply a 3× 3 convolution layer to
obtain a residual image R ∈ R3×H×W . Finally, the restored
image is obtained by I′ = I+R. We train Uformer using
the Charbonnier loss [7, 76]:

`(I′, Î) =

√
||I′ − Î||2 + ε2, (1)

where Î is the ground-truth image, and ε = 10−3 is a con-
stant in all the experiments.

3.2. LeWin Transformer Block

There are two main challenges to apply Transformer for
image restoration. First, the standard Transformer architec-
ture [15, 59] computes self-attention globally between all
tokens, which contributes to the quadratic computation cost
with respect to the number of tokens. It is unsuitable to
apply global self-attention on high-resolution feature maps.
Second, the local context information is essential for image
restoration tasks since the neighborhood of a degraded pixel
can be leveraged to restore its clean version, but previous
works [35, 66] suggest that Transformer shows a limitation
in capturing local dependencies.

To address the above mentioned two issues, we propose a
Locally-enhanced Window (LeWin) Transformer block, as
shown in Figure 2(b), which benefits from the self-attention
in Transformer to capture long-range dependencies, and
also involves the convolution operator into Transformer to
capture useful local context. Specifically, given the features
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at the (l-1)-th block Xl−1, we build the block with two
core designs: (1) non-overlapping Window-based Multi-
head Self-Attention (W-MSA) and (2) Locally-enhanced
Feed-Forward Network (LeFF). The computation of a LeWin
Transformer block is represented as:

X′l = W-MSA(LN(Xl−1)) +Xl−1,

Xl = LeFF(LN(X′l)) +X′l,
(2)

where X′l and Xl are the outputs of the W-MSA module
and LeFF module, respectively. LN represents the layer
normalization [5]. In the following, we elaborate W-MSA
and LeFF separately.
Window-based Multi-head Self-Attention (W-MSA). In-
stead of using global self-attention like the vanilla Trans-
former, we perform the self-attention within non-overlapping
local windows, which reduces the computational cost sig-
nificantly. Given the 2D feature maps X ∈ RC×H×W with
H and W being the height and width of the maps, we split
X into non-overlapping windows with the window size of
M ×M , and then get the flattened and transposed features
Xi ∈ RM2×C from each window i. Next, we perform self-
attention on the flattened features in each window.

Suppose the head number is k and the head dimension is
dk = C/k. Then computing the k-th head self-attention in
the non-overlapping windows can be formulated as follows,

X = {X1,X2, · · · ,XN}, N = HW/M2,

Yi
k = Attention(XiWQ

k ,X
iWK

k ,X
iWV

k ), i = 1, · · · , N,
X̂k = {Y1

k,Y
2
k, · · · ,YN

k },
(3)

where WQ
k , WK

k , WV
k ∈ RC×dk represent the projection

matrices of the queries, keys, and values for the k-th head,
respectively. X̂k is the output of the k-th head. Then the
outputs for all heads {1, 2, · · · , k} are concatenated and then
linearly projected to get the final result. Inspired by previous
works [43, 51], we also apply the relative position encoding
into the attention module, so the attention calculation can be
formulated as:

Attention(Q,K,V) = SoftMax(
QKT

√
dk

+B)V, (4)

where B is the relative position bias, whose values are taken
from B̂ ∈ R(2M−1)×(2M−1) with learnable parameters [43,
51].

Window-based self-attention can significantly reduce
the computational cost compared with global self-attention.
Given the feature maps X ∈ RC×H×W , the computational
complexity drops from O(H2W 2C) to O(HW

M2 M
4C) =

O(M2HWC). Since we design Uformer as a hierarchical
architecture, our window-based self-attention at low reso-
lution feature maps works on larger receptive fields and is
sufficient to learn long-range dependencies. We also try the

shifted-window strategy [43] in the even LeWin Transformer
block of each stage in our framework, which gives only
slightly better results.
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Figure 3. Locally-enhanced feed-forward network.

Locally-enhanced Feed-Forward Network (LeFF). As
pointed out by previous works [66, 72], the Feed-Forward
Network (FFN) in the standard Transformer suffers limited
capability to leverage local context. Actually, neighboring
pixels are crucial references for image restoration [6, 22].
To overcome this issue, we add a depth-wise convolutional
block to the FFN in our Transformer-based structure follow-
ing the recent works [35, 50, 72]. As shown in Figure 3, we
first apply a linear projection layer to each token to increase
its feature dimension. Next, we reshape the tokens to 2D fea-
ture maps, and use a 3×3 depth-wise convolution to capture
local information. Then we flatten back the features to tokens
and shrink the channels via another linear layer to match the
dimension of the input channels. We use GELU [18] as the
activation function after each linear/convolution layer.

3.3. Multi-Scale Restoration Modulator

Different types of image degradation (e.g. blur, noise,
rain, etc.) have their own distinctive perturbed patterns to
be handled or restored. To further boost the capability of
Uformer for approaching various perturbations, we propose
a light-weight multi-scale restoration modulator to calibrate
the features and encourage more details recovered.

As shown in Figure 2(a) and 2(c), the multi-scale restora-
tion modulator applies multiple modulators in the Uformer
decoder. Specially in each LeWin Transformer block, a mod-
ulator is formulated as a learnable tensor with a shape of
M×M×C, whereM is the window size and C is the chan-
nel dimension of current feature map. Each modulator is
simply served as a shared bias term that is added into all non-
overlapping windows before self-attention module. Due to
this light-weight addition operation and window-sized shape,
the multi-scale restoration modulator introduces marginal
extra parameters and computational cost.

We prove the effectiveness of the multi-scale restoration
modulator on two typical image restoration tasks: image
deblurring and image denoising. The visualization compar-
isons are presented in Figure 4. We observe that adding
the multi-scale restoration modulator makes more motion
blur/noising patterns removed and yields a much cleaner
image. These results show that our multi-scale restoration
modulator truly helps to recover restoration details with little
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(a) w/o Modulator (b) w/ Modulator (c) Target

(d) w/o Modulator (e) w/ Modulator (f) Target

Figure 4. Effect of the multi-scale restoration modulator on image
deblurring (top samples from GoPro [45]) and denoising (bottom
samples from SIDD [1]). Compared with (a), Uformer w/ Mod-
ulator (b) can remove much more blur and recover the numbers
accurately. Compared with (d), the image restored by Uformer w/
Modulator (e) is closer to the target with more details.

computation cost. One possible explanation is that adding
modulators at each stage of the decoder enables a flexible ad-
justment of the feature maps that boosts the performance for
restoring details. This is consistent with the previous work
StyleGAN [26] using a multi-scale noise term adding to the
convolution features, which realizes stochastic variation for
generating photo-realistic images.

4. Experiments
In this section, we first discuss the experimental setup. Af-

ter that, we verify the effectiveness and efficiency of Uformer
on various image restoration tasks on eight datasets. Finally,
we perform comprehensive ablation studies to evaluate each
component of our proposed Uformer.

4.1. Experimental Setup

Basic settings. Following the common training strategy of
Transformer [59], we train our framework using the AdamW
optimizer [44] with the momentum terms of (0.9, 0.999)
and the weight decay of 0.02. We randomly augment the
training samples using the horizontal flipping and rotate the
images by 90◦, 180◦, or 270◦. We use the cosine decay
strategy to decrease the learning rate to 1e-6 with the ini-
tial learning rate 2e-4. We set the window size to 8×8 in
all LeWin Transformer blocks. The number of Uformer
encoder/decoder stages K equals 4 by default. And the di-
mension of each head in Transformer block dk equals C.
More dataset-specific experimental settings can be found in
the supplementary materials.
Architecture variants. For a concise description, we intro-
duce three Uformer variants in our experiments, Uformer-
T (Tiny), Uformer-S (Small), and Uformer-B (Base) by set-
ting different Transformer feature channels C and the num-
bers of the Transformer blocks in each encoder and decoder
stages. The details are listed as follows:

• Uformer-T: C = 16, depths of Encoder = {2, 2, 2, 2},

• Uformer-S: C = 32, depths of Encoder = {2, 2, 2, 2},

• Uformer-B: C = 32, depths of Encoder = {1, 2, 8, 8},

and the depths of Decoder are mirrored depths of Encoder.
Evaluation metrics. We adopt the commonly-used PSNR
and SSIM [64] metrics to evaluate the restoration perfor-
mance. These metrics are calculated in the RGB color space
except for deraining where we evaluate the PSNR and SSIM
on the Y channel in the YCbCr color space, following the
previous work [60].

SIDD [1] DND [46]
Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
BM3D [13] 25.65 0.685 34.51 0.851
RIDNet [4] 38.71 0.914 39.26 0.953
VDN [73] 39.28 0.909 39.38 0.952
DANet [74] 39.47 0.918 39.59 0.955
CycleISP [75] 39.52 0.957 39.56 0.956
MIRNet [76] 39.72 0.959 39.88 0.956
MPRNet [77] 39.71 0.958 39.80 0.954
NBNet [9] 39.75 0.959 39.89 0.955
Uformer-B 39.89 0.960 40.04 0.956

Table 1. Denoising results on the SIDD [1] and DND [46] datasets.

4.2. Real Noise Removal

Table 1 reports the results of real noise removal on the
SIDD [1] and DND [46] datasets. We compare Uformer with
8 state-of-the-art denoising methods, including the feature-
based BM3D [13] and seven learning-based methods: RID-
Net [4], VDN [73], CycleISP [75], NBNet [9], DANet [74],
MIRNet [76], and MPRNet [77]. Our Uformer-B achieves
39.89 dB on PSNR, surpassing all the other methods by
at least 0.14 dB. As for the DND dataset, we follow the
common evaluation strategy and test our model trained on
SIDD via the online server testing. Uformer outperforms
the previous state-of-the-art method NBNet [9] by 0.09 dB.
To verify whether the gains benefit from more computation
cost, we present the results of PSNR vs. computational
cost in Figure 1. We notice that our Uformer-T can achieve
a better performance than most models but with the least
computation cost, which demonstrates the efficiency and
effectiveness of Uformer. We also show the qualitative re-
sults on the SIDD and DND datasets in Figure 5, in which
Uformer can not only successfully remove the noise but also
keep the texture details.

Further, we give quantitatively and qualitatively compar-
isons with IPT [8] for denoising in Table 3 and Figure 6.
We observe that Uformer outperforms IPT significantly on
SIDD and DND with much fewer GMACs and parameters,
while not requiring large scale pre-training.

4.3. Motion Blur Removal

For motion blur removal, Uformer also shows state-of-
the-art performance. We follow the previous method [77] to
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Figure 5. Visual comparisons with state-of-the-art methods on real noise removal. The top sample comes from SIDD [1] while the bottom
one is from DND [46].

GoPro [45] HIDE [52] RealBlur-R [48] RealBlur-J [48]
Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
Nah et al. [45] 29.08 0.914 25.73 0.874 32.51 0.841 27.87 0.827
DeblurGAN [28] 28.70 0.858 24.51 0.871 33.79 0.903 27.97 0.834
Xu et al. [67] 21.00 0.741 - - 34.46 0.937 27.14 0.830
DeblurGAN-v2 [29] 29.55 0.934 26.61 0.875 35.26 0.944 28.70 0.866
DBGAN [80] 31.10 0.942 28.94 0.915 - - - -
SPAIR [47] 32.06 0.953 30.29 0.931 - - 28.81 0.875
†Zhang et al. [79] 29.19 0.931 - - 35.48 0.947 27.80 0.847
†SRN [56] 30.26 0.934 28.36 0.915 35.66 0.947 28.56 0.867
†DMPHN [78] 31.20 0.940 29.09 0.924 35.70 0.948 28.42 0.860
†MPRNet [77] 32.66 0.959 30.96 0.939 35.99 0.952 28.70 0.873
Uformer-B 33.06 0.967 30.90 0.953 36.19 0.956 29.09 0.886

Table 2. Results on motion deblurring. Following privous works [28,29,77], our Uformer is only trained on the GoPro dataset [45]. Then we
apply our GoPro trained model directly on the HIDE dataset [52] and the RealBlur dataset [48] to evaluate the generalization on real scenes.
† denotes recurrent/multi-stage designs for better performance.

SIDD [1] DND [46]
GMACs # Param PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

IPT [8] ∼380G 115.31M 39.10 0.954 39.62 0.952
Uformer-B 89.46G 50.88M 39.89 0.960 40.04 0.956

Table 3. Comparisons of IPT [8] and Uformer for denoising.

(a) Input (b) IPT (c) Uformer-B (d) Target
Figure 6. Visual comparisons of IPT [8] and Uformer for denoising.

train Uformer on the GoPro dataset and test it on the four
datasets: two synthesized datasets ( HIDE [52] and the test
set of GoPro [45]), and two real-world datasets (RealBlur-R

and -J [48]). We compare Uformer with ten state-of-the-art
methods: Nah et al. [45], DeblurGAN [28], Xu et al. [67],
DeblurGAN-v2 [29], DBGAN [80], SPAIR [47], Zhang et
al. [79], SRN [56], DMPHN [78], and MPRNet [77]. The
results are reported in Table 2. For synthetic deblurring,
Uformer gets significant better performance on GoPro than
previous state-of-the-art method [77] and shows a compara-
ble result on the HIDE dataset. As for real-world deblurring,
the causes of blur are complicated so the task is usually more
challenging. Our Uformer outperforms other methods by at
least 0.23 dB and 0.36 dB on RealBlur-R and RealBlur-J, re-
spectively, showing a strong generalization ability. Besides,
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we show some visual results in Figure 7. Compared with
other methods, the images restored by Uformer are more
clear and closer to ground truth.

4.4. Defocus Blur Removal

We perform defocus blur removal on the DPD dataset [3].
Table 4 and Figure 8 report the quantitative and qualita-
tive results, respectively. Uformer achieves a better per-
formance (1.04 dB, 1.15 dB, 1.44 dB, and 1.87 dB) over
previous state-of-the-art methods KPAC [54], DPDNet [3],
JNB [53], and DMENet [30], respectively. From the visu-
alization results, we observe that the images recovered by
Uformer are sharper and closer to the ground-truth images.

DMENet JNB DPDNet KPAC Uformer-B[30] [53] [3] [54]
PSNR ↑ 23.41 23.84 25.13 25.24 26.28
SSIM ↑ 0.714 0.715 0.786 0.842 0.891

Table 4. Results on the DPD dataset [3] for defocus blur removal .

4.5. Real Rain Removal

We conduct the deraining experiments on SPAD [61]
and compare with 6 deraining methods: GMM [34], RES-
CAN [33], SPANet [61], JORDER-E [71], RCDNet [60],
and SPAIR [47]. As shown in Table 5, Uformer presents
a significantly better performance, achieving 3.74 dB im-
provement over the previous best work [47]. This indicates
the strong capability of Uformer for deraining on this real
derain dataset. We also provide the visual results in Figure 8
where Uformer can remove the rain more successfully while
introducing fewer artifacts.

GMM RESCAN SPANet JORDER-E RCDNet SPAIR Uformer-B[34] [33] [61] [71] [60] [47]
PSNR ↑ 34.30 38.11 40.24 40.78 41.47 44.10 47.84
SSIM ↑ 0.9428 0.9707 0.9811 0.9811 0.9834 0.9872 0.9925

Table 5. Results on the SPAD dataset [61] for real rain removal.

4.6. Ablation Study

In this section, we analyze the effect of each compo-
nent of Uformer in detail. The evaluations are conducted
on image denoising (SIDD [1]), deblurring (GoPro [45],
RealBlur [48]), and deraining (SPAD [61]) using different
variants. The ablation results are reported in Tables 6 – 8.
Transformer vs. convolution. We replace all the LeWin
Transformer blocks in Uformer with the convolution-based
ResBlocks [9], resulting in the so-called "UNet", while keep-
ing all others unchanged. Similar to the Uformer variants,
we design UNet-T/-S/-B:

• UNet-T: C = 32, depths of Encoder = {2, 2, 2, 2},

• UNet-S: C = 48, depths of Encoder = {2, 2, 2, 2},

GMACs # Param PSNR ↑
UNet-T 15.49G 9.50M 39.62
UNet-S 34.76G 21.38M 39.65
UNet-B 86.97G 53.58M 39.71

ViT 8.83G 14.86M 38.51
Uformer-T 12.00G 5.23M 39.66
Uformer-S 43.86G 20.63M 39.77
Uformer-B 89.46G 50.88M 39.89

Table 6. Comparison of different network architectures for denois-
ing on the SIDD dataset [1].

W-MSA FFN GMACs # Param PSNR ↑

Uformer-S
(SIDD [1])

- - 43.00G 20.47M 39.74
X - 43.64G 20.59M 39.72
- X 43.86G 20.63M 39.77

Uformer-B
(RealBlur-R/-J [48])

- - 88.31G 50.45M 36.15/28.99
X X 90.31G 51.20M 36.19/28.85
- X 89.46G 50.88M 36.22/29.06

Table 7. Effect of enhancing locality in different modules.

• UNet-B: C = 76, depths of Encoder = {2, 2, 2, 2},

and the depths of Decoder are mirrored depths of Encoder.
Table 6 reports the comparison results. We observe

that Uformer-T achieves 39.66 dB and outperforms UNet-
T by 0.04 dB with fewer parameters and less computation.
Uformer-S achieves 39.77 dB and outperforms UNet-S by
0.12 dB with fewer parameters and a slightly higher com-
putation cost. And Uformer-B achieves 39.89 dB which
outperforms UNet-B by 0.18 dB. This study indicates the
effectiveness of the proposed LeWin Transformer block,
compared with the original convolutional block.
Hierarchical structure vs. single scale. We further build
a ViT-based architecture which only contains a single scale
of the feature maps for image denoising. This architecture
employs a head of two convolution layers for extracting fea-
tures from the input image and also a tail of two convolution
layers for the output. 12 standard Transformer blocks are
used between the head and the tail. We train the ViT with
the hidden dimension of 256 on patch size 16 × 16. The
results are presented in Table 6. We observe that the vanilla
ViT structure gets an unsatisfactory result compared with
UNet, while our Uformer significantly outperforms both the
ViT-based and UNet architectures, which demonstrates the
effectiveness of hierarchical structure for image restoration.
Where to enhance locality? Table 7 compares the re-
sults of no locality enhancement and enhancing locality in
the self-attention calculation [66] or the feed-forward net-
work based on Uformer-S and Uformer-B. We observe that
introducing locality into the feed-forward network yields
0.03 dB (SIDD), 0.07 dB (RealBlur-R)/0.07 dB (RealBlur-J)
over the baseline (no locality enhancement), while introduc-
ing locality into the self-attention yields -0.02 dB (SIDD).
Further, we combine introducing locality into the feed-
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Figure 7. Visual comparisons with state-of-the-art methods on the GoPro dataset [45] for motion blur removal.
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Figure 8. Top row: Visual comparisons with state-of-the-art methods on the DPD dataset [3] for defocus blur removal. Bottom row: Visual
comparisons with state-of-the-art methods on the SPAD dataset [61] for real rain removal.

forward network and introducing into the self-attention. The
results on RealBlur-R/-J also drop from 36.22 dB/29.06 dB
to 36.19 dB/28.85 dB, indicating that compared to involv-
ing locality into self-attention, introducing locality into the
feed-forward network is more suitable for image restoration
tasks.

GoPro [45] SIDD [1] SPAD [61]
Uformer-T Uformer-B Uformer-B

Modulator - X - X - X
PSNR ↑ 29.11 29.57 39.86 39.89 47.43 47.84

Table 8. Effect of the multi-scale restoration modulator.

Effect of the multi-scale restoration modulator. In Ta-
ble 8, to verify the effect of the modulator, we conduct
experiments on GoPro for image deblurring, SIDD for im-
age denoising, and SPAD for deraining. For deblurring,
we observe that w/ modulator can bring a performance im-
provement of 0.46 dB, which reveals the effectiveness of the
modulator for deblurring. We also compare the results of
Uformer-B with/without the modulator on SIDD and SPAD,
and the comparisons indicate that the proposed modulator
introduces 0.03 dB improvement (SIDD)/0.41 dB improve-
ment (SPAD). In Figure 4, we have provided visual com-
parisons of Uformer w/ and wo/ the modulator. This study
validates the proposed modulator can bring extra ability of
restoring more details. More comparisons about the modula-

tor can be found in supplementary materials.

5. Discussion and Conclusion

In this paper, we have presented an alternative architec-
ture Uformer for image restoration tasks by introducing the
Transformer block. In contrast to existing ConvNet-based
structures, our Uformer builds upon the main component
LeWin Transformer block, which can not only handle local
context but also capture long-range dependencies efficiently.
To handle various image restoration degradation and en-
hance restoration quality, we propose a learnable multi-scale
restoration modulator inserted into the Uformer decoder. Ex-
tensive experiments demonstrate that Uformer achieves state-
of-the art performance on several tasks, including denois-
ing, motion deblurring, defocus deblurring, and deraining.
Uformer also surpasses the UNet family by a large margin
with less computation cost and fewer model parameters.
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