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Figure 1. The overview of the recurrent transformer working pipeline. The input frame x(t) and hidden state h(t−1) jointly determine
the current hidden state h(t) and output O(t). The hidden state contains attention information which can be transferred to next frame.

Abstract

Existing video understanding approaches, such as 3D
convolutional neural networks and Transformer-Based
methods, usually process the videos in a clip-wise man-
ner; hence huge GPU memory is needed and fixed-length
video clips are usually required. To alleviate those issues,
we introduce a novel Recurrent Vision Transformer (RViT)
framework based on spatial-temporal representation learn-
ing to achieve the video action recognition task. Specifi-
cally, the proposed RViT is equipped with an attention gate
to build interaction between current frame input and pre-
vious hidden state, thus aggregating the global level inter-
frame features through the hidden state temporally. RViT is
executed recurrently to process a video by giving the cur-
rent frame and previous hidden state. The RViT can capture
both spatial and temporal features because of the attention
gate and recurrent execution. Besides, the proposed RViT
can work on variant-length video clips properly without re-
quiring large GPU memory thanks to the frame by frame
processing flow. Our experiment results demonstrate that
RViT can achieve state-of-the-art performance on various
datasets for the video recognition task. Specifically, RViT
can achieve a top-1 accuracy of 81.5% on Kinetics-400,
92.31% on Jester, 67.9% on Something-Something-V2, and
an mAP accuracy of 66.1% on Charades.

*Work done while interning at TCL Corporate Research (HK) Co., Ltd.
and equal contribution

1. Introduction

Existing video understanding works, such as [6, 17, 18,
21,27,57], usually utilize the 3D-CNNs network to achieve
the spatial-temporal features extraction. With the successful
adaptation of the Visual Transformer [11] for vision tasks,
Transformer-based methods become a hot topic for video
understanding tasks. TimeSformer [3], ViViT [1], VTN
[40], Mformer [41] and MViT [15] are typical representa-
tives. Though Transformer-based methods on computer vi-
sion task can achieve significant performance, tremendous
computing memory is needed for those methods, which hin-
der the deployment of such schemes.

On the other hand, some studies [23, 42, 59] show that
human visual attention in a video is driven by prior knowl-
edge. For example, [59] points out that human often focuses
on user-interested regions of videos, and prominent actions
draw more attention than their surrounding neighbours at
the initial sight. In the video understanding pipeline of hu-
mans, information from the previous frame usually can help
determine the attention in the subsequent frame of the video
in a recurrent manner.

From the human attention perspective, we reason that
there are two categories of information contained in a video:
(i) spatial (single frame), (ii) temporal (inter-frames). Both
the spatial feature in the current frame and the temporal
feature aggregated from prior frames play a crucial role in
video understanding tasks. Meanwhile, the temporal fea-
tures from adjacent frames usually show high similarity.
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However, existing clip-wise approaches generally extract
the temporal features at each processing batch, which leads
to non-interest information included in the temporal fea-
tures. Additionally, temporal features are usually extracted
from a fix-length clip instead of a length-adaptive clip.

Motivated by the above discussion, we proposed a novel
recurrent processing pipeline, namely Recurrent Vision-
Transformer (RViT), to achieve the video action recognition
task in this work. Specifically, the proposed RViT frame-
work is based on an attention gate enabled RViT unit, given
the current input frame x(t) and hidden state h(t−1) from
the previous frame, an output O(t) and a hidden state h(t)

will be generated from the current RViT unit. To achieve
an length-adaptive temporal feature extraction, an attention
gate is designed to transfer the temporal (inter-frames) fea-
ture through the hidden state instead of extracting temporal
feature from every frame by batch.The aggregated tempo-
ral features through the hidden state is utilized to attend the
spatial features in the subsequent processing flow.

Our contributions are: (i) An end-to-end Recurrent
Vision-Transformer is proposed to process video sequences
for action recognition. The proposed model consumes
less GPU memory thanks to the frame-flow processing and
achieves state-of-the-art performance simultaneously; (ii)
A novel attention gate is incorporated into the RViT unit
to preserve inter-frame attention information through the
hidden state; Thus, an interaction between the aggregated
temporal features and the current spatial feature can be
established. (iii) Our extensive experiments demonstrate
that state-of-the-art performance can be achieved for action
recognition task. Our method can achieve a top-1 accu-
racy of 81.5% on Kinetics-400, 92.31% on Jester, 67.9% on
Something-Something-V2, and an mAP accuracy of 66.1%
on Charades. Additionally, temporal attention has been
demonstrated visually.

2. Related Work
Convolution-Based Method and Self-Attention Convo-
lution neural network (CNN) have achieved remarkable
performance in computer vision tasks [22, 32, 35, 47–49].
For video understanding task, CNN methods can be gen-
erally categorised into two types, (i) extend the 2D CNN
model in temporal dimension by using two stream network
[6,18,19,46,51]; (ii) 3D convolution [16,21,28,33,43,54].

The hybrids of self-attention and CNNs have demon-
strated great success on image and video tasks. For ex-
ample, the Non-Local Network [54] employs an attention
method similar to the self-attention from transformer [52]
to achieve the vision task.

Vision Transformer Transformer was originally pro-
posed for Nature Language Processing tasks [9, 52]. Re-
cently, transformer-based networks have also been adopted
on computer vision tasks. For example, a transformer-based

network is designed in the DETR [5] for object detection
by combining the convolutional feature maps. Dosovit-
skiy et al. [11] proposed the Visual Transformer (ViT) and
demonstrated that transformer framework without convolu-
tion layer can also achieve good performance on image pro-
cessing tasks. Transformer-based models have also been
adopted for video tasks [1, 3, 15, 40, 41]. Specifically, the
ViViT [1] uses two transformer encoders to process spatial
and temporal information, respectively. The TimeSformer
[3] is a convolution-free approach that expands the spatial-
only self-attention to joint spatial-temporal attention. The
VTN [40] uses a 2D spatial feature extraction model based
on a temporal-attention-based encoder to build an efficient
architecture for video understanding. The MViT [15] pro-
posed multi-head pooling attention with the specific spatial-
temporal resolution and achieved encouraging performance.

Most existing transformer-based methods are designed
in a parallel processing manner to process a batch of frames
at once on video tasks. Such methods usually require a
large GPU memory, and the temporal features are extracted
within the batch, hence limited information is contained in
the temporal features.

To address the discussed problems, the recursive method
might be a good option. The usage of recursive methods
has been demonstrated successfully for video tasks, for ex-
ample, ConvLSTM [58] and ConvGRU [2]. Besides, indi-
cated by some research works [8, 29, 34], the transformer
mechanism shows similarity to RNN. The parameter shar-
ing between transformer blocks can also lead to better per-
formance [8,34]. On the other hand, self-attention designed
for video tasks suggests that the transformer-based method
can establish the interaction between spatial and temporal
domain [1, 3, 15, 40].

Based on the above literature review, we notice that no
existing approach adopts a recursive mechanism into the
transformer to achieve the video action recognition task.
The usage of the recursive mechanism may benefit the per-
formance and alleviate the expensive GPU memory cost.
We propose the RViT framework to process the variant-
length video clips via recurring the standard ViT design to
address the above issues.

3. Recurrent-Based Transformer
Previous researches [4, 36, 59] indicate that the Human

Visual System (HVS) has the ability to orient attention to
the most informative area of visual scenes. Video frames
with significant spatial and temporal information will draw
more attention. Inspired by those researches, we proposed
an RViT framework based on attention gate enabled RViT
unit. The attention gate is designed to establish an inter-
action between spatial and temporal features and transfer
temporal information through the hidden state.

In the following subsection, we will first discuss the
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(a) RViT Unit

(b) Attention Gate (c) RViT Framework

Figure 2. RViT. Figure (2a) shows a recurrent unit in our framework. Figure (2b) illustrates how attention gate process both current input
x(t) and hidden state h(t−1). Figure (2c) illustrates an overview of the RViT framework, and gives a two layers RViT as an example, in
where the spatial and temporal information is aggregated vertically and horizontally.

patch embedding of each frame in the pre-processing stage
of RViT. The specifically designed attention gate then is in-
troduced. The processing pipeline of the RViT unit is fur-
ther discussed, followed by the token design. The whole
framework will be presented finally.

3.1. Patch Embedding of Frames

In the pre-processing stage, the input image X(t) ∈
RH×W×C at the current frame will be decomposed into
P × P non-overlapping patches and be flatten into vectors
x
(t)
p ∈ RP 2×D and D = H

P ·
W
P · C.

Subsequently, an embedding layer is applied on the
patched vector x(t)

p , and followed by an appending of po-
sition encoding vector to generate the input vector x(t) ∈
RP 2×D of the RViT unit:

x(t) = ℓ(x(t)
p ) + Posp (1)

where ℓ is an embedding function (a convolution layer in
our work), Posp ∈ RP 2×D is a learnable positional encod-
ing vector, designed for spatial position encoding of each
patch in a frame, and each frame shares same parameters
of position encoding. Note that before input into the RViT
unit, a token will be prepended to x(t) as discussed in sec-
tion 3.4.

3.2. Attention Gate

Given the current frame x(t) and the hidden state
h(t−1) ∈ RP 2×D from the previous frame as the input, at-

tention gate is designed to establish an interaction between
them and generate the attended vector a(t) ∈ RP 2×D as:

a(t) = (σ(Q(t)) + 1)(σ(K(t))T + 1)V (t) (2)

where σ(·) indicates the activation function elu(·),
Q(t),K(t), V (t) are the Query/Key/Value matrices defined
as:

Q(t) = x(t)WQ
x + h(t−1)WQ

h

K(t) = x(t)WK
x + h(t−1)WK

h

V (t) = x(t)WV
x + h(t−1)WV

h

(3)

Multi-Head Attention [52] is also adopted in this work.
We further extend Eq. 2 by concatenating q attention heads
together:

A(t) = Concat(a(t)1 , · · · , a(t)q )Wproj (4)

where a
(t)
q = (σ(Q

(t)
q ) + 1)(σ(K

(t)
q )T + 1)V

(t)
q and a

(t)
q ∈

RP 2×D
q . A linear layer Wproj ∈ RD×D is adopted to

project the attended vector. Note that we use linear attention
instead of the SoftMax Attention to avoid gradient vanish-
ing in this work. A diagram of the attention gate is shown
in Figure 2b.

3.3. RViT Unit

An overview diagram of a single RViT unit is shown in
Figure 2a. RViT unit consists of three steps. Firstly, the x(t)
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Figure 3. The design of classification token. This figure shows the complete schematic diagram of the [class] token transmission in
spatial (vertical) and temporal (horizontal) directions. The output Tt token of each layer and the Ts token from the last moment will be
concatenated for classification purposes.

and h(t−1) are passed by the Layer Normalization layer and
passed to the attention gate. Next, the attention gate selec-
tively preserves previous attention and append the new in-
formation from the current frame. Finally, The hidden state
h(t) ∈ RP 2×D of the current frame then can be generated
in a residual manner:

h(t) = h(t−1) +A(t), (5)

And the output O(t) ∈ RP 2×D of current unit is pro-
duced by a Feed-Forward Network (FFN) with a residual
connection, defined as:

O(t) = f(o(t)) + o(t), (6)

where o(t) is the intermediate output defined as o(t) =
x(t) +A(t), where f(·) denotes the FFN.

3.4. The Design of [class] Token
Similar to [11], we also incorporate an additional learn-

able token to serve as representation for classification pur-
poses. Besides, the learnable token is also utilized to es-
tablish an interaction between spatial and temporal feature
domains, as it is prepended to the input of the RViT unit.
As shown in Figure 3, we use Ts ∈ RD and Tt ∈ RD

to represent the learnable token in the spatial and temporal
direction, respectively.

As shown in Figure 3, Ts tokens are prepended to each
input frame x(t), and the Tt tokens are prepended to the
initial hidden state in each layer before being feed into the
RViT unit. Ts tokens are designed to aggregate features
along the spatial dimension (vertically), while Tt tokens are
utilized to aggregate features along the temporal dimension
(horizontally).

The aggregated Tt tokens and the Ts from the last
frame’s output are concatenated together, and then a classi-
fication operation is performed on the concatenated tokens
through a linear layer Wclass (see Figure 3):

result = Wclass(Concat(Tt
(t)
0 , ..., T t(t)n , T s(t)n )). (7)

3.5. RViT Framework
Based on the above presented RViT unit and attention

gate, a novel recurrent vision transformer can be formulated
as Algorithm 1.

Algorithm 1 RViT: Recurrent Vision Transformer

Input:
X(t) : The current input
h
(t−1)
l : The hidden state from previous unit in l layer

h
(0)
l : The initial hidden state in l layer

Ts,Tt : The learnable token for spatial and temporal
L, T : The total layers of RViT and input frames
ℓ, pos : Patch to embedding, Positional encoding
α : Attention gate
ln, f : Layer normalization, MLP

Output:
h
(t)
l The state of t moment in l layer

O
(t)
l The output of t momentin l layer

1: for t = 1 to T do
2: [x

(t)
1 · · ·x

(t)
p ]← X(t)

3: x(t) ← Concat
(
Ts, [ℓx

(t)
1 · · · ℓx

(t)
p ]

)
4: for l = 1 to L do
5: h

(t−1)
l ← Concat

(
Tt, h

(0)
l

)
if t = 1

6: x(t) ← O
(t)
l if l ̸= 1

7: A(t) ← α
(
ln(x(t) + pos), ln(h

(t−1)
l + pos)

)
8: h

(t)
l ← A(t) + h

(t−1)
l

9: O
(t)
l ← f(ln(A(t) + x(t))) + (A(t) + x(t))

10: end for
11: end for

Note that we have some distinctive differences compared
with other approaches: (i) Existing approaches generally
process a batch of frames. For example, the 3D-ResNet and
TimeSformer require a relatively long video sequence for
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inference and training. While our method uses the recurrent
unit to process the videos frame by frame; (ii) We incor-
porate the attention gate with hidden state into the RViT to
aggregate the temporal attention recurrently without neces-
sarily considering the video length. (iii) thanks to the frame
flow processing, our method can work on both fixed-length
and variant-length video clips without requiring large GPU
memory.

4. Experiments and Results
4.1. Implement Details

Datasets To evaluate the proposed method, three pub-
lic benchmark dataset for human action recognition task
are adopted, including Kinetics-400(K400) [6, 30] (∼240K
training videos and ∼20K validation videos in 400 human
action categories), Jester [39] (∼120K training videos from
27 human gesture), Something-Something V2(SSv2) [20]
(∼168.9K training videos and 24.7K validation videos in
174 classes) and Charades [45](7985 videos for training and
1863 for testing in 157 classes).

Training For Kinetics-400, we first resize each video to
256 × 256, then sample a clip from the full-length video.
Finally, a single clip is randomly cropped to 224 × 224
and randomly horizontally flipped. As our architecture is
based on the vision transformer, we initialize the model
with the ImageNet-21K pre-trained ViT model for Kinetics-
400 experiments. The SSv2 dataset follows the same pre-
processing pipeline as the above, except the pre-trained
RViT model on Kinetics-400 is used. For the Jester dataset,
the lengths of the videos might be insufficient to sample to
32 frames. Thus we pad short videos by randomly repeating
the frame. We resize all frames to (112×112) without other
transformations, and we train the model from scratch on the
Jester dataset. Label smoothing and cross-entropy loss are
adopted in training.

Top-1 and top-5 accuracy(%) are adopted for the eval-
uation on each validation dataset. The total model param-
eters, computation cost (Flops) and memory consumption
for one-view inference are also included in the subsequent
experiments. It should be noted that we use the official
code [1,7,13,14,16,38,41,50] (if available) when verifying
other methods. Models with various settings are designed
to verify the performance of our framework under different
situations. The details of each config for different datasets
are listed in Table 1.

Inference (i) For Kinetics-400 and Something-something
V2, follow the pipeline from [15], we sample T random
frames uniformly from a single video. Spatially, scales the
shorter spatial side to 256 pixels and takes 3 crops of size
224 × 224 to cover the longer spatial axis. Temporally, we

Model Frame Size
(H ×W )

Patch Size
(H ×W )

Depth Hidden Head
Param
(M)

RViT-S◦ 112× 112 8× 8 1 768 8 0.60
RViT◦ 112× 112 8× 8 2 768 8 1.15

RViT-L◦ 112× 112 8× 8 4 768 8 2.27
RViT 224× 224 16× 16 4 3072 12 36.8

RViT-L 224× 224 16× 16 8 3072 12 72.0
RViT-XL 224× 224 16× 16 12 3072 12 107.7

Table 1. Model variants. For the Jaster dataset, since the input
frame size is 112 × 112, three types of models with 8 × 8 patch
size are used (marked by (◦)). For the K400 and SSv2 datasets,
the frame size expands to 224× 224.

uniformly sample the long video into N clips and average
the score from the last 1/3 frames when evaluating. The
score of each test sample uses the average score of these
3 × N predictions individually and takes the highest as
the final prediction. In our work, we take each prediction
as a single ”view”. (ii) For Jester dataset, we padded the
short videos and randomly sampled long videos to the same
length(T ). Spatially, we resize each frame to 112 × 112
pixels without extra transformations. Take the highest pre-
diction score evaluated from the last 10 frames as the final
prediction. Note that for the inference time of RViT-XL
(64 × 3 × 3) reported in Table 2, 3 temporal clips with 3
spatial crops (9 views in total) are used.

4.2. Performance Evaluation

Kinetics-400 Performance results for Kinetics-400 are
shown in Table 2. Compared to CNN-based methods and
Transformer based methods, our methods can achieve state-
of-the-art performance. Specifically:

• Compare to CNN-based methods, our best model
(RViT-XL, 64×3×3) performs better (1.7% ∼ 9.5% ↑) than
CNN-based methods. The RViT-XL(32 × 3 × 1) model
achieves 80.3% of Top-1 accuracy while the flops are 3.49×
fewer than the SlowFast+NL. Meanwhile, our method out-
performs the X3D-XL in Top-1 by 2.1%, with only 1.38×
larger in flops. In comparison with the CNN-based methods,
our best model uses only 2.33GB memory (2× ∼ 10× less)
in one-view inference.

• Compare to Vision Transformer based methods, our best
model achieves state-of-the-art Top-1 accuracy (81.5%)
compared to VIVIT(81.3%) and MViT-B(81.3%). Com-
pared to ViViT, our model is 3× lighter in terms of parame-
ters with around 0.2% gain in Top-1 accuracy. We also out-
perform MViT-B by 0.2% in terms of top-1 accuracy at the
cost of heavier parameters and Flops. In the aspect of mem-
ory cost, our model occupies remarkable less memory. Even
our largest model use only 2.33GB (3× ∼ 10× less) during
one-view inference. Our method requires extensive compu-
tation (11.96Tflops) because the inference is sampled from
both spatial and temporal, which cause 2.49× and 2.91×
more than ViViT and MViT-B, respectively.

14067



Methods Pre-
Train

Top-1
(%)

Top-5
(%)

Param
(M)

Flops
(T)

Mem
(G)

R(2+1)D∗ [51] - 72.0 90.0 63.6 17.5 11.8
I3D∗ [6] IN-1K 72.1 90.3 25.0 0.11 7.44
TSM [38] IN-1K 74.1 N/A 24.3 0.65 5.98
S3D-G∗ [38] - 74.7 93.4 N/A N/A 6.75
NL I3D-101∗ [6] IN-1K 77.7 93.3 25.0 0.36 7.73
ip-CSN-152∗ [50] - 77.8 92.8 32.8 3.27 8.82
X3D-XL∗ [17] - 79.1 93.9 11.0 1.45 >24
SlowFast+NL∗ [18] - 79.8 93.9 59.9 7.02 4.25
TimeSformer∗ [3] IN-21K 78.0 93.7 121.4 0.59 6.87
VTN∗ [40] IN-21K 78.6 93.7 114.0 4.22 N/A
Mformer-B∗ [41] IN-21K 79.7 94.2 114.0 11.0 7.3
MViT-B∗, 32×3 [15] - 80.2 94.4 36.6 0.85 10.7
En-VidTr-L∗ [60] - 80.5 94.6 N/A N/A N/A
TimeSformer-L∗ [3] IN-21K 80.7 94.7 121.4 7.14 >24
ViViT∗ [1] IN-21K 81.3 94.7 310.8 4.79 >24
MViT-B∗, 64×3 [15] - 81.3 95.1 36.6 4.10 >24
RViT, 32×3×1 IN-21K 78.1 93.5 36.8 0.69 1.94
RViT-L, 32×3×1 IN-21K 78.9 93.6 72.0 1.34 2.12
RViT-XL, 32×3×1 IN-21K 80.3 94.4 107.7 2.01 2.33
RViT-XL, 64×3×3 IN-21K 81.5 95.0 107.7 11.9 2.33

Table 2. Performance comparison on K400. In this table, we
categorize these methods into CNN based and ViT based. We re-
port the inference cost with total Flops. We evaluation the gigabyte
memory consumption in a single ”view”. Models need to process
all frames at once are marked with (∗).

Something-something V2 Table 3 tabulates the perfor-
mance of CNN-based methods, Vision-Transformer-based
methods and our model on the SSv2 dataset. Our pro-
posed RViT model can achieve a 65.3% Top-1 accuracy,
outperforms all the CNN-based methods with lower com-
putation cost (0.93× less than blVNet and 0.17× less than
TEA). Compared to MViT, our best model achieves 0.2%
and 0.3% performance gain in Top-1 and Top-5 accuracy at
the cost of 3× heavier parameters and 9× larger flops.

Methods Pre-
Train

Top-1
(%)

Top-5
(%)

Param
(M)

Flops
(T)

Mem
(G)

SlowFast R50∗ [18] K400 61.9 87.0 34.1 0.19 3.35
SlowFast R101∗ [18] K400 63.1 87.6 53.3 0.32 4.20
TSM [38] K400 63.3 88.2 42.9 0.19 5.98
MSNet∗ [33] IN-21K 64.7 89.4 54.6 0.07 6.54
TEA∗ [37] IN-21K 65.1 89.9 54.6 2.10 N/A
blVNet∗ [16] - 65.1 90.3 54.6 0.12 5.92
TimeSformer-L∗ [3] IN-21K 62.4 N/A 121.4 5.1 >24
VidTr-L∗ [60] - 63.0 N/A N/A 10.5 N/A
ViViT-L∗ [1] - 65.4 89.8 310.8 N/A >24
Mformer-B∗ [41] IN-21K 66.5 90.1 114.0 1.10 7.3
MViT-B∗, 32×3 [15] K400 67.1 90.8 36.6 0.51 10.7
MViT-B∗, 64×3 [15] K400 67.7 90.9 36.6 1.36 >24
MViT-B-24∗, 32×3 [15] K600 68.7 90.9 36.6 1.36 >24
RViT, 32×3×1 K400 65.3 89.4 36.8 0.69 1.94
RViT-L, 32×3×1 K400 66.1 90.2 72.0 1.34 2.12
RViT-XL, 64×3×1 K400 67.9 91.2 107.7 3.99 2.33

Table 3. Performance comparison on Something-Somthing-
V2.We evaluation the gigabyte memory consumption in a single
”view”.

Charades As videos in the Charades dataset have an av-
erage length of 30 seconds, we adopt Charade for long-

sequence video action recognition evaluation. As shown in
Table 4, RViT achieves the accuracy of 66.1% on Charades,
outperforms MoViNet (63.2%) by a large margin. Re-
sults on Charades prove that RViT is also capable of long-
sequence video action understanding. This is attributed
to the clear stage boundary between adjacent actions in a
video, e.g., the boundary between sitting and drinking from
a cup. Since there is less dependence between adjacent ac-
tions, forgetting of sitting action will not impair the recogni-
tion of drinking. This also justifies the usage of aggregated
temporal features over global-attention-based temporal fea-
tures in RViT.

Methods Pre-Train mAP(%) Param(M) Flops(T)
NonLocal [54] IN-1K+K400 37.5 54.3 16.3
STRG+NL [55] IN-1K+K400 39.7 58.3 18.9
Timeception [26] K400 41.1 N/A N/A
LFB+NL [56] K400 42.5 122 15.9
SlowFast R101+NL [18] K400 42.5 59.9 7.02
X3D-XL [17] K400 43.4 11.0 1.45
MViT-B, 64× 3 [15] K400 46.3 36.4 13.7
AssembleNet-101 [44] K400 58.6 53.3 1.20
X3D-XL [17] K600 47.1 11.0 1.45
MViT-B-24, 32× 3 [15] K600 47.7 53.0 7.08
MoViNet-A6 [31] K600 63.2 31.4 0.31
RViT-L,N×3 K400 64.3 72.0 N×0.042
RViT-XL,N×3 K400 66.1 107.7 N×0.063

Table 4. Performance comparison on Charades. N denotes the
length of the video clip. The Mean of N on Charades ≈ 30s.

Jester Table 5 shows the performance comparison against
vanilla methods on the Jester dataset. As the results suggest,
our best method can achieve 92.31% of Top-1 accuracy with
less parameters (2.27M) and computation consumption
(0.44Gflops), while TimeSformer and the best CNN model
are 89.94%(2.37% ↓) and 90.75%(1.56% ↓), with 46.6M
and 4.8M in parameters, 1.568G and 1.346G in flops, re-
spectively. Noted that all models are trained from scratch.

Methods
(32× 112× 112)

Top-1
(%)

Top-5
(%)

Param
(M)

Flops
(G)

Mem
(G)

ConvLSTM [58] 82.76 94.23 7.6 59.2 2.37
TSN [53] 83.90 99.60 10.7 16 N/A
MobileNet-Small† [24] 84.69 98.70 2.30 0.42 1.90
ResNet3D-10∗ [21] 88.81 99.01 14.4 18.2 1.96
R(2+1)D-RGB∗ [51] 89.08 98.76 63.6 16.9 1.93
MobileNet-Large† [24] 89.40 99.11 15.8 1.98 1.92
TimeSformer∗ [3] 89.94 99.52 4.8 43.1 13.1
ResNet3D-18∗ [21] 89.96 99.76 33.3 34.6 2.08
ResNet3D-50∗ [21] 90.75 99.52 46.6 50.2 2.59
SE-ResNet3D∗ [21, 25] 90.64 99.84 48.7 52.3 2.68
RViT-S◦,32×3×1 89.47 98.73 0.60 3.84 1.70
RViT◦,32×3×1 91.26 99.17 1.15 7.04 1.74
RViT-L◦,32×3×1 92.31 99.87 2.27 14.1 1.76

Table 5. Performance comparison on Jester. We evaluation the
gigabyte memory consumption in a single ”view”. (†) indicates
the MobileNet accompany with the LSTM unit.
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Classification Token Type Accuracy(%)

Only Temporal Domain 88.16
Only Spatial Domain 79.94

Both Spatial and temporal 92.31

Table 6. The accuracy comparison for different methods in
Jester Val. In this experiment, training use stander RViT model
with different measures.

4.3. Ablation Studies

We use the Jeste dataset for our extensive ablation study
in this section. The purpose of the ablation study is to
demonstrate the following hypotheses: (i) The designed
classification token in RViT can represent spatial-temporal
information. We compared different indicators and selected
the best design through experiments to study the impact of
the Ts token on the results. (ii) The introduction of lin-
ear attention can prevent the gradient vanishing/exploding*

during training and improve the stability in convergence.
(iii) The attention map on each video frame is visualized,
and the attention changes across time dynamically are also
demonstrated.

The Design of [class] Token As discussed in section
3.4, by default, Tt and Ts are designed in the spatial and
temporal direction, respectively. They serve as the repre-
sentation for classification purposes and establish an inter-
action between spatial and temporal feature domains. In the
ablation study for the classification token, we adopt differ-
ent designs of the classification token to explore the impact
of different token designs in terms of accuracy, convergence
speed and stability.

Specifically, three different token designs are explored:
(i) the spatial-only token, which only uses Ts from the out-
put of the last layer in the final moment as the basis of clas-
sification; (ii) the temporal-only token, which only uses the
Tt token; (iii) Both Ts and Tt are used (default).

According to table 6, spatial-only token leads to the low-
est accuracy, while the combination of spatial Ts and tem-
poral Tt tokens achieve the highest accuracy. However,
only using the Ts token from the temporal layer leads to
around 4% lower performance than the combination one.

The gradient vanishing/exploding In this paper, we pro-
pose to recurrent the standard ViT to achieve a similar
mechanism to the original recurrent neural network [12].
As the RNN design might easily produce gradient vanish-
ing, several methods have been explored to avoid the gradi-
ent vanishing on RViT.

• Linear Attention: The [29] uses the kernel-based self-
attention and matrix product operation to calculate the

*For simplicity, we only discuss gradient vanishing.

Residual
Connection

Softmax
Attention

Linear
Attention Acc(%) Time(s)/

Epoch
- ✓ - N/A 1386
- - ✓ 88.7 1187
✓ ✓ - 87.9 1424
✓ - ✓ 91.3 1191

Table 7. Ablation study on residual connection and soft-
max/linear attention. This table shows the evaluation result of
model RViT◦ equipped with different components designed on the
Jester-V1 dataset. The Time(s)/Epoch indicate the total training
time of a single epoch. We implemented 10 epochs of training and
presented the average time.

(a) Loss (b) Accuracy

Figure 4. Loss and accuracy curve of variant settings. This
figure illustrates the impact of different components on training
speed and accuracy.

self-attention weights. It reveals that gradient vanish-
ing also exists in the transformer. In our case, the po-
sition of the action object in the adjacent frames might
only change slightly. Thus the gradient may be ag-
gregated in a fixed area position and lead to gradient
vanishing/exploding. In addition, the characteristics of
softmax in RNN will also lead to local gradient van-
ishing and high computational complexity. In order to
avoid the gradient vanishing, we use linear attention to
replace softmax attention as one of the remedies.

• Residual Connection for Hidden State Transfer: In-
spired by relevant researches [10, 22], we add a resid-
ual connection between the the hidden state of each
RViT unit. As shown in Figure 2a, the current hidden
state h(t) from the current attention gate will be added
with h(t−1) to form the final hidden state h(t).

The Table 7 shows models with different settings dis-
cussed above. As suggested by the result, the residual con-
nection can prevent the gradient vanishing on both Softmax
attention and linear attention. The introduction of linear at-
tention can not only avoid the gradient vanishing but also
reduce the computation and improve the accuracy (91.3%)
significantly. According to Figure 4a, the SoftMax-only set-
ting cannot achieve a converged training, while the intro-
duction of residual connection together with the SoftMax
attention can work well in RViT. The Figure 4b illustrates
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Figure 5. Dynamic changes of attention. The figure contains two video clip examples and intuitively shows the process of attention
transmission in our framework. Each video contains 30 frames. The frames are displayed from left to right, top to bottom.

the accuracy performance under different settings. The re-
sults suggest that the residual connection with linear atten-
tion can achieve the best performance.

Dynamic changes in Attention We also explore to verify
the effectiveness of our framework on modelling the spatial-
temporal features of dynamic video. Here we use attention
visualization of the transformer to verify the relationship
of the attention maps among frames in the inference stage.
Figure 5 and 6 show that the position of attention in the first
few frames with slight motion is relatively scattered due to
the poor classification confidence. As the gesture occurs
in the following frames, attention is gradually focused on
the hands’ movements, driven by the aggravated attention
information from previous frames.

5. Conclusion
In this work, considering the fact that existing ap-

proaches often process the videos in a clip-wise manner and
fixed-length video clips are usually required, RViT is pro-
posed for video understanding tasks. Specifically, the atten-
tion gate is incorporated into the RViT unit to transfer spa-
tial information through the hidden state instead of extract-
ing it from every frame. The video sequence is processed
by executing the RViT unit in a recurrent manner. The pro-
posed RViT can work in theory on both fixed-length and
variant-length video clips properly without requiring large
GPU memory.

We also evaluated our method on various public bench-
mark datasets. The results suggest that state-of-the-art per-
formance can be achieved on video action recognition tasks
with less GPU memory.

Though less GPU memory is needed, heavy computation
may still be required to achieve considerable performance

for our method, as the ViT structure is used as the basis
of the RViT. On the other hand, the proposed RViT may
experience information loss on the long video clips.

Adopting some classic RNN designs, such as LSTM and
GRU, to RViT will become our future direction. Video pre-
diction and video generation tasks will also be explored
based on the proposed method.

Figure 6. Attention visualization. The Figure shows the dynamic
attention transmission in our network for moving objects. We vi-
sualize the attention map from each frame for transformer inter-
pretability.
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